WWW 2010 - Demo

April 26-30 » Raleigh * NC « USA

visKWQL, a Visual Renderer for a Semantic Web Query
Language

Andreas Hartl
andreas-hartl@gmx.de

Klara Weiand
klara.weiand@ifi.Imu.de

Frangois Bry
bry@Imu.de

University of Munich
Oettingenstr. 67
80538 Munich, Germany

ABSTRACT

KiWi is a semantic Wiki that combines the Wiki philoso-
phy of collaborative content creation with the methods of
the Semantic Web in order to enable effective knowledge
management. Querying a Wiki must be simple enough for
beginning users, yet powerful enough to accommodate expe-
rienced users. To this end, the keyword-based KiWi query
language (KWQL) supports queries ranging from simple lists
of keywords to expressive rules for selecting and reshaping
Wiki (meta-)data. In this demo, we showcase visKWQL, a
visual interface for the KWQL language aimed at supporting
users in the query construction process. visKWQL and its
editor are described, and their functionality is illustrated us-
ing example queries. visKWQL’s editor provides guidance
throughout the query construction process through hints,
warnings and highlighting of syntactic errors. The editor
enables round-tripping between the twin languages KWQL
and visKWQL, meaning that users can switch freely between
the textual and visual form when constructing or editing a
query. It is implemented using HTML, JavaScript, and CSS,
and can thus be used in (almost) any web browser without
any additional software.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms

Design, Experimentation, Languages, Human Factors

Keywords
Wiki, Semantic Web, Semantic Wikis, Keyword Querying,

Visual Query Languages

1. INTRODUCTION

The primary goal of the emerging Semantic Web[1] is to
make content on the internet more accessible to comput-
erized methods of processing, from querying to automatic
reasoning.

Web search, provided by search engines such as Google?!,

Thttp://www.google.com

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.

WWW 2010, April 26-30, 2010, Raleigh, North Carolina, USA.

ACM 978-1-60558-799-8/10/04.

1253

Yahoo!? or Bing?®, is used to locate information on the ‘“tra-
ditional web’. Here, queries are lists of keywords, possibly
enhanced with simple constructs such as operators for dis-
junction and negation.

Web query languages like XQuery [4] and SPARQL [5], on
the other hand, allow for the precise and targeted selection
and transformation of Web data. While these languages are
powerful tools, they require their users to be knowledgeable
both about the query language itself and the structure and
schema of the underlying data. This requirement excludes
a large part of the web’s user base (and thus the potential
user base of the Semantic Web) from the benefits of these
languages and the features and functionality they provide.

Visual languages, employing elements like shapes and col-
ors instead of strictly textual syntax, have two advantages
over textual languages that specifically benefit beginning
users [3]: First, their visual structure can make them easier
to learn and understand than textual languages. Secondly,
editors for visual languages can support users in the cre-
ation of valid queries by providing guidance and preventing
editing operations that would result in incorrect queries.

This demonstration introduces visKWQL, a visual query
interface for the Semantic Wiki KiWi. visKWQL is not so
much a separate query language but rather a visual render-
ing of KWQL, the keyword-based KiWi query language. It
aims at extending the textual query language—which itself
has been designed to be easy to use—to achieve two cohesive
and tightly integrated querying modi in the KiWi Wiki and
enable user-friendly and powerful querying.

The usage of visKWQL to visualize, edit or construct
KWQL queries such as ci(text:Java OR (tag(name:XML)
AND author:Mary)) or ci(author:Mary) and its interaction
with KWQL will be demonstrated in the following.

2. THE KIWI WIKI

Semantic Wikis extend conventional Wikis by the addition
of (more or less sophisticated) formal languages for express-
ing knowledge in terms of machine processable annotations
to Wiki pages.

KiWi* is a Semantic Wiki with extended functionality in
the areas of information extraction, personalization, reason-
ing, and querying. It supports annotations ranging from in-
formal, freely chosen tags, to semi-formal tags selected from

*http://www.yahoo.com
http://www.bing.com
“http://www.kiwi-project.eu,
http://showcase. kiwi-project.eu/

showcase available at

WWW 2010 - Demo

a pre-defined vocabulary, to formal concepts and relation-
ships from an ontology.

