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ABSTRACT
Mobile voice search is a fast-growing business. It provides
users an easier way to search for information using voice from
mobile devices. In this paper, we describe a statistical ap-
proach to query parsing to assure search effectiveness. The
task is to segment speech recognition (ASR) output, includ-
ing ASR 1-Best and ASR word lattices, into segments and
associate each segment with needed concepts in the appli-
cation. We train the models including concept prior proba-
bility, query segment generation probability, and query sub-
ject probability from application data such as query log and
source database. We apply the learned models on a mobile
business search application and demonstrate the robustness
of query parsing to ASR errors.
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1. INTRODUCTION
Voice search is essentially an integration of automatic speech

recognition (ASR) and text or database search. In this pa-
per, we describe a query parser between ASR and Search. As
expected, the ASR and Search components perform speech
recognition and search tasks. The role of query parsing is
three fold: (a) segmenting the automatic speech recognition
(ASR) output (1-best and word lattices) into meaningful
segments, (b)associating each segment with needed concepts
in the application, and (c)identifying the main subject of the
query such as night clubs in night clubs open on christmas
day.

There are two research literatures closely relevant to our
work , namely query segmentation and named entity extrac-
tion(NEE). [3] proposed an unsupervised approach to query
segmentation based on a generative language model, where
the task was to segment the query into segments of text.
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The argument is that segments carry implicit word proxim-
ity and ordering constraints, and hence can help improve re-
trieval accuracy. It used an expectation-maximization (EM)
algorithm to estimate the model’s parameters. NEE at-
tempts to identify entities of interest in text. Typical en-
tities include locations, persons, organizations, dates, times
monetary amounts and percentages (Kubala et al., 1998).
Most approaches for NEE tasks rely on machine learning
approaches using annotated data.

Our task of voice query parsing confronts a combination
of challenges in both NEE and query segmentation. Its com-
plexity is beyond query segmentation. In addition, applica-
tion concepts in the parser are broader than named entities.
Furthermore, we face challenges posed by error-prone ASR
and mobile context, in which users expect that search per-
forms highly effective with location and time awareness.

In the rest of the paper, we will describe a scalable statisti-
cal approach to query parsing in Section 2. We then present
experimental results in Section 3. Finally, we conclude the
paper in Section 4.

2. A STATISTICAL APPROACH
We formulate the query parsing task as follows. The query

parser takes ASR 1-best and ASR lattices as input. For
ASR lattices, we use the form of Word Confusion Networds
(WCNs), represented as Qwcn [2]. Figure 1 shows an exam-
ple of WCN. There are one or multiple arcs between a pair
of consecutive nodes. Symbols on these arcs are alternative
words for the given word position. Numbers on the arcs are
negative log posterior probabilities of the associated word.
ASR 1-best is a special case of WCN, where there is only
one word for each word position.

The parsing task is to segment Qwcn = q1, q2, . . . , qi, . . . , qn

into a sequence of concepts. Each qi is a set of possible
words on the arcs of the ith word position qi = {wa(i)|1 ≤
a(i) ≤ nai}, where nai is the number of available arcs.
Each concept can possibly span multiple words. Let W j

i =
wa(i), . . . , wa(j) be one possible word sequence from the ith
word to the jth word. a(i) and a(j) are indices of the
arcs. Let S = s1, s2, . . . , sk, . . . , sm be one of the possible
segmentations comprising of m segments, where sk = W j

i .
The corresponding concept sequence is represented as C =
c1, c2, . . . , ck, . . . , cm.

(S∗, C∗|Qwcn, D) = argmax
{S,C|Qwcn}

P (S, C|D) · Pcf (S|D)λcf (1)

= argmax
{S,C|Qwcn}

P (S|C, D) · P (C|D)λc · Pcf (S|D)λcf (2)
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Figure 1: An example confusion network for ”Gary crities Sprin gfield Missouri”

For a given Qwcn ,our goal is to search for the best segmen-
tation and concept sequence (S∗, C∗) as defined by Equa-
tion 1, which is rewritten using Bayes rule as Equation 2
with extra parameters λc and λcf . D represents mobile
context information such as location, speed, history usage
, and time of the mobile device. It impacts the meaning of
the query. For instance, Glendale Restaurant means differ-
ent in neighborhoods close to the business named as Glendal
Restaurant than anywhere else. Features of a mobile devices
also impact ASR modeling and performance.

