
Hybrid Keyword Search Auctions

Ashish Goel
∗

Department of Management Sci. and Engg.
Stanford University

ashishg@stanford.edu

Kamesh Munagala
†

Department of Computer Science
Duke University

kamesh@cs.duke.edu

ABSTRACT
Search auctions have become a dominant source of revenue
generation on the Internet. Such auctions have typically
used per-click bidding and pricing. We propose the use of hy-
brid auctions where an advertiser can make a per-impression
as well as a per-click bid, and the auctioneer then chooses
one of the two as the pricing mechanism. We assume that
the advertiser and the auctioneer both have separate beliefs
(called priors) on the click-probability of an advertisement.
We first prove that the hybrid auction is truthful, assum-
ing that the advertisers are risk-neutral. We then show that
this auction is superior to the existing per-click auction in
multiple ways:

1. We show that risk-seeking advertisers will choose only
a per-impression bid whereas risk-averse advertisers
will choose only a per-click bid, and argue that both
kind of advertisers arise naturally. Hence, the ability
to bid in a hybrid fashion is important to account for
the risk characteristics of the advertisers.

2. For obscure keywords, the auctioneer is unlikely to
have a very sharp prior on the click-probabilities. In
such situations, we show that having the extra in-
formation from the advertisers in the form of a per-
impression bid can result in significantly higher rev-
enue.

3. An advertiser who believes that its click-probability
is much higher than the auctioneer’s estimate can use
per-impression bids to correct the auctioneer’s prior
without incurring any extra cost.

4. The hybrid auction can allow the advertiser and auc-
tioneer to implement complex dynamic programming
strategies to deal with the uncertainty in the click-
probability using the same basic auction. The per-click
and per-impression bidding schemes can only be used
to implement two extreme cases of these strategies.
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As Internet commerce matures, we need more sophisticated
pricing models to exploit all the information held by each
of the participants. We believe that hybrid auctions could
be an important step in this direction. The hybrid auction
easily extends to multiple slots, and is also applicable to
scenarios where the hybrid bidding is per-impression and
per-action (i.e. CPM and CPA), or per-click and per-action
(i.e. CPC and CPA).

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; J.4 [Social
and Behavioral Sciences]: Economics

General Terms
Algorithms, Economics, Theory

Keywords
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1. INTRODUCTION
While search engines had a transformational effect on In-

ternet use and indeed, on human interaction, it was only
with the advent of keyword auctions that these search en-
gines became commercially viable. Most of the major search
engines display advertisements along with search results; the
revenue from these advertisements drives much of the in-
novation that occurs in search in particular, and Internet
applications in general. Cost-per-click (CPC) auctions have
evolved to be the dominant means by which such advertise-
ments are sold [11]. An advertiser places a bid on a specific
keyword or keyword group. The auctioneer (i.e. the search
engine) maintains an estimate of the click-through proba-
bility (CTR) of each advertiser for each keyword. When
a user searches for a keyword, the first advertising spot is
sold to the advertiser which has the highest product of the
bid and the CTR; in the event that this advertisement is
clicked upon by the user, this advertiser is charged the min-
imum bid it would have to make to retain its position. The
same process is repeated for the next slot, and so on. A
full description of the tremendous amount of work related
to keyword auctions is beyond the scope of this paper; the
reader is referred to the excellent survey by Lahaie et al [6].
Two other alternatives to CPC auctions are widely used:

1. CPM, or Cost Per (thousand) Impressions: The pub-
lisher charges the advertiser for every instance of an
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advertisement shown to a user, regardless of the click.
This is widely used to sell banner advertisements.

2. CPA, or Cost Per Action (also known as Cost Per Ac-
quisition): The publisher charges the advertiser when
an actual sale happens. This is widely used in asso-
ciate programs such as the ones run by Amazon, and
by lead generation intermediaries.

