
IBMʼs Jazz Integration Architecture: Building a Tools
Integration Architecture and Community Inspired by the

Web
Scott Rich

Distinguished Engineer, IBM
4205 S. Miami Blvd.
Durham, NC 27703

srich@us.ibm.com

ABSTRACT
In this paper, we describe our experience in the Jazz project,
beginning from a “Classical” repository- and Java-centric design
and evolving towards an architecture which borrows heavily from
the architecture of the Web. Along the way, we formed an open
community to collaborate on adapting this architecture to various
tool domains. Finally, we discuss our experience delivering the
first generation of tools built and integrated using these
techniques.

Categories and Subject Descriptors
D.2.12 [Software]: Interoperability

H.3.5 [Information Systems]: Information Storage and Retrieval
– On-line Information Systems: Web-based services

K.6.3 [Computing Milleux]: Management of Computing and
Information Systems – Software Management: software
development

General Terms
Management, Performance, Design, Standardization

Keywords
Representational State Transfer, REST, Software Development,
Semantic Web.

1.Introducing the Jazz Project
In 2005, IBM launched the “Jazz” project, with a mission of
building new generation of software development tools and also
producing a future tools platform. The platform was built on
standard middleware, and intended to enable new tools to be built
with common collaborative services.

Starting from their experience with the Eclipse and WebSphere
projects, the Jazz developers built their platform upon the same
technologies: java and OSGi. In order to provide productive
development of new tools on the platform, Jazz offered an easy

way to build new Jazz services and clients. Java libraries
provided “free” marshaling of compliant Java interfaces,
leveraging the EMF modeling framework. The server exposed a
set of services, derived form Java service interfaces, and
compatible client interfaces were offered in Java.

This architecture was very productive and powerful for the Jazz
developers, and enabled the first round of platform and tool
development to be done relatively quickly.

2.New Clients Arrive on the Scene
In 2006, the Jazz project started to look beyond Java clients and
think about Web-based tools. The project adopted an AJAX-style
for its browser clients, and began to provide some services to
enable those clients. Among those services was a “modeled
REST” service capabiliy. This allowed a service to be built in
Java which was document-oriented, in that it conformed to a basic
pattern of getting out putting a structured document, but these
document shapes were still derived from Java interfaces. The
advantage to Web clients was that the modeled REST services
could provide a JSON marshaling of their service in addition to
XML.

This pattern proved productive, and the Jazz Web UI’s were
developed in the classic SOA style. The document structure was
agreed, the interface specified, and the UI and service developers
could work in parallel until integration. UI developers tested on
mock JSON data while the real service was being implemented.

Around this time, the Jazz project started to receive some positive
feedback on this document-centric model. Several spontaneous
integrations appeared from teams that did not have direct support
from Jazz developers. In each case, the story was the same, they
had used Firebug to trace conversations between one of the Jazz
Web UI’s and the server, and had written a client to emulate this
conversation. These clients were appearing in browsers, in new
Eclipse clients, and even in Visual Studio environments,
emphasizing the importance of a non-Java client story.

3.Traditional Data Models Begin to Breakdown
While the client story was evolving to support a broader set of
client technologies, similar learning was happening with the Jazz
data architecture. The original Jazz data architecture was a fairly
classical extensible repository design. OSGi bundles could be
installed into the server to declare data models for new tools. The
server took care of creating the necessary tables and translating
resource access and queries into relational queries. This system

Copyright is held by the author/owner(s).
WWW 2010, April 20–24, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

WWW 2010 · Developers Track April 26-30 · Raleigh · NC · USA

1379

mailto:srich@us.ibm.com
mailto:srich@us.ibm.com

worked well, for Java tools, and provided great performance and
scalability, but it was not flexible enough for may tool domains.
As new tools adopted the Jazz platform, they all had requirements
for customization and extensibility of their core data model. Work
item customization, custom requirements structure, and extensible
test plan formats are examples of the immediate requirements.
The Jazz repository offered a limited extensibility architecture,
where additional properties could be associated with a modeled
resource, but it was never designed to scale to extreme levels, and
the complexity of generating the queries for extension values
meant that there were limitations on the capability which could be
offered for extensions versus modeled data.