The basic conceptual units in KiWi are content items, text
fragments, links and tags:

Content Items are the basic units of information in
KiWi, they correspond roughly to Wiki pages in other Wikis.
However, content items can also include other content items.
The nesting of content items then forms a tree structure.
Each content item has a URI through which it is accessible
and uniquely identifiable. Content items can contain frag-
ments, links and tags.

Text Fragments are continuous portions of text within
a content item that users can define and annotate. They can
consist of a word, a sentence, or any other section of text.

Links in KiWi behave similarly to hypertext links. They
have an anchor (a fragment) and a target content item.
Links can be annotated.

Tags are annotations that can be set by any user, but can
also be created by the system through automatic reasoning.

Each of the four conceptual units is further associated
with meta-data, like its author, creation time and versioning
information.

3. KWQL IN A NUTSHELL

KWQLS [2], the KiWi Query Language, is a rule-based
query language based on the label-keyword paradigm. It
alms at combining a low entry barrier with powerful query-
ing, in order to accommodate users with varying levels of ex-
pertise. KWQL combines the ease of use of keyword search
with advanced features and capabilities as used in traditional
query languages.

KWQL can query the elements of the conceptual model,
their properties like textual content and meta-data as well
as the structure of content item and fragment nestings. Ba-
sic elements of a query are resources, that is, the units of
the conceptual model discussed above, and qualifier terms,
label-value pairs referring to a resource’s property types and
their values. A qualifier label can be user-created data like
text or title, which refer to the textual data and the title
of, e.g. a content item. Qualifier labels can also refer to
types of system-generated metadata or to structural prop-
erties like child or descendant, which represent direct or
indirect children in a nesting of content items or fragments.

A basic KWQL query term, a resource term, is of the form
resourceType (qualifierLabel:value). Resource types and
qualifier labels are optional, respectively extending the query
to all resources or qualifier values when omitted. The sim-
plest query in KWQL thus consists of a single keyword, cor-
responding to a search over all qualifier values of resources
of all types. Further examples of KWQL queries are given
in table 1.

KWQL supports conjunctions, disjunctions and negations
of values or qualifier or resource terms; parentheses can be
used to indicate precedence. Resources can be nested. For
example ci(tag(KiWi)) returns all content items which are
tagged with “KiWi”.

In addition to data selection, KWQL also allows for the
creation of rules to reshape and aggregate query results
into new data. Rules consist of a query and a construc-
tion part. The query part is equivalent to a regular query,

5 An implementation of KWQL is part of the latest KiWi
prototype.

1254

April 26-30 » Raleigh * NC « USA

Table 1: Examples of KWQL queries

Java
Select documents containing “Java” in
any of the qualifiers’ values, e.g. text, title,
tag label or author names
ci(author:Mary)
Select documents authored by Mary
ci(text:Java OR (tag(name:XML) AND author:Mary))
Select documents that either have “Java” in their text or
that have the tag “XML” and were authored by Mary
ci(tag(name:Java) link(target:ci(title:Lucene)
tag(name:uses)))
Select documents with the tag “Java” that contain a link
tagged “uses” to a document with the title “Lucene”
ci(title:Contents text:($A "-" ALL($T,","™)))
@ ci(title:$T author:$A)
Retrieve the titles and authors of all documents and
display them in a new document

but can additionally include variable bindings. The con-
struct part of a rule can contain operators to extract values
from bound variables. For example, the rule COUNT($A) @
ci(author:$A title:"An introduction to KiWi") would
return the number of authors of the Wiki page titled “An
introduction to KiWi”. The query part of the rule, on the
right hand side of ‘Q’; searches for content items with the
given title, and binds the item’s author qualifier to the vari-
able A. In the rule’s construct part, the operator COUNT
is used to extract the number of values bound to A, which
equals the number of authors of the Wiki page.

4. VISKWQL

visKWQL provides a visual alternative to textual KWQL.
It fully supports KWQL in that every KWQL query can
be expressed as an equivalent visKWQL query. Further, in
order to avoid introducing additional constructs and thus
additional complexity, visSKWQL stays as close as possible
to the textual language in its visual representation.

Figure 2 shows the interface of the visKWQL editor.®
The numbered elements allow to select query building blocks
(D), save and load queries (@) and construct queries (@)).
The editor further displays tooltips to guide the query cre-
ation process (@) and shows the textual version of the cur-
rent query (®). The latter can also be used to visualize and
edit textual queries, as will be explained below.

