
A Client-Server Architecture for State-Dependent Dynamic
Visualizations on the Web

Daniel Coffman, Danny Soroker, Chandra Narayanaswami

IBM T.J. Watson Research Center

19 Skyline Drive, Hawthorne, NY 10532

{coffmand, soroker, chandras}@us.ibm.com

Aaron Zinman
§

MIT Media Lab

75 Amherst St., Cambridge, MA 02142

azinman@media.mit.edu

ABSTRACT

As sophisticated enterprise applications move to the Web, some

advanced user experiences become difficult to migrate due to

prohibitively high computation, memory, and bandwidth

requirements. State-dependent visualizations of large-scale data

sets are particularly difficult since a change in the client’s context

necessitates a change in the displayed results. This paper describes

a Web architecture where clients are served a session-specific

image of the data, with this image divided into tiles dynamically

generated by the server. This set of tiles is supplemented with a

corpus of metadata describing the immediate vicinity of interest;

additional metadata is delivered as needed in a progressive

fashion in support and anticipation of the user’s actions. We

discuss how the design of this architecture was motivated by the

goal of delivering a highly responsive user experience. As an

example of a complete application built upon this architecture, we

present OrgMaps, an interactive system for navigating hierarchical

data, enabling fluid, low-latency navigation of trees of hundreds

of thousands of nodes on standard Web browsers using only

HTML and JavaScript.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures –

Patterns (e.g., client/server, pipeline, blackboard).

H.5.3 [Information Interfaces and Presentation]: Group and

Organization Interfaces – Web-based interaction.

General Terms

Performance, Design, Human Factors.

Keywords

Rich Internet Applications.

1. INTRODUCTION
Enterprise applications are moving to the Web for a variety of

reasons, including ease of deployment, manageability and

consistency and security of enterprise data. Achieving the

performance to which users have become accustomed on

traditional applications requires new frameworks and

methodologies in the Web client-server model. This challenge is

further exacerbated when large quantities of data have to be

presented visually and altered dynamically as the user’s context

changes. In this paper we present one such endeavor for the

display and navigation of layered hierarchical data. Our client-

server model performs several orders of magnitude faster

compared to a direct port of a traditional model, in the context of

applications that support visualization and interactive navigation.

The concrete application we discuss here is called OrgMaps,

whose goal is to visually map hierarchical organizations and also

reflect the superposition of additional data (visual mashups).

OrgMaps permits users to navigate smoothly the structural

neighborhoods of individuals within the organization – their

department, reporting chain and so on – through zoom and pan

operations. The visualization also functions as a substrate for the

overlay of additional information.

One of the fundamental challenges in building OrgMaps was

scalability: making it perform well for large organizations with

hundreds of thousands of individuals. To address this challenge

we employ a tiling methodology where client-specific tiles are

rendered server-side on demand. Central to this design is the

dynamic construction of small view-dependent tiles in image

space depicting the data, and the delivery of those tiles with

related artifacts describing the user’s current region of interest.

The associated artifacts may be quickly and easily updated based

on the user’s interactions, leading in large part to the quick

responsiveness of the application’s interface. We believe that the

techniques presented here, manifested originally for OrgMaps, are

applicable to the design of a large class of Web applications.

2. VISUAL DESIGN

2.1 Requirements and Goals
We built an earlier Java-based prototype in order to rapidly

explore the design space for visual mapping of organizations. Our

choice of visual design builds upon one of the simplest

hierarchical layouts, the icicle plot [1]. Icicle plots place parents

directly above their children, keeping edges implicit rather than

explicit. In this way, the plot can be called space-filling. Each

node is represented by a rectangle whose width is the sum of the

widths of its children. All nodes have the same height, and all leaf

nodes have the same width (for a given zoom level).

Figure 1: Sample icicle plot

1 B 4 5 C

A

6 7 3 2

§ Work performed while at IBM TJ Watson Research Center.

Copyright is held by the International World Wide Web Conference

Committee (IW3C2). Distribution of these papers is limited to

classroom use, and personal use by others.

WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.

ACM 978-1-60558-799-8/10/04.

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1237

Figure 1 shows an icicle plot for a small organization with 10

people: 3 managers (nodes A-C) and 7 non-managers (nodes 1-7).

The reporting structure is very easy to grasp by glimpsing at the

figure (e.g., 3 reports to B, and B reports to A). This ability to

follow parentage vertically is a primary reason we chose icicle

plots over alternative layouts.