4.Integrations Exceed Implementations by 10x
While the initial focus of the Jazz platform was upon providing
implementation technologies for a new set of tools being built
from scratch, there was also a goal of providing integration
capabilities for existing tools. Over time, the Jazz team came to
realize that the number of new tools to be built would always be
dwarfed by the number of existing tools. The integration aspects
of the architecture started to get more and more attention.

The arrival of the Telelogic tools into Rational in 2008 drove the
point home. The new Jazz tools now had a completely new set of
tools within Rational they had to integrate with. These tools were
built on a variety of technologies, but had to be integrated into
Jazz in a first class way.

5.Adopting the Architecture of the Web
As it became clear that integrations, rather than implementations,
had to be the focus of Jazz enablement, the Jazz team began to
look for inspiration from existing integration architectures.
Martin Nally[3] led an investigation of the architecture of the Web
as a candidate. Clearly the Web supported massive scaling, was
extensible in many ways, and provided a powerful model for
linked data.

The Jazz team applied the architecture of the Web to reshape the
Jazz integration architecture. Tools were tasked with providing
fundamental Web capabilities for their tool data:

• Tools should provide stable URLs for important resources

• Tools should publish resource formats, and maintain
compatibility going forward

• Tools should Publish specifications for common services, like
query

• Tools should enable OAuth for authorizing tool-to-tool
communications

6.Going Open
The Jazz team was encouraged by their early experience applying
this architecture, and decided that there was even greater value in
an external adoption of these techniques. To this end, the Open
Services for Lifecycle Collaboration project was chartered at
open-services.net. The goal of this project was to form working
groups to apply these ideas to different tool domains, producing
integration specifications that could be provided and consumed by
tools across the industry.

Change Management was selected as the pilot domain. Rational
had a need for an integration specification in this area to enable
integrating our new and existing change tracking systems with
quality and requirements management. Working with partners

and customers, a specification was produced for a RESTful
Change Management service provider.

One of the daunting problems of any integration specification is
agreeing on a common definition of a resource format. Many
previous efforts at standardizing software development artifacts
have struggled to achieve this. In the case of the OSLC Change
Management specification, there was a breakthrough which
enabled this specification to reach agreement very quickly, and
deliver a very compact resource definition.

The Change Management workgroup realized that trying to
completely specify one definition for a Change Request, for
example, was pointless. All of the participating tools supported
extensive customization, there was no single resource structure,
even within one tool. Rather than try to describe a metamodel for
capturing custom change request definitions, the team decided to
rely on the implementing tool to implement awareness of its own
customization model, as well as its model of permissions and
process. This would be achieved by specifying services which
allowed an integrating tool to request a delegated user interface
for presenting a CM resource, or picking or creating a new
resource.

This breakthrough allowed the CM specification for a Change
Request[4] to be expressed on a single page! Only the identifier
and title are required of all change request resources. The spec
allows any integrating tool to be guaranteed enough information
to create what is essentially a rich hyperlink, but no more.
Beyond that, the specification teaches a tool how to rely on the
providing tool for its full change management capability.

These concepts that allowed the Change Management workgroup
to achieve quick success have since been adopted by the working
groups in many other OSLC domains: Requirements
Management, Quality Management, and Architecture
Management.

7.Indexing Opaque Resources as RDF
Tools building on the Jazz platform still needed help dealing with
dynamic and customizable resources which they were storing.
The Jazz repository was enhanced to offer indexing of resources
in XML, proprietary document formats, and even images,
producing queriable RDF data. Tools continued to store their
resources in their native format, although some started adopting
RDF itself to have a consistent resource and query model. The
Jazz platform’s query service provided SPARQL[2] query
execution over the index graphs. Tools can choose to expose
SPARQL query natively in their APIs, but most provide a
simplified query service using query parameters or a POST query
syntax to support the most common query use cases.

The RDF approach to index data is proving to be a good fit for
extensible and customizable resources. The Jazz repository does
not need to be extended in order to support new tools and resource
types, or to allow query over a new user-defined custom resource
format. Tools can perform their own indexing of non-RDF
resources, or they can provide hints to the platform to enable
indexing of XML data.