The three models are equivalent when precise estimates
of the click-through-probability and click-to-sale-conversion
probability are known. In the absence of such estimates,
CPC has emerged as a good way of informally dividing the
risk between the auctioneer and the advertiser: the auction-
eer is vulnerable only to uncertainty in its own estimates
of CTR, whereas the advertiser is vulnerable only to un-
certainty in its own estimates of the click-to-sale-conversion
probability, assuming its advertisement gets displayed in a
favorable spot. A great deal of effort has gone into obtaining
good predictions of the CTR. The problem is made harder
by the fact that many keywords are searched for only a few
times, and typical CTRs are low. Advertisers often want
to also bid by customer demographics, which further exac-
erbates the sparsity of the data. Hence, there has to be a
great reliance on predictive models of user behavior and new
ads (e.g. see [10]). Arguably, another approach would to
devise pricing models that explicitly take the uncertainty of
the CTR estimates into account, and allow advertisers and
auctioneers to jointly optimize over this uncertainty. In gen-
eral, we believe that as Internet commerce matures, we need
not just better estimation and learning algorithms but also
more sophisticated pricing models to exploit all the infor-
mation held by each of the participants.

In this paper, we propose the use of hybrid auctions for
search keywords where an advertiser can make a per-impression
as well as a per-click bid, and the auctioneer then chooses
one of the two as the pricing mechanism. Informally, the
per-impression bids can be thought of as an additional sig-
nal which indicates the advertiser’s belief of the CTR. This
signal may be quite valuable when the keyword is obscure,
when the advertiser is aggregating data from multiple pub-
lishers or has a good predictive model based on domain
knowledge, and when the advertiser is willing to pay a higher
amount in order to perform internal experiments/keyword-
selection. We assume that the advertiser and the auction-
eer both have separate beliefs (called priors) on the click-
probability of an advertisement.

1.1 Our results
We describe the hybrid auction in section 2, where we

also outline the strategic model (that of discounted rewards)
used by the auctioneer and the advertiser. We introduce the
multi-armed bandit problem as it occurs naturally in this
context. Our results, which we have already described at a
high level in the abstract, are split into two parts.

Myopic advertisers. We first study (section 3) the case of
myopic advertisers, which only optimize the expected profit
at the current step. When these advertisers are risk-neutral,
we show that truth-telling is a strongly dominant strategy:
the advertiser bids the expected profit from an impression as
a per-impression bid, and the value it expects from a click as
the per-click bid, regardless of the auctioneer’s prior or opti-
mization strategy. Further, if the advertiser is certain about
its CTR, and if this CTR is drawn from the auctioneer’s

prior which follows the natural Beta distribution (defined
later), then the worst case loss in revenue of the auction-
eer over pure per-click bidding is at most 1/e ≈ 37%. In
contrast, the revenue-loss for the auctioneer when he uses
the per-click scheme as opposed to the hybrid auction can
approach 100% for a fairly natural scenario, one that corre-
sponds to obscure keywords. We finally consider risk taking
behavior of the advertisers when they are not certain about
their CTR. We show that per-click bidding is dominant when
the advertisers are risk-averse, but per-impression bidding is
desirable when they are risk-seeking. Thus, the hybrid auc-
tion

1. Naturally extends the truthfulness of the single-slot
per-click bidding auctions currently in use, for the case
of myopic, risk-neutral advertisers (which is the situa-
tion under which the properties of the per-click auction
are typically analyzed [11, 4, 1, 8]).

2. Results in bounded possible revenue loss but unbounded
possible revenue gain for the auctioneer in the natural
setting of risk-neutral, myopic advertisers, and where
the auctioneer uses the Gittins index. The revenue
gain occurs in the common setting of obscure key-
words.

3. Naturally takes the risk posture of the advertiser into
account, which neither per-click nor per-impression bid-
ding could have done on its own (both risk averse and
risk seeking advertisers occur naturally).

The result bounding the possible revenue loss of the auc-
tioneer under the hybrid auction is for an arbitrary discount
factor used by the auctioneer; the results about the possible
revenue gain and the risk posture assume a myopic auction-
eer. We believe these are the most appropriate assumptions,
since we want to provide bounds on the revenue loss using
hybrid auctions under the most general scenario, and want
to illustrate the benefits of using the hybrid auction under
natural, non-pathological scenarios.