2.1.1 Base Visualization
Figure 2 shows a screen shot of our interactive implementation of

an icicle plot for a fictitious organization of 150 people.

Figure 2: Global view of an organization

OrgMaps uses faces as a central aspect of its visualization. It

builds upon human ability to quickly recognize faces and thus

help form a visual memory of the organizational structure that a

user builds up over time. As the entire organization is visible, leaf

nodes become very thin. Only nodes that are wide enough

(beyond a threshold we set) show the face of the person they

represent (in this case, 14 of the 150 faces are visible). However,

by instrumenting OrgMaps as zoomable and pannable, we can

investigate all branches and individuals in a method similar to

starting with a map of the US, zooming in to a city, and then

panning to locate its various neighborhoods. Via a user interface

gesture we can zoom in on a person so that they become the focus

of the plot, as shown in Figure 3. Note that, even when zoomed,

faces of the complete management chain are kept fully visible for

improved context and navigation.

Figure 3: Zoomed-in view of a department

This figure also shows the details panel to the right of the plot, in

which information about the selected person is presented. Both

the faces and the displayed information are obtained from a

centralized corporate directory.

2.2 Interactions
OrgMaps supports highly responsive interactions, among them

selection, zoom/pan and search.

Selection: an individual is selected through keyboard or mouse

action; the individual is highlighted and specific detailed

information is displayed in a separate area.

Zoom, pan: the map may be dragged horizontally to pan it; the

zoom level may be adjusted to reveal more or less information

about the neighborhood of an individual.

Search: People can be searched for either globally or

contextually.

3. SCALABLE WEB SOLUTION

3.1 System Architecture and Overview
The architecture is designed for maximal efficiency. The data are

maintained in a database; the data are fetched from the database

when the server is initialized and thereafter maintained by the

server in its memory. The data are processed into a set of models

ranging from general to specific, as shown in Figure 4. The

models are designed to minimize memory footprint while

maximizing sharing of data among users. The single largest model

is the Abstract Data Model. It contains as much of the data from

the database as practicable, and is shared among all clients. The

Abstract Data Model is reconstructed periodically as changes to

the organizational structure are reported. The architecture allows

the database to be refreshed independently of the of the in-

memory models.

Figure 4: Server-side layered models

The client browser and the application establish a session, during

which time the client offers the server metadata describing itself:

its screen size, resolution, and the user’s preferred language. The

server inspects its internal structures to determine if an

appropriate Natural-Language-specific Data Model has already

been constructed, and if not creates and stores it for future

lookups. This Natural-Language-specific Data Model is not a

language-specific copy of the Abstract Data Model, but is a filter

placed before it to replace tokens with translated phrases upon

access. Natural language-specific data models are shared among

all relevant clients. This model is of very modest size, requiring

only about 0.5% of the memory used by the Abstract Data Model.

The user initiates the process of viewing a hierarchy, or tree, by

specifying the identity of the individual at the root of the tree.

This choice is sent to the server which in turn creates an Abstract

View Model of this tree, representing a view of the tree suitable

for arbitrarily fine resolution and arbitrarily large screen size of

the client. This model contains only information on the positions

of individual nodes within the view and may depend on the

particular natural language. It also is of modest size. The server

temporarily stores this model so that it may be shared among all

clients viewing a tree from the same root in a Least Recently Used

(LRU) cache.

The server uses the information on resolution and screen size

provided during session creation to construct a Session Specific

View Model for the client. This is the only model unique to a

Session-specific View Model

Abstract View Model

Natural-Language-specific Data Model

Abstract Data Model general

specific

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1238

particular client and session. It incorporates knowledge of the

resolution of the client device, client identity, and other client and

session-specific data. The server derives the images it sends to the

client directly from this model. Further, the server computes and

maintains a set of coordinate transformations from the space of

the client device to that of the session specific view model so that

the user’s actions, such as the moving of the pointing device, may

be mapped efficiently to the corresponding element in the Session

Specific View Model.

Additional metadata may be associated with an individual in the

data set’s model, such as a picture or label. Such metadata is

displayed only if the individual’s node as represented in the view

model is large enough so that it would be visible. The server adds

in this metadata for nodes larger than a threshold value, thereby

reducing unnecessary data transmitted.

The server takes the zoom-level into account in several places.

