WWW 2010 - Developers Track

April 26-30 - Raleigh - NC - USA

Implementing the Media Fragments URI Specification

Davy Van Deursen
Ghent University - IBBT,
Ghent, Belgium
davy.vandeursen@ugent.be

Silvia Pfeiffer
Vqguence
Sydney, Australia
silviapfeiffer1@gmail.com

ABSTRACT

In this paper, we describe two examples of implementations
of the Media Fragments URI specification which is currently
being developed by the W3C Media Fragments Working
Group. The group’s mission is to create standard address-
ing schemes for media fragments on the Web using Uniform
Resource Identifiers (URIs). We describe two scenarios to
illustrate the implementations. More specifically, we show
how User Agents (UA) will either be able to resolve media
fragment URIs without help from the server, or will make
use of a media fragments-aware server. Finally, we present
some ongoing discussions and issues regarding the imple-
mentation of the Media Fragments specification.

Categories and Subject Descriptors

H.5.1 [Multimedia Information System]|: Audio, Video
and Hypertext Interactive Systems; 1.7.2 [Document Pre-
paration|: Languages and systems, Markup languages, Mul-
ti/mixed media, Standards

General Terms
Languages, Standardization, Hyperlinks, Web, URI, HTTP

Keywords

Media Fragments, Video Accessibility, Video URL, media
delivery, media servers

INTRODUCTION

Media resources on the World Wide Web (WWW) used
to be treated as “foreign” objects, which could only be em-
bedded using a plugin that is capable of decoding and inter-
acting with the media resource. The HTMLS5 specification
is a game changer and most of the popular browsers already
support the new <video> and <audio> elements. However,
to make media a “first class citizen” on the Web, it needs
to be as easily linkable as HTML pages. Only when we can
link into media resources, we will really be able to share
the important parts of a media resource. Only when we are
able to dynamically choose the tracks that are enabled in a
media resource, we will really be able to cater for accessi-
bility needs for media resources. Only when we are able to

1.

Copyright is held by the author/owner(s).
WWW 2010, April 26-30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

Raphaél Troncy
EURECOM
Sophia Antipolis, France
raphael.troncy@eurecom.fr

Yves Lafon

W3C

Sophia Antipolis, France
yves@w3.org

1361

Erik Mannens
Ghent University - IBBT,
Ghent, Belgium
erik.mannens@ugent.be

Rik Van de Walle
Ghent University - IBBT,
Ghent, Belgium
rik.vandewalle@ugent.be

navigate through media resources based on semantics rather
than random guesswork, we will really be able to master the
full complexity of rich media [4, 5].

The mission of the W3C Media Fragments Working Group®
(MFWG@G), which is part of W3C’s Video in the Web activ-
ity, is to address media fragments on the Web using Uni-
form Resource Identifiers (URIs) [1]. Following a require-
ment phase [7], three different axes have been identified for
media fragments: temporal (i.e. a time range), spatial (i.e.
a spatial region), and track (i.e. a track contained in the
media resource) [6]. Furthermore, media fragments can be
identified by name, which is a semantic replacement for ad-
dressing any range along the aforementioned three axes.

In this paper, we present a partial implementation of this
specification. We illustrate this implementation using two
scenarios. In scenario (a), Alice has received on her Face-
book wall a status message containing a Media Fragment
URI, that highlights 75 seconds of a video clip. In scenario
(b), José, who is living in Argentina, wants to watch a live
stream coming from the United Nations in New York. Fur-
ther, the corresponding Media Fragment URI is adjusted ac-
cording to the fact that José only speaks Spanish and is only
interested in a specific discussion. We first show the different
possibilities to implement the Media Fragments specification
based on these two scenarios (sections 2 and 3). We then
identify a list of current implementation problems (in sec-
tion 4). Finally, we give our conclusions and outline future
work in Section 5.

2. PROCESSING MEDIA FRAGMENTS
WITHIN THE USER AGENT

In scenario (a), Alice receives a Facebook notification on
her smart phone for a movie in which a friend has pointed
out a specific scene. She wants to watch the 75 seconds long
scene with English audio track using the media fragment
URI posted on her wall:

http://example.com/video.ogv#t=25, 100

To be able to play this part of the video, without down-
loading the whole media resource, requires a UA that can
interpret the URI, determine that it relates to a media re-
source, and request only the appropriate data for download.
This is of particular importance since Alice is watching the
video on a smart phone where the bandwidth cost for the
full movie would kill her budget.

http://www.w3.org/2008/WebVideo/Fragments/

WWW 2010 - Developers Track

Listing 1: Accessing media fragments on an HTTP
server.