Semi-myopic advertisers. In section 4, we remove the
assumption that the advertisers are only optimizing some
function of the profit at the current step. We generalize to
the case where the advertisers optimize revenue over a time-
horizon. We develop a tractable model for the advertisers,
and show a simple dominant strategy for the advertisers,
based on what we call the bidding index. Though this strat-
egy does not have a closed form in general, we show that in
many natural cases (detailed later), it reduces to a natural
pure per-click or pure per-impression strategy that is socially
optimal. Thus, our hybrid auctions are flexible enough to
allow the auctioneer and the advertiser to implement com-
plex dynamic programming strategies collaboratively, under
a wide range of scenarios. Neither per-impression nor per-
click bidding can exhaustively mimic the bidding index in
these natural scenarios.

Finally, we show a simple bidding strategy for a certain
(i.e. well-informed) advertiser to make the auctioneer’s prior
converge to the true CTR, while incurring no extra cost for
the advertiser; per-click bidding would have resulted in the
advertiser incurring a large cost. This is our final argument
in support of hybrid auctions, and may be the most convinc-
ing from an advertiser’s point of view.

We explain throughout the paper why the scenarios we
consider are not arbitrarily chosen, but are quite natural
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(indeed, we believe the most natural ones) to analyze. In the
process, we obtain many interesting properties of the hybrid
auction, which are described in the technical sections once
we have the benefit of additional notation.

Multiple Slots. The main focus of the paper is analyz-
ing the properties of the hybrid scheme on a single ad slot.
However, the auction itself can be easily generalized to mul-
tiple slots in two different ways; before describing these, we
need to note that the hybrid auction assigns an “effective
bid” to each advertiser based on the per-impression bid, the
per-click bid, and the expected CTR or quality measure.
The first generalization is akin to the widely used gener-
alized second price auction [4, 11] (also referred to as the
“next-price” auction [1]) for CPC-only bidding: the adver-
tisers are ranked in decreasing order of effective bids, and
the “effective charge”made to each advertiser is the effective
bid of the next advertiser. We do not discuss this variant in
the rest of this paper, since the computation methodology
is no different from single slot auctions. Note that we can
not expect this multi-slot generalization of the hybrid auc-
tion to be truthful because even the CPC-only next-price
auction is not truthful [11, 4, 1]. However, given the im-
mense popularity of the next-price auction, we believe that
this generalization of the hybrid auction is the most likely
to be used in real-life settings.

The second generalization mirrors VCG [4] (or equiva-
lently, a laddered CPC auction [1]). This generalization as-
sumes that the CTR is multiplicatively separable into a posi-
tion dependent term and an advertiser dependent term, and
under this assumption, guarantees truthfulness (on both the
per-impression and per-click bids) for myopic, risk-neutral
advertisers. Details of this auction are in section 6. The
proof follows by extending the proof of theorem 3.1 exactly
along the lines of [1] and is omitted.

The hybrid auction is also applicable to scenarios where
the hybrid bidding is per-impression and per-action (i.e.
CPM and CPA), or per-click and per-action (i.e. CPC and
CPA).

2. THE HYBRID AUCTION SCHEME
As mentioned before, we will assume that there is a single

slot that is being auctioned. There are n advertisers inter-
ested in a single keyword. When an advertiser j arrives at
time t = 0, it submits a bid (mjt, cjt) to the advertiser at
time-slot t ≥ 1. The interpretation of this bid is that the
advertiser is willing to pay at most mjt per impression or
at most cjt per click. These values are possibly conditioned
on the outcomes at the previous time slots. The auctioneer
chooses a publicly known value1 qjt which we term the auc-
tioneer index, which can possibly depend on the outcomes
for this advertiser at the previous time slots when its adver-
tisement was shown, but is independent of all the bids.