When the zoom-level is sufficiently high, the view model may

represent an image many times larger than the available area on

the client device. Delivering a single image of the view model in

this case would be inefficient and unnecessary. The server

prepares, rather, a set of tiles, one or more for each level of the

hierarchy. Suppose that the user is currently interested in a

particular region of the view model. The set of tiles prepared for

this region would comprise tiles covering the region and also the

regions immediately to the left and right of the region of interest.

Tiles beyond the perimeter fences are ignored.

Delivery of the tiles proceeds in phases; initially, only the

bounding box of the tile need be delivered to the client, along

with a unique tile key. The client uses this key when constructing

the URL for fetching the image contained in the tile. Tiles

extending beyond the left and right perimeter fences are truncated

by the client at the fences before such a request is placed. The

server takes this truncation into account while drawing the tile’s

image. Individuals in the organization each belong to a single tile,

as splitting an individual across tiles could lead to a highly

disruptive flicker when the tiles are displayed. In addition to the

images prepared for the client, the server prepares a limited set of

descriptors, delimiting various regions of the images.

It is the responsibility of the client application to assemble the set

of tiles and descriptors it receives into a coherent presentation for

the user. Further, it maintains a series of linked-lists containing

the descriptors as they arrive from the server.

Given the very large available address space of our server, we

choose to maintain all of the objects described above in the

server’s memory. This naturally leads to the best performance by

the server at the cost of a substantial memory footprint. The single

largest object is the Abstract Data Model. For a dataset of twenty-

four thousand individuals, this requires about 34 megabytes. The

memory required for any individual user is much smaller, being

initially about 300 kilobytes and increasing slowly in size to about

10 megabytes as the user interacts with the system.

3.2 User Interaction
The tiles must be adjusted after the completion of a user

interaction. After a pan operation, the positions of faces must be

recalculated so that they remain completely visible, if possible. In

addition, new tiles must be computed and delivered corresponding

to regions still hidden, but likely soon to come into view. After a

zoom operation, the entire complement of tiles needs to be

recalculated.

3.3 Implementation Setup Details
We make use only of dynamic HTML, Asynchronous JavaScript

and XML (AJAX), and HTTP servlets composed in the Java

language. For purposes of this paper, we wished to investigate the

limits of HTML and AJAX, determining by how much we could

constrain their resource usage, in the hope of extending this work

to mobile devices, with very limited memory available and

without additional runtimes beyond the web browser. For similar

reasons we avoid reliance on rendering technologies such as

Adobe Flash or Microsoft SilverLight.

4. EVALUATION

4.1 Experience and Feedback
Early versions of OrgMaps have been demonstrated both within

IBM and at the Lotusphere conference in 2008. As the corporate

directory is one of the most heavily used enterprise applications at

IBM, there was clear interest in OrgMaps’ ability to provide

easily-navigable views and data aggregation. People from other

types of organizations, such as government and education, also

saw clear use cases for the hierarchical view. The desire of people

to easily deploy OrgMaps for their organization was an important

factor in leading us to pursue a Web-based implementation.

4.2 Performance
One of the most important considerations for the user of an

interactive application is the amount of time required before the

application is loaded and ready for operation. Another factor is

the responsiveness of user interactions. In our initial prototype

implementations of OrgMaps we used an architecture whereby a

complete description of the organization was delivered to the

client browser. The browser was then able to perform all actions

required by the user, the server acting only to provide metadata

pertaining to a selected node, as needed. The architecture

performed well for small organizations, but was unsuccessful for

large ones. The performance of a client system using only HTML

and JavaScript is illustrated in Figure 5.

The figure shows the times to fetch the organization into the

browser, the time to eval or transform this into JavaScript objects,

and the time to layout or create objects in the browser’s DOM to

render the organization visible. An organization of only 3000

nodes requires almost two seconds to be usable in such a scheme.

It did not prove feasible to view an organization of 20,000 nodes;

the time to deliver the organization alone rose to over two

minutes. We tried replacing the use of DOM objects in the

browser with a Canvas as implemented in Firefox and Safari. This

yielded a slight improvement in performance in that the layout

Figure 5: Load Times for a client centric

Architecture

Initial Load Time

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000 3500

Number of Nodes in Organization

T
im

e
 (

m
s
)

Fetch

Eval

DHTML Layout

Total

Canvas Layout

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1239

time was reduced, but the dominant eval time was naturally

unchanged. This is also illustrated in Figure 5.