HTTP request
GET /video.ogv HTTP/1.1

Host: www.example.com
Accept: video/*
Range: bytes=19147-22880

HTTP response
HTTP/1.1 206 Partial Content

Accept -Ranges: bytes
Content -Length: 3743
Content -Type: video/ogg

Content -Range: bytes 19147-22880/35614993

{binary data}

Let’s suppose Alice has a smart UA at her disposal that
understands the Media Fragment URI and can resolve the
temporal fragment identifier through a range request ex-
pressed in byte. When Alice clicks on the Media Fragment
URI link, the following steps occur:

1. The UA parses the media fragment identifier and maps
the fragment to its corresponding byte range(s). Al-
ice’s case requires that the UA understands how time
is mapped to byte offsets for the underlying media re-
source format. Assuming we are using an HTML5 Ogg
capable browser, then the browser will first set up the
media resource at http://example.com/video.ogv for
decoding, which means downloading the first couple of
bytes of the file to collect the resource header infor-
mation and set up the decoding pipelines for the con-
tained tracks. Then, the UA would stop downloading
the resource from the beginning, and resolve the frag-
ment specification, which is possible now that it has
confirmed the MIME type of the media resource. The
process for MP4 files is similar with MP4 headers con-
taining tables that provide a complete mapping of time
to byte-offsets [2]. Recent Ogg files also have such an
index, but for old Ogg files, temporal seeking is still
possible by applying a bisection search algorithm over
the Ogg pages in the file over the network until the
correct byte ranges are retrieved [3].

Based on the found time-to-byte mapping, the UA
sends one or more HTTP Range requests for the rel-
evant bytes to the server. Note that, in this scenario,
an HTTP 1.1-compliant Web server supporting byte
range requests is enough to serve media fragments.
Apache is one such example server.

The server responds with a 206 Partial Content re-
sponse, containing the requested bytes. Finally, the
UA receives, decodes, and starts playing back the re-
quested media fragment. The HTTP communication
between the UA and the server is listed in Listing 1.

The advantage of processing media fragments within the
UA is that media fragments can be served by a traditional
HTTP Web server. It only requires an extension to the UA
software for parsing the Media Fragment URI syntax. This
UA extension needs to be aware of the syntax and seman-
tics of media formats, but a UA will already need to under-
stand media formats that it wants to decode and play back.

1362

April 26-30 - Raleigh - NC - USA

Listing 2: Accessing media fragments on a Media

Fragments-enabled HTTP server.
HTTP request
GET /live_video.ogv HTTP/1.1
Host: www.example.com
Accept: video/*
Range: t:clock=2010-03-26T11:00:00Z-&track=video,
audio_es

HTTP response
HTTP/1.1 206 Partial Content

Acccept-Ranges: bytes, t, track
Content -Length: 15000
Content -Type: video/ogg

Content -Type: multipart/byteranges;boundary=BOUNDARY
Content -Range -Mapping: t:clock 2010-03-26T10:59:58Z
-%x/2010-03-26T09:00:00Z-*&track video,audio_es

--BOUNDARY
Content -Type:
Content -Range:
{binary data}
--BOUNDARY
Content -Type:
Content -Range:
{binary data}

video/ogg
bytes 2000-13000/*

video/ogg
bytes 24000-28000/*

Whether media fragment to byte range mapping is possible
or not within the UA without having the full original media
resource available, highly depends on the media format.

3. PROCESSING MEDIA FRAGMENTS
WITH SERVER HELP

In scenario (b), José wants to watch a live stream coming
from the United Nations in New York. Since he only speaks
Spanish and is only interested in a specific discussion, he
creates the following Media Fragment URI:

http://example.com/live_video.ogv#t=clock:
2010-03-26T11:00:00Z&track=video, audio_es

José has a UA that understands and parses media frag-
ments, but prefers to ask a clever server to deliver the appro-
priate bytes rather than resolving the byte range mapping
itself. When José starts to play the video, the following steps
occur:

1. The UA parses the media fragment identifier and cre-
ates an HT'TP Range request expressed in a different
unit than bytes. More specifically, the Range header is
expressed with time and/or track units, as illustrated
in Listing 2 [6].

The server, which understands these other units, inter-
prets the HTTP Range request and performs the map-
ping between media fragment and byte ranges. Based
on this mapping, the server selects the proper bytes
and wraps them within a HT'TP 206 Partial Content
response. Note that such a response also contains addi-
tional Content-Range-Mapping headers describing the
content range in terms of time and tracks. Finally,
the UA receives, decodes, and starts playing back the
requested media fragment.

An example of a server implementing the media fragment
to bytes mapping is NinSuna?. NinSuna is a fully integrated

’http://ninsuna.elis.ugent.be/

WWW 2010 - Developers Track

platform for multimedia content selection and adaptation.
Its design and the implementation thereof are based on Se-
mantic Web technologies. Furthermore, a tight coupling ex-
ists between NinSuna’s design and a model for describing
structural, semantic, and scalability information of media
resources. Media resources are ingested into the platform
and mapped to this model. The adaptation and selection
operations are based on this model and are thus indepen-
dent of the underlying media formats, making NinSuna a
format-independent media delivery platform [8]. The plat-
form is able to perform track and time range selection and
supports the Media Fragment-specific HTTP request dis-
cussed above.