The Hybrid auction scheme mimics VCG on the quantity
Rjt = max(mjt, cjtqjt). We will call Rjt the effective bid of
user j at time t. Let j∗ denote the advertiser with highest
Rj value, and R−j∗ denote the second highest Rj . There
are two cases. First, suppose mj∗ > cj∗qj∗ , then j∗ gets the
slot at per-impression price R−j∗ . In the other case, j∗ gets

the slot at per-click price
R−j∗
qj∗

. It is clear that the Hybrid

1It is conceivable that an auctioneer may strategically decide
to not reveal its true prior; this would be an interesting
direction to consider in future work.

scheme is feasible, since the per-impression price charged to
j is at most mj , and the per-click price is at most cj . The
auction generalizes in a natural way to multiple slots, but we
will focus on the single slot case in this paper. If the auction-
eer chooses qj,t to be an estimate of the click-through-rate
(CTR) and the advertiser submits only a per-click bid, then
this reduces to the traditional next-price auction currently
in use.

In order to analyze properties of the Hybrid auction, we
need to make modeling assumptions about the advertiser,
about the auctioneer index q, and about time durations.

2.1 Time Horizon and the Discount Factor
To model the time scale over which the auction is run, we

assume there is a global discount factor γ. Informally, this
corresponds to the present value of revenue/profit/cost that
will be realized in the next step, and is an essential parame-
ter in determining the correct tradeoff between maximizing
present expected reward (exploitation) vs. obtaining more
information with a view towards improving future rewards
(exploration). The expected revenue at time step t gets
multiplied by a factor of γt. Note that γ = 0 corresponds
to optimizing for the current step (the myopic case). In
the discussion below, we assume the auctioneer and adver-
tiser behave strategically in optimizing their own revenues,
and can compute parameters and bids based on their own
discount factors which could be different from the global
discount factor γ used for discussing social optimality.

2.2 Auctioneer Model and the Gittins Index
For the purpose of designing an auctioneer index qjt, we

assume the auctioneer starts with a prior distribution Qj

on the CTR of advertiser j. We assume further that he an-
nounces this publicly, so that the advertiser is aware of this
distribution. Therefore, the a priori expected value of the
CTR of advertiser i from the point of view of the auctioneer
is E[Qj ]. Suppose at some time instant t, Tjt impressions
have been offered to advertiser j, and njt clicks have been
observed. The natural posterior distribution Qjt for the ad-
vertiser is given by:

Pr[Qjt = x] ∝ xnjt(1− x)Tjt−njt · Pr[Qj = x];

this corresponds to Bayesian updates, and when initialized
with the uniform continuous prior, corresponds to the natu-
ral Beta distribution, defined later. The auctioneer chooses
a function f(Qjt) that maps a posterior distribution Qjt to
a q value.

The function f is chosen based on the revenue guarantees
the auctioneer desires. We will use the following idealized
scenario to illustrate a concrete choice of f ; our results ap-
ply broadly and are not limited to the scenario we describe.
Suppose the auctioneer wishes to optimize over a time hori-
zon given by discount factor γa. Then, if the auctioneer
were to ignore the per impression bids, and uses a first price
auction on cjqjt assuming that cj is the true per-click val-
uation, then his choice of qjt should maximize his expected
discounted revenue. Let vj denote the true per-click valua-
tion of the advertiser. By assumption, vj = cj . At time t,
the auctioneer offers the slot to the bidder j∗ with highest
vjqjt at per-click price vj∗ , earning vj∗E[Qjt] in expecta-
tion. It is well-known that the discounted reward of this
scheme is maximized when qjt is set to the Gittins index
(described next) of Qjt with discount factor γa, and hence
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setting f(Qjt) = the Gittins index ofQj,t would be a natural
choice.

The Gittins index [5, 12] of a distribution Q for discount
factor γa is defined as follows: Consider a coin with this prior
distribution on probability of heads Q, and that yields re-
ward 1 on heads. The Gittins index is (1−γ)M , where M is
the largest number satisfying the following condition: Some
optimal discounted reward tossing policy that is allowed to
retire at any time point and collect a retirement reward of
M will toss the coin at least once. It is well-known that the
Gittins index is at least the mean E[Q] of the prior, and for
a given mean, the Gittins index increases with the variance
of the prior, taking the lowest value equal to the mean only
when the prior has zero variance. Further, the Gittins index
also increases with the discount factor γa, being equal to the
mean when γa = 0.