4.1 Visual Formalism

visKWQL uses a form-based approach, in which all KWQL
elements, including resources, qualifiers, and operators, are
represented as boxes, and resource-value or qualifier-value
associations are represented as nestings (see Figure 3 for an
example). Boxes consist of a label, in which the name of the
represented KWQL element is included, and a body, which
can hold child boxes.

This approach has several advantages: it stays close to
KWQL’s textual structure, keeping visKWQL simple and
making it easy to translate between the two representations;
it also lends itself well to rendering in HTML.

5A demo is available at http://pms.ifi.lmu.de/visKWQL.

WWW 2010 - Demo

April 26-30 » Raleigh * NC « USA

Mary

Contentltem Contentltem =
Link [
Target
Author Contortliem | 4=
([Valie) \ Title |

Value

Figure 1: The third (left) and fourth (right) example from table 1 as visKWQL queries

Resources
§ content item
fragment
link

tag

Qualifiers

Saved Queries: |) (Load) (Delete) (Save current quel

©)

Welcome to the KWQL Query Builder. Start by selecting an element in the menu and adding child elements to it. Drop items

outside the colored workarea to delete them. If you need further help, please read the manual @

Figure 2: The visKWQL editor

o

cifauthorMary) (Execute Query)

KwaL: (Parse Query)

2 (Clear Workspace)

To distinguish between different kinds of elements like re-
sources, qualifiers and operators, each of them is given a
different color. In accordance with the KiWi color scheme,
visKWQL as integrated in KiWi uses different shades of
green for the different elements, ranging from light green
for resources to Kelly green for operators.

4.2 Round-tripping

One of the key features of visKWQL is round-tripping,
to achieve a tight coupling between KWQL and visKWQL.
This property is implemented via a parser for the textual
KWQL language written using the parser generator ANTLR
and included in the visKWQL editor.

Whenever the user makes a change to the visual query,
the change is immediately represented in the textual version.
The textual query can further be edited and parsed by the
system to display it in its visual form.

This allows the user to make changes in the representa-
tion of his choice at any time during the query construction
process, to import KWQL queries easily into visKWQL, and
has the additional benefit of teaching the user KWQL while
he experiments with the visKWQL editor.

"http://www.antlr.org

1255

4.3 visKWQL Queries in Practice

When the editor initially loads, the workspace is empty.
The user can start either by writing or pasting a textual
KWQL query into the text box (® in Figure 2), by selecting
an element from the menu bar (@), or by loading a query
saved earlier (@).

To create the query shown in the workspace of Figure
2, the user simply clicks on “Resources” in the menu bar
and selects “content item”. A new content item box will
appear in the workspace. As only content items authored
by Mary should be matched, the qualifier “author” must
next be selected from the menu and dragged into the con-
tent item element. Finally, the value “Mary” must be en-
tered. The text box displays the textual version of the query,
ci(author:Mary).

Further children can be added to the content item element
by clicking the blue double arrow in the upper right corner of
the box. This will increase the size of the box to make room
for a further child, for example a qualifier box with the value
“XML” to limit the query answers to content items authored
by Mary and containing “XML” in the text.

If the text is altered, for example to reformulate the query
to ci(title:Mary) and find content items where “Mary” ap-
pears in the title, and “Parse query” is clicked consequently,
the visKWQL query is altered to reflect this change. The
same result can be achieved by dragging the qualifier box
out of the content item box and replacing it with a “title”
qualifier. This can be done by selecting it from the menu
and dropping it into the box representing the content item.
Type switching offers a convenient shortcut for this type
of procedure: when a box is dropped on the label of an-
other syntactically equivalent box, their types are swapped.
This allows for a quick change of elements without the need
to move child boxes contained in them. In the case of text
boxes, their values are exchanged. The “title” qualifier could,
for example, simply be swapped with the “author” qualifier
without the need to re-enter the value, “Mary”.

A query can be saved for future use by clicking on “Save
current query”. A name for the query can be entered and will
consequently appear as one of the choices in the drop-down
menu. Currently, queries are saved on a per user basis.

A query can be deleted by simply dragging it out of the
workspace, that is, the light-green colored area. Any change
to the query, including the addition and deletion of elements,
can be reverted using the “undo” button in the upper left
corner of the editor.