4. DISCUSSION

In this section, we would like to point out a number of
discussion points related to the implementation of the Media
Fragments specification.

Currently, it is not clear for all media fragment axes, how
media fragments should be rendered and experienced by the
end-user in a meaningful way. For instance, temporal frag-
ments could be highlighted on the transport bar; spatial
fragments could be emphasized by means of bounding boxes
or they could be played back in colour while the background
is played in grayscale. Finally, different tracks could be se-
lected using dropdown boxes or buttons. Whether media
fragment URIs are hidden from the end-user or not depends
on the application.

Another point of discussion is how UAs are able to dis-
cover the available named and track fragments. More specif-
ically, there is currently no standardized way to discover
these names. One possibility is to use the Rich Open multi-
track media Exposition format (ROE®), which allows to ex-
press the track composition of a media resource, the names
for the tracks and a restricted amount of metadata such
as language, role and content-type, which can further help
select tracks. Another possibility is to use the Media Mul-
titrack API* developed within the HTML5 Working Group.
This proposal is a JavaScript API for HTML5 media ele-
ments that allows Web authors to determine the data that
is available from a media resource. It exposes the tracks that
the resource contains, the type of data it is (e.g. audio/vor-
bis, text/srt, video/theora), the role this data plays (e.g.
audio description, caption, sign language), and the actual
language it is in (RFC3066 language code). It also enables
control over the activation state of the track.

Finally, existing Web proxies are used to cache and speed
up the delivery of Web content. However, they have no
means of caching Media Fragment URI Range requests as
illustrated in section 3, since they only understand byte
ranges. One way to solve this issue is to develop Web proxies
that are aware of Media Fragment URIs. Another possibility
is to implement an indirection in which a first Range request
expressed in a custom unit is issued from the UA, for which
the server answers with just a HEAD reply containing the
correspondence of this unit into bytes and a specific header
telling the UA to issue another Range request, this time
expressed in bytes and can therefore be cached [6].

*http://wiki.xiph.org/ROE
‘http://www.w3.org/WAI/PF/HTML/wiki/Media_
MultitrackAPI

1363

April 26-30 - Raleigh - NC - USA

S. CONCLUSION AND FUTURE WORK

In this paper, we discussed how parts of the W3C Media
Fragments 1.0 specification can be implemented. We dis-
cuss this implementation using two simple scenarios: one
scenario where the UA is smart enough to resolve the media
fragment on its own and one scenario where the UA gets help
from a Media Fragments-aware Web server. Additionally,
we identified a number of discussion points regarding the
implementation of media fragments that need to be solved
in the near future, such as how to render media fragments in
UA, how to discover named and track fragments, and how
to cache media fragments.

6. ACKNOWLEDGMENTS

This paper was supported by the French Ministry of In-
dustry (Innovative Web call) under contract 09.2.93.0966,
“Collaborative Annotation for Video Accessibility” (ACAV),
Ghent University, the Interdisciplinary Institute for Broad-
band Technology (IBBT), the Institute for the Promotion of
Innovation by Science and Technology in Flanders (IWT),
the Fund for Scientific Research-Flanders (FWO-Flanders),
the European Union, and Mozilla Corporation.

7. REFERENCES

[1] M. Hausenblas, R. Troncy, Y. Raimond, and T. Biirger.
Interlinking Multimedia: How to Apply Linked Data
Principles to Multimedia Fragments. In 2"¢ Workshop
on Linked Data on the Web (LDOW’09), Madrid,
Spain, 2009.

ISO/IEC. Information technology — Coding of Audio,
Picture, Multimedia and Hypermedia Information —
Part 14: MP4 file format. ISO/IEC 14496-14:2003,
December 2003.

S. Pfeiffer. RFC 3533: “The Ogg Encapsulation Format
Version 0,” Available on
http://www.ietf.org/rfc/rfc3533.txt.

S. Pfeiffer. Architecture of a Video Web - Experience
with Annodex. W3C Video on the Web Workshop,
2007.

R. Troncy, L. Hardman, J. van Ossenbruggen, and

M. Hausenblas. Identifying Spatial and Temporal
Media Fragments on the Web. W3C Video on the Web
Workshop, 2007.

R. Troncy and E. Mannens, editors. Media Fragments
URI 1.0. W3C Working Draft. World Wide Web
Consortium, December 2009.

R. Troncy and E. Mannens, editors. Use cases and
requirements for Media Fragments. W3C Working
Draft. World Wide Web Consortium, November 2009.
D. Van Deursen, W. Van Lancker, W. De Neve,

T. Paridaens, E. Mannens, and R. Van de Walle.
NinSuna: a Fully Integrated Platform for
Format-independent Multimedia Content Adaptation
and Delivery based on Semantic Web Technologies.
Multimedia Tools and Applications — Special Issue on
Data Semantics for Multimedia Systems,
46(2-3):371-398, January 2010.

[2

(8]