An equivalent definition will be useful: Consider a coin
with the prior distribution on probability of heads Qj,t that
yields reward 1 on heads. Suppose the coin is charged G
amount whenever it is tossed, but is allowed to retire any-
time. The Gittins index is the largest G for which the ex-
pected discounted difference between the reward from toss-
ing minus the amount charged in the optimal tossing policy
is non-negative2.

Typically, the distribution Q is set to be the conjugate of
the Bernoulli distribution, called the Beta distribution [5].
The distribution Beta(α, β) corresponds to starting with a
uniform distribution over the CTR and observing α−1 clicks
in α + β − 2 impressions. Therefore, if the initial prior is
Beta(α, β), and n clicks are then observed in T impressions,
the posterior distribution is Beta(α+n, β+T−n). Beta(1, 1)
corresponds to the uniform distribution. Beta distributions
are widely used mainly because they are easy to update.
However, unless otherwise stated, our results will not depend
on the distribution Q being a Beta distribution.

2.3 Advertiser Model
The value bid by the advertisers will depend on their op-

timization criteria. The true per-click value of advertiser j
is vj . The advertiser j maintains a time-indexed distribu-
tion Pjt over the possible values of the actual CTR p that
is updated whenever he receives an impression. We assume
advertiser j’s prior is updated based on the observed clicks
in a fashion similar to the auctioneer’s prior, but again, this
is not essential to our results except where specifically men-
tioned.

The advertiser’s bid will depend on its optimization cri-
teria. In the next section, we consider the case where the
advertisers only optimize their revenue at the current step,
and could possibly take risk. In later sections, we consider
the case where the advertisers attempt to optimize long-term
revenue by bidding strategically over time.

In each case, the advertiser could be well-informed (or
certain) about its CTR, so that Pjt is a point distribution, or
uninformed about its CTR, so that it trusts the auctioneer’s
prior, i.e., Pjt = Qjt, or somewhere in between. Depending
on the optimization criterion of the advertiser, these cases
lead to different revenue properties for the auctioneer and
advertiser, and show the advantages of the Hybrid scheme
over pure per-click bidding and pure per-impression bidding.

2The Gittins index is usually defined as M (i.e., G/(1 −
γ)) but the alternate definition (1 − γ)M (i.e., G) is more
convenient for this paper.

3. MYOPIC ADVERTISERS
In this section, we analyze single time-step properties of

the auction. Specifically, we assume that the advertisers are
myopic, meaning that they optimize some function of the
revenue at the current time step.

Since we consider myopic properties, we drop the subscript
t denoting the time step from this section. The auctioneer’s
prior is therefore Qj , and the advertiser’s prior is Pj . Let
pj = E[Pj ].

We first show that when the advertisers are risk-neutral,
then bidding (vjpj , vj) is the dominant strategy, indepen-
dent of the auctioneer’s prior or the choice of f . Further,
if the advertiser is certain about its CTR, and if this CTR
is drawn from the auctioneer’s prior which follows a Beta
distribution, then the worst case loss in revenue of the auc-
tioneer over pure per-click bidding is at most 1/e ≈ 37%. In
contrast, the revenue-loss for the auctioneer when he uses
the per-click scheme as opposed to the hybrid auction can
approach 100% for a fairly natural scenario, one that corre-
sponds to obscure keywords. We finally consider risk taking
behavior of the advertisers when they are not certain about
their CTR. We show that per-click bidding is dominant when
the advertisers are risk-averse, but per-impression bidding is
desirable when they are risk-seeking. Thus, the hybrid auc-
tion naturally extends the truthfulness of the single-slot per-
click bidding auctions currently in use, results in bounded
possible revenue loss but unbounded possible revenue gain,
and naturally takes the risk posture of the advertiser into ac-
count; the precise qualitative conclusions are detailed in the
introduction and the formal statements are proved below.

The result bounding the possible revenue loss of the auc-
tioneer under the hybrid auction is for an arbitrary discount
factor used by the auctioneer; the results about the possible
revenue gain and the risk posture assume a myopic auction-
eer. We believe these are the most appropriate assumptions,
since we want to provide bounds on the revenue loss using
hybrid auctions under the most general scenario, and want
to illustrate the benefits of using the hybrid auction under
natural, non-pathological scenarios.