Clearly, a different approach was needed to rectify these

shortcomings for very large organizations. We chose to partition

the data into a set of models maintained in the server, and a much

smaller set delivered to the client, as detailed in Section 3.1. The

performance is remarkably improved. For example, consider an

untiled view; here all of the nodes in the organization may be

rendered in a single image lying within the viewport. The server

creates the Session Specific View Model, and renders it in an off-

screen buffer. It only needs to deliver to the client the descriptors

of a few individuals in the vicinity of the selected individual and a

view key, used subsequently by the client to fetch this image. The

eval time has been reduced to an insignificant 3 ms. The time

needed to fetch an organization is shown in Figure 6. It is possible

to fetch organizations of as many as 150000 nodes with an

acceptable response time of less than one second. Note that this

time includes the layout time of Figure 5 since the layout and

drawing of the image is performed by the server before it returns

the set of descriptors to the client.

Consider next a tiled view, typically created through a process of

zooming in. Further, assume that such a view was created by

zooming-in within an untiled view. The times to create and load

the tiled view are shown in Figure 7 for untiled views of three

different sizes. The times depend only weakly on the number of

nodes in the tiled view and depend most strongly on the number

of individuals represented by the untiled view. This is to be

expected, as the tiled view is derived from the Session Specific

View Model, which contains the entire contents of the untiled

view. The choice of a sub-organization of a particular size only

necessitates the location of a particular region within the Session

Specific View Model.

We paid particular attention to the size of the various models on

the server. It proved possible to limit the Abstract Data Model for

an organization of twenty-four thousand individuals to 34

megabytes, the size being linear in the number of individuals. For

an organization of similar size, the Natural Language Specific

Data Model requires roughly 110 kilobytes. The view models are

only created when the user initiates a request. The initial, untiled,

view of this organization requires 330 kilobytes, while a tiled

view requires an additional six megabytes.

5. FUTURE WORK
We plan to extend our work in two significant ways, namely

building out several additional features and capabilities into

OrgMaps, and applying these techniques to other applications

with large datasets. Examples might be applications such as

representations of product catalogs and educational,

governmental, and professional organizations. As mentioned in

the beginning of this paper, one of the motivators for moving to

the Web is composition of services. We plan to integrate the

OrgMaps service into other applications such as mail, calendar

and meetings, where recipients and attendees can be highlighted

to generate an OrgMap view. Further, we plan to integrate

OrgMaps with collaborative facilities such as instant messaging

whereby a chat could be initiated when the user clicks on a node

on the OrgMap. Further, the instant messaging client will be able

to indicate the availability of other individuals through a visual

artifact on the OrgMap itself.

6. RELATED WORK
Our work is principally differentiated from previous work in that,

1) it uses a basic Web client, 2) its fluid, low-latency response

necessitates a tiling of the visualization with look-ahead, 3) when

look-ahead tiles become the central focus in the client viewport,

these tiles reflect a constrained-view that is not equivalent to the

previously focused tiles on a larger viewport, and 4) we

dynamically classify the view-specific tiles to reduce unnecessary

communications. For detailed discussion of related work, as well

as further elaboration on all sections, please refer to [2].

7. CONCLUSION
In this paper we have presented the OrgMaps system for

interactive mapping of hierarchical organizations. The scalable

Web architecture we have devised enables OrgMaps to perform

well even for organizations with hundreds of thousands of people.

We believe that the architecture and methodology described here

are broadly applicable to Web-delivered visualization-intensive

enterprise applications.

8. REFERENCES
[1] Kruskal, J.B, and Landwehr, J.M. 1983. “Icicle Plots: Better

Displays for Hierarchical Clustering”. The American

Statistician, vol 37, no 2. pp. 162-168.

[2] Coffman, D et al. “A Client-Server Architecture for State-

Dependent Dynamic Visualizations on the Web”. IBM

Research Report, RC 24946.

Figure 7: Time to Create and Load Tiled View

Figure 6: Creation and Load Times for a scalable

architecture

View Model Generation and Transmission

0

100

200

300

400

500

600

700

0 20000 40000 60000 80000 100000 120000 140000 160000

Number of Nodes in Organization

L
o

a
d

 T
im

e
 (

m
s

)

Zoom In Times

0

10

20

30

40

50

60

1 10 100 1000 10000

Number of Nodes in the Sub-organization

L
o

a
d

 T
im

e
 (

m
s
)

18289 Nodes

3070 Nodes

148 Nodes

Number Of Nodes

 in Parent Tree

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1240

