
RESTful Web Services:
Principles, Patterns, Emerging Technologies

Cesare Pautasso
Faculty of Informatics
University of Lugano

c.pautasso@ieee.org

Erik Wilde
School of Information

UC Berkeley
dret@berkeley.edu

ABSTRACT
Recent technology trends in Web services indicate that a
solution eliminating the perceived complexity of the WS-*
standard technology stack may be in sight: advocates of
Representational State Transfer (REST) have come to be-
lieve that their ideas explaining why the World Wide Web
works are just as applicable to solve enterprise application
integration problems and to radically simplify the plumb-
ing required to implement a Service-Oriented Architecture
(SOA). In this tutorial we give an introduction to the REST
architectural style as the foundation for RESTful Web ser-
vices. The tutorial starts from the basic design principles
of REST and how they are applied to service oriented com-
puting. Service-orientation concentrates on identifying self-
contained units of functionality, which should then be ex-
posed as easily reusable and repurposable services. This
tutorial focuses not on the identification of those units, but
on how to design the services representing them. We explain
how decisions on the SOA level already shape the architec-
tural style that will be used for the eventual IT architecture,
and how the SOA process itself has to be controlled to yield
services which can then be implemented RESTfully. We do
not claim that REST is the only architectural style that can
be used for SOA design, but we do argue that it does have
distinct advantages for loosely coupled services and massive
scale, and that any SOA approach already has to be specifi-
cally RESTful on the business level to yield meaningful input
for IT architecture design.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Web-based services, Data sharing

General Terms
Design, Documentation, Languages

Keywords
SOA, REST, Web Services, Patterns

1. AIMS/LEARNING OBJECTIVES
The primary goal of this tutorial to close the gap be-

tween the high-level concept of Service-Oriented Architec-

Copyright is held by the author/owner(s).
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

ture (SOA), and the question of how to implement such an
architecture once services have been identified. Colloqui-
ally, it is often assumed that “services” in a Web-oriented
are implemented as “Web services”, and these are often ex-
clusively perceived as using the SOAP/WS-* stack of proto-
cols. Our goal is to describe that “Web services” can also use
other technologies, such as HTTP correctly used following
the principles of the REST architectural style. Furthermore,
we will explain how a disciplined process can lead from the
business level, which is mainly about identifying services on
an abstract level, to an IT architecture, and that it is impor-
tant to not impose architectural constraints (such as defining
service in a function-oriented way rather than in a resource-
oriented way) too early in the process. Web Services have
been of increasing interest in the past years. While “Web
Services” were first defined as machine-accessible services
based on Web technologies, the term quickly was perceived
as exclusively referring to SOAP-based services, which mir-
ror the traditional IT integration style of distributed ob-
jects with messaging technologies layered on top of Web
technologies [7, 3]. This tutorial focuses on an alternative
approach towards the design and implementation of Web
Services, based on the architectural style of the Web itself,
Representational State Transfer (REST) [2]. Thus, the tu-
torial learning objectives specifically include giving an in
depth understanding on the design principles and patterns
behind RESTful Web Services, as well as how the two dif-
ferent styles of Web Services compare [5], and why the de-
cision of SOAP vs. REST is fundamental and needs to be
made early in any SOA project. We focus on the question
of how to do SOA with REST, and do so by explaining and
highlighting the fundamental differences between the more
tightly coupled“integration”style of distributed objects, and
the more loosely coupled“cooperation”style of REST. Thus,
attendees will gain a new perspective that highlights the im-
portance of following Web principles to support the design of
Web Services and learn why not all Web Services are made
equal and that only RESTful ones are really “of the Web, ”
whereas others are just implemented “on the Web.” [6]

2. TUTORIAL DESCRIPTION
There are two main explanations of this ongoing debate

between the RPC style and the REST style. The first expla-
nation can be given in technical terms, in the sense that RPC
style middleware, based on the idea of building distributed
systems, has been used for a long time and has become the
predominant architectural style in enterprise IT. REST and
its approach of building information systems based on loose

WWW 2010 • Tutorial April 26-30 • Raleigh • NC • USA

1359



coupling has a different background, and even though its
success on the Web is evident, it still often is pictured as be-
ing inappropriate for enterprise IT architectures. The sec-
ond explanation is that RPC vs. REST is an instance of
sustaining vs. disruptive innovation, and that the adoption
curve for something as heavyweight as enterprise IT archi-
tectural styles is long, and thus it will take a long time to
see whether REST in the end will be able to deliver bet-
ter solutions at lower cost. In either case, it can be safely
assumed that REST is not a substitute for RPC-oriented
middleware, but an alternative style which could be con-
sidered as an alternative approach for designing a system
architecture. Thus, our main goal is not to take sides in the
ongoing SOAP vs. REST debate, but to explain why REST
is an interesting alternative for SOA, and how it influences
SOA on various levels.