3.1 Truthfulness
We first show that the dominant strategy involves truth-

fully revealing the expected CTR, pj . Recall that the ad-
vertiser bids (mj , cj). Further, the auctioneer computes an
index qj based on the distribution Qj , and does VCG on the
quantity Rj = max(mj , cjqj).

Theorem 3.1. If pj = E[Pj ] and the advertiser is my-
opic and risk-neutral, then regardless of the choice of qj, the
(strongly) dominant strategy is to bid (vjpj , vj).

Proof. First, consider the case where qj ≤ pj . Suppose
the advertiser bids (mj , cj) and wins the auction. Then, the
expected profit of this advertiser is at most pjvj−min{R−j∗, R−j∗·
(pj/qj)} which is at most pjvj −R−j∗. Thus, the maximum
profit of the advertiser can be at most max{0, pjvj −R−j∗}
which is obtained by bidding (pjvj , vj).

Next, consider the case where qj > pj . Suppose the adver-
tiser bids (mj , cj) and wins the auction. Then, the expected
profit of this advertiser is at most pjvj −min{R−j∗, R−j∗ ·
(pj/qj)} which is at most pjvj − R−j∗ · (pj/qj). Thus, the
maximum profit of the advertiser can be at most max{0, pjvj−
R−j∗ ·(pj/qj)} which is again obtained by bidding (pjvj , vj).

Thus, it is never suboptimal to bid truthfully. Let R∗
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denote the second highest value of max(mj , cjqj). In order
to show that (pjvj , vj) is a (strongly) dominant strategy,
we need to show that for any other bid-pair (mj , cj), there
exist values of qj , R

∗ such that the profit obtained by bidding
(mj , cj) is strictly less than that obtained by truthful bids.
Suppose ε is an arbitrary small but positive number. First
consider the scenario where qj = pj , i.e., the auctioneer
has a perfect prior. In this scenario, bidding (mj , cj) with
either mj > pjvj + ε or cj > vj + ε/pj results in a negative
profit when pjvj < R∗ < pjvj + ε; truthful bidding would
have resulted in zero profit. Further, if mj < pjvj − ε and
cj < vj − ε/pj , then the advertiser obtains zero profit in the
case where pjvj > R∗ > pjvj − ε; truthful bidding would
have obtained positive profit.

This leaves the cases where mj = pjvj , cj < vj/(1 + ε) or
where mj < pjvj/(1 + ε), cj = vj . In the former case, the
advertiser obtains zero profit in the situation where qj >
pj > qj/(1 + ε) and R∗ = pjvj ; truthful bidding would have
obtained positive profit. In the latter case, the advertiser
obtains zero profit when qj < pj/(1+ ε) and R∗ = pjvj/(1+
ε); truthful bidding would have obtained positive profit.

3.2 Well-Informed Advertisers: Loss in Auc-
tioneer’s Revenue

We now consider the case where the advertisers are cer-
tain about their CTR pj and risk-neutral; by the results of
the previous section, we will assume that they bid truthfully.
More formally, we assume the prior Pj is the point distri-
bution at pj . We suppose that the pj are drawn from the
auctioneer’s prior that is of the form Qj = Beta(αj , βj). We
now show that for qj being the Gittins index of Beta(αj , βj)
for any discount factor γa, the expected revenue of the auc-
tioneer at the current step is at least 1− 1/e times the rev-
enue had he ignored the per-impression bids.

Theorem 3.2. In the above mentioned scenario, the ex-
pected revenue of the auctioneer at the current step is at least
1− 1/e ≈ 63% of the corresponding auction that ignores the
per-impression bid.