8.Performance observations
As always, performance and scalability of the repository was a
key concern as the Jazz team adopted RDF and SPARQL. The
previous relational implementation for custom data was
performing adequately, but had many limitations.

WWW 2010 · Developers Track April 26-30 · Raleigh · NC · USA

1380

Initially, the platform adopted XQuery as a query language over
indexed XML data. XQuery was powerful but proved very hard
to optimize. Tool developers struggled to code queries carefully
to avoid queries which performed very poorly at large scales.

The Jazz team began looking at RDF query solutions. They first
experimented with relational-backed RDF query implementations,
benchmarking some IBM internal technology and the Jena SDB
implementation. These solutions showed reasonable query
performance at small scales, but struggled to perform queries and
bulk loads at large scales(tens of millions of triples).

Finally, the team benchmarked Jena’s TDB, a file-based
implementation. This approach finally yielded the right balance
of query responsiveness at low scale and did not degrade
dramatically when the triple store grew into the millions. Jena
TDB was adopted in 2009 as the RDF store and SPARQL
provider for the Jazz platform.

9.Shipping our First Generation of Web-
oriented Tools
In 2009, we delivered our first round of tools built on and
integrated with these technologies

A new requirements definition tool was built from scratch and
using all of the integration and implementation techniques
provided by Jazz. One new and one existing change management
tool were integrated as defect providers. And finally a new test
tracking system was integrated to provide integration with test
data.

Using the integration architecture, the teams were able to create
traceability links between resources in the requirements, testing,
and development domains. The integration is primarily among
Web-based tools, but rich clients can also participate by hosting
Web UIs as appropriate. The hyperlinks between the resources
enable users to navigate the web of resources, blurring the lines
between tools. The links allow queries to be executed which cross
domains, to answer important integration questions such as “What
are the requirements with failing tests?”, and “What are the
defects blocking testcases?”.

10.Conclusions
The experience of building the Jazz platform and integration
architecture has been an educational one. The architecture which
we initially defined for new tool implementations turned out to be
powerful, but incomplete without a flexible and open integration
architecture. Adopting the principles of the World Wide Web:
RESTful resource style, semantic data in RDF and SPARQL
query, has allowed us to build powerful integrations between our
tools and others. Taking these ideas to the Open Services
community has allowed us to expand the domains and tools
available to integrate in this style. And finally, applying these
concepts to our own integrations has allowed us to produce a set
of tools which provide richer traceability across the application
lifecycle.

11.REFERENCES
[1] Roy T. Fielding , Richard N. Taylor, Principled design of the

modern Web architecture, ACM Transactions on Internet
Technology (TOIT), v.2 n.2, p.115-150, May
2002 [doi>10.1145/514183.514185]

[2] E. Prud'hommeaux, A. Seaborne (Eds.), SPARQL Query
Language for RDF, W3C Recommendation, 15 January
2008.

[3] M.Nally, Michael O’Connor, “Martin Nally on Jazz,
integration, SOA”(podcast), June 2008, http://www.ibm.com/
developerworks/podcast/rsdc/nally-060308txt.html

[4] J. Wiegand, “The Case for Open Services”, May 2009, http://
open-services.net/html/case4oslc.pdf

[5] OSLC CM workgroup, “Change Management Specification
V1: Change Management Resources Definition”, May 2009,
http://open-services.net/bin/view/Main/
CmResourceDefinitionsV1

WWW 2010 · Developers Track April 26-30 · Raleigh · NC · USA

1381

http://doi.acm.org/10.1145/514183.514185
http://doi.acm.org/10.1145/514183.514185
http://www.ibm.com/developerworks/podcast/rsdc/nally-060308txt.html
http://www.ibm.com/developerworks/podcast/rsdc/nally-060308txt.html
http://www.ibm.com/developerworks/podcast/rsdc/nally-060308txt.html
http://www.ibm.com/developerworks/podcast/rsdc/nally-060308txt.html
http://open-services.net/html/case4oslc.pdf
http://open-services.net/html/case4oslc.pdf
http://open-services.net/html/case4oslc.pdf
http://open-services.net/html/case4oslc.pdf