There are three components in Equation 2. P (C|D) is
the prior probability of the concept sequence. We use λc to
scale the prior P (C|D). P (S|C, D) is the segment sequence
generation probability. Pcf (S|D) is the posterior probability
of the word sequence of S on Qwcn. λcf is used to adjust
the influence of ASR posterior probabilities. The values of
both λc and λcf are determined empirically. In this paper,
we focus on a simplified model without including D as a
modeling factor. Hence P (C|D), P (S|C, D) and Pcf (S|D)
become P (C), P (S|C) and Pcf (S). We will describe how
these probabilities are learned from data later in this section.

In [1], we proposed to re-rank ASR WCNs to prefer paths
containing a query subject. We defined a query subject as
the core concept of the query, which is the must match part.
Each valid query has a query subject. For examples, night
club is the query subject in night clubs open christmas day.
Query open doesn’t have the query subject. We represent
the query subject probability as Psb(S) and introduce it as
the forth component to the parsing optimization. Equa-
tion 2 hence is extended to Equation 3.

(S∗, C∗|Qwcn) =

argmax
{S,C|Qwcn}

P (S|C) ∗ P (C)λc ∗ Pcf (S)λcf ∗ Psb(S)λsb (3)

We approximate the prior probability P(C) using an ngram
model on the concept sequence. Training examples of con-
cept sequences can be created from annotated queries.

We model the segment sequence generation probability
P (S|C) using independence assumptions, assume each seg-
ment in S is generated independently by C. Contextual
reliance on concept level is captured in P (C). A corpus of
instantiations of the concept ck are needed to infer condi-
tional probabilities P (W j

i |ck). This corpus can be a union
of query logs, database field values and human generated
examples. There are many ways to model P (S|C). In this
paper, we take a simple approach, approximating P (W j

i |ck)
as relative frequency.

We estimated the query subject probability Psb(S) through
mining query logs, which latently encapsulate the most likely
subject phrases. Subject phrases are phrases appearing of-
ten as a complete query. More details were reported in [1].

3. EXPERIMENTS
We applied the proposed approach on a mobile voice search

application, Speak4It. It is a system developed by yellow-
pages.com and AT&T Labs-Research, which allows users to
speak local search queries in a single utterance and returns
information of relevant businesses.

Our training data consists of 18 million web queries to
http://www.yellowpages.com/, where a query comprises two
fields, SearchTerm and LocationTerm, 11 million unique
business entries, and 15 thousand annotated voice queries.
The parsing task is to parse a voice query into two-layered
concepts. The taxnomy includes 2 coarse grained concepts
(SearchTerm and LocationTerm) and 8 fine grained concepts
(e.g. Landmark). We tested our approaches on 1000 ran-
domly selected voice queries from a newer time period than
the training data. We measure the parsing performance us-
ing concept extraction accuracy via exact string match.

We report the first level parsing performance in Table
1. The Transcription column presents the parser’s perfor-
mances on human transcriptions (i.e. word accuracy=100%)
of the speech. The 1-best and WCN respectively corre-
sponds to ASR 1-best and WCN output. ASR word ac-
curacy is 67.2%. The promising aspect is that we improved
SearchTerm extraction accuracy by 2.0% when using WCN
as input. Performance on the second level concepts will be
published in near future. Though 63.0% SearchTerm extrac-
tion accuracy on ASR output is low, search performance is
much higher for its robustness to certain ASR errors such as
restaurant being misrecognized as restaurants.

Slots 1-best WCN Transcription
SearchTerm 61.0% 63.0% 95.1%

LocationTerm 88.5% 88.4% 97.4%

Table 1: Concept Extraction Accuracy

4. CONCLUSIONS
This paper described a statistical approach to voice query

parsing. We demonstrated the effectiveness of this approach
on a mobile search application.

5. REFERENCES
[1] J.Feng, S. Bangalore, and M.Gilbert. Role of natural

language understanding in voice local search. In
INTERSPEECH, 2009.

[2] A. S. L. Mangu, E. Brill. Finding consensus in speech
recognition: Word error minimization and other
applications of confusion networks. Computation and
Language, 14(4):273–400, October 2000.

[3] B. T. F. Peng. Unsupervised query segmentation using
generative language models and wikipedia. In
Proceedings of WWW-2008, 2008.

WWW 2010 • Poster April 26-30 • Raleigh • NC • USA

1090