The example query above is relatively simple and its vis-
KWQL representation does not take up a big portion of the
workspace. Queries however require increasing amounts of
screen space as they get more complex. To help the user

WWW 2010 - Demo

April 26-30 » Raleigh * NC « USA

|r Cententitem

([Text [Title)

T ;
A SIS This box can not be dropped and

Value

added as a child here

lVaIue]

Figure 3: Information hiding and error prevention

maintain a clear mental picture of his query, boxes can be
folded: when the user clicks on the label of a box, its body
and all children contained therein are hidden from view. Fig-
ure 3 shows an example in which the body of the “Title” box
has been hidden. The workspace can further be resized by
clicking the orange box with the white arrow symbol in the
bottom right corner and dragging until the workspace has
reached the intended size and proportion.

Evaluation of a query is finally triggered by pressing the
button “execute query” next to the KWQL text box.

Additional visKWQL queries corresponding to examples
three and four in Table 1 are shown in Figure 1

4.4 User Guidance

User support in visKWQL is provided via tooltips, error

prevention, and error and problem display and correction.
Tooltips: A text area below the workspace displays an ex-
planation of the KWQL element represented by the box cur-
rently under the mouse cursor. Tooltips are also displayed
for menu items.
Error Prevention: A large number of syntactic errors re-
sult from invalid box nestings, and can be actively prevented
by the editor during drag and drop actions. When a box is
being dragged, the system continuously checks the validity
of a child inclusion or a type switch with the box underneath
it. When a box may be dropped in its current location, the
parent element is surrounded by a green border, and a green
colored tooltip appears next to the dragged box.

If dropping the box in its current location would result

in a syntactic error, the border of the box underneath it is
colored red, and a tooltip informs the user that he may not
drop the box (see Figure 3). A box dropped in an invalid
place is returned to where it was picked up.
Error Reporting and Correction: Some errors cannot
be prevented during editing. These include variable names
or values containing invalid characters, empty strings, mis-
placed operators and references to undefined variables.

After every user action, the query is checked for such er-
rors. When an error is found, the label of the node is col-
ored red and a tooltip indicating the error is displayed next
to it.To make these errors easy to locate within the query,
even if the erroneous node is currently hidden, the labels of
all its parent boxes will also be colored red, and display a
tooltip that a child box contains an error.

Errors that are less severe and can be corrected automat-
ically, like empty boxes, cause the box label to be colored
orange. A tooltip and a message below the workspace inform
the user about the source of the problem. In addition, the
system will internally correct the query, e.g., by removing
empty boxes, so that the textual query is still valid.

1256

4.5 Implementation

KiWi is a web application implemented using the JBoss
Seam web programming framework and running on a JBoss®
server.

Consequently, visKWQL can be used from within a web
browser without the need to install additional software or
browser plugins. The visual interface runs client-side and is
implemented in DHTML, using HTML for the static page
layout of the editor, JavaScript for the dynamic and inter-
active parts, and a CSS stylesheet to specify the graphical
presentation. The editor can communicate with the KiWi
server through AJAX to save or load queries or initiate query
evaluation.

The visKWQL editor was designed to make it easy to
change its appearance and localization. Consequently, all
its graphical data is contained in one CSS file, while all text
displayed to the user is located in one single text file, and
no values are hard-coded. Changing the color scheme or
language of the visKWQL editor is as easy as editing one of
the files.

5. ACKNOWLEDGEMENTS

The research leading to these results is part of the project
“KiWi - Knowledge in a Wiki” and has received funding from
the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement No. 211932.

6. REFERENCES

[1] T. Berners-Lee, J. Hendler, and O. Lassila. The
semantic web. Scientific american, 284(5):28-37, 2001.
[2] F. Bry and K. Weiand. Flavours of KWQL, a keyword
query language for a semantic wiki. In Proceedings of
SOFSEM 2010, 2010.
T. Catarci, M. Costabile, S. Leviladi, and C. Batini.
Visual Query Systems for Databases: A Survey.
Journal of Visual Languages and Computing,
8(2):215-260, 1997.
D. Chamberlin. XQuery: A query language for XML.
In ACM SIGMOD Int. Conf. on Management of Data,
2003.
E. Prud’hommeaux and A. Seaborne. SPARQL query
language for RDF (working draft). Technical report,
W3C, March 2007.

B8l

(4]

5]

Shttp://www.jboss.org