While SOA is mainly about business-level processes, it in-
evitably produces “models” of system architectures, and in
many cases these models already have a bias towards certain
modeling styles. REST is an “architectural style” and there-
fore already comes into play when producing these high-
level models (which often do not use any formal modeling
approach). The main question is how any SOA project is
defining a what a service is, and how that decision is reflected
in the model. The two main approaches are the viewpoint
of distributed objects, or that of document exchanges. In the
distributed objects style, the two main methods which are
later used for defining the interactions with services are Re-
mote Procedure Calls (RPC) and message passing, but both
approaches are based on the same assumption that a service
essentially is a function-oriented interface exposed through
distributed object technology. In the document exchanges
style, services are accepting and generating self-contained
description of service invocations and results, but there is
no underlying assumption of interacting with a stateful re-
mote object that represents a service invocation. Instead,
the service invocation carries no state beyond one interac-
tion. This radically changes the model of how services have
to be designed, and how to interact with them. It also rad-
ically changes the way in which services can scale, because
there is no need to keep state on the service side.

3. PRESENTER BIOGRAPHY
• Cesare Pautasso is assistant professor in the new Fac-

ulty of Informatics at the University of Lugano, Switzer-
land. Previously he was a researcher at the IBM Zurich
Research Lab and a senior researcher at ETH Zurich.
His research focuses on building experimental systems
to explore the intersection of model-driven software
composition techniques, business process modeling lan-
guages [4]. Recently he has developed an interest in
Web 2.0 Mashups [1]. He is the lead architect of JOpera,
a powerful rapid service composition tool for Eclipse.
His teaching and training activities both in academia
and in industry cover advanced topics related to Web
Development, Middleware, Service Oriented Architec-
tures and emerging Web services technologies.

• Erik Wilde is adjunct professor at UC Berkeley’s School
of Information. His general area of interest are open
information systems. His main expertise are Web tech-
nologies and, more specifically, XML-related technolo-
gies [11, 12]. Erik has also worked on how to expose

linked information in a lightweight way [13], and on
the general question of how to better integrate the
Web perspective into how Web-based applications are
built [8, 9, 10].

4. REFERENCES
[1] Bioern Biörnstad and Cesare Pautasso. Let it

flow: Building Mashups with Data Processing
Pipelines. In Proc. of the 1st International Workshop
on Web APIs and Services Mashups (Mashups’07) at
ICSOC 2007, volume 4907 of LNCS, pages 15–28,
Vienna, Austria, September 2007.

[2] Roy Thomas Fielding. Architectural Styles and the
Design of Network-based Software Architectures. PhD
thesis, University of California, Irvine, Irvine,
California, 2000.

[3] Ken Laskey, Philippe Le Hègaret, and Eric
Newcomer, editors. Workshop on Web of Services for
Enterprise Computing. W3C, February 2007.
http://www.w3.org/2007/01/wos-ec-program.html.

[4] Cesare Pautasso. BPEL for REST. In Proc. of the
6th International Conf. on Business Process
Management (BPM 2008), volume 5240 of LNCS,
pages 278–293, September 2008.

[5] Cesare Pautasso, Olaf Zimmermann, and Frank
Leymann. RESTful Web Services vs. ”Big” Web
Services: Making the Right Architectural Decision. In
Jinpeng Huai, Robin Chen, Hsiao-Wuen Hon,
Yunhao Liu, Wei-Ying Ma, Andrew Tomkins, and
Xiaodong Zhang, editors, 17th International World
Wide Web Conference, pages 805–814, Beijing, China,
April 2008. ACM Press.

[6] Steve Vinoski. RPC and REST: Dilemma,
Disruption, and Displacement. IEEE Internet
Computing, 12(5):92–95, September 2008.

[7] Werner Vogels. Web Services are not Distributed
Objects. IEEE Internet Computing, 7(6):59–66,
December 2003.

[8] Erik Wilde. Declarative Web 2.0. In Weide Chang
and James B. D. Joshi, editors, 2007 IEEE
International Conference on Information Reuse and
Integration, pages 612–617, Las Vegas, Nevada,
August 2007.

[9] Erik Wilde. The Plain Web. In First International
Workshop on Understanding Web Evolution
(WebEvolve2008), pages 79–83, Beijing, China, April
2008.

[10] Erik Wilde and Martin Gaedke. Web Engineering
Revisited. In 2008 British Computer Society (BCS)
Conference on Visions of Computer Science, London,
UK, September 2008.

[11] Erik Wilde and Robert J. Glushko. Document
Design Matters. Communications of the ACM,
51(10):43–49, October 2008.

[12] Erik Wilde and Robert J. Glushko. XML Fever.
Communications of the ACM, 51(7):40–46, July 2008.

[13] Erik Wilde and Yiming Liu. Lightweight Linked
Data. In 2008 IEEE International Conference on
Information Reuse and Integration, Las Vegas,
Nevada, July 2008.

WWW 2010 • Tutorial April 26-30 • Raleigh • NC • USA

1360


	Aims/Learning Objectives
	Tutorial Description
	Presenter Biography
	References