Proof. Let qj denote the Gittins index ofQj =Beta(αj , βj).
Let advertiser 1 have the highest vjqj , and advertiser 2 the
next highest. Let R∗ = v2q2. If the per-impression bids are
ignored, advertiser 1 gets the impression at a per-click price

of v2q2/q1, so that the expected revenue is R∗ E[Q1]
q1

.
In the Hybrid scheme, v1q1 and v2q2 are both at least as

large as R∗. Hence, if the auctioneer makes a per-impression
charge, then this charge must be at least R∗ per impression.
If the advertiser makes a per-click charge (which must be to
advertiser 1), then the expected revenue is at least R∗Q1/q1.
Hence the expected revenue of the Hybrid scheme is at least

R∗E
h
min

“
1, Q1

q1

”i
and the ratio of the revenue of the Hy-

brid scheme to the per-click scheme is at least E[min(q1,Q1)]
E[Q1]

.

For p drawn from the distribution Q1, we now need to

show that E[min(q1,Q1)]
E[Q1]

≥ 1 − 1/e. To show this, observe

that for a fixed Q1, this ratio is smallest when q1 is as small
as possible. This implies we should choose q1 = E[Q1] =

α
α+β

, which corresponds to a discount factor of 0. De-

note µ = E[Q1]. Then, the goal is to minimize the ratio
1
µ
E[min(µ,Q1)] as a function of α, β. Lemma 3.3 shows

that this ratio is 1− 1/e, completing the proof.

Lemma 3.3. If w is drawn from the Beta distribution with
parameters α, β ≥ 1, and µ = α/(α + β) is the mean of w,
then E[min(µ, w)] ≥ µ(1− 1/e).

Proof. We will allow α, β to take on fractional values
as long as they are both at least 1. Suppose α, β are both
strictly bigger than 1. Let z denote the random variable
drawn from the Beta distribution with parameters α′ = α−
µθ, β′ = β − (1 − µ)θ, where θ > 0 is chosen such that
α′, β′ ≥ 1 and at least one of α′, β′ is exactly 1. The mean
of z is α−µθ

α+β−θ
= µ, which is the same as the mean of w.

Let fw, fz denote the probability density functions of w, z
respectively, and let Fw(x) (resp. Fz(x)) denote Pr[w ≥ x]
(resp. Pr[z ≥ x]). Consider the ratio r(x) = fw(x)/fz(x) =

φxµθ(1− x)(1−µ)θ, where φ is the ratio of the corresponding
normalizing terms and hence does not depend on x.

Observe that r(x) is uni-modal (since the derivative of r
is 0 exactly once in the interval [0, 1]); and that r(x) → 0
as x → 0+ and as x → 1−. Since both Fw(x) and Fz(x) are
monotonically decreasing curves connecting (0, 1) and (1, 0),

the above properties of r(x) =
F ′

w(x)

F ′
z(x)

easily imply that for

some s ∈ (0, 1), over the interval x ∈ [0, s], Fw(x) ≥ Fz(x),
and over x ∈ [s, 1], Fw(x) ≤ Fz(x). This combined with
the fact that E[w] = E[z] = µ implies w Lorenz-dominates
z, so that for all concave functions g, we have E[g(w)] ≥
E[g(z)] [7].

Since g(w) = min(w, y) is concave in w for fixed y, we
have E[min(w, µ)] ≥ E[min(z, µ)]. Therefore, it is sufficient
to analyze E[min(µ, z)]/µ, i.e. the case where either α or β
is exactly 1, and the other is at least 1. It is easy to explicitly
verify both these cases, and show that the worst case is when
α = 1 and β →∞ when E[min(µ, z)] = (1− 1/e)µ.

A Typical Case. Though the Hybrid scheme is not rev-
enue dominant over the pure per-click scheme in pathological
cases, the key advantage is in the following typical situation.
There are n advertisers whose CTRs p1 ≥ p2 ≥ · · · ≥ pn are
drawn from a common prior Q = Beta(1, K), whose mean
is µ = O

`
1
K

´
. Assume further that n = 4K or K = log n

2
.

We have:

Pr[p2 ≥ 1/2] ≥

0@1−

 
1− 2

log n

„
1

2

« log n
2
!n

2
1A2

=

 
1−

„
1− 2√

nlog n

«n
2
!2

= 1− o(1)

Recall that the advertisers are aware of their CTR, but the
auctioneer is only aware of the prior. Suppose the per-click
value for all the advertisers is v, and these are truthfully
revealed. In the per-click scheme, the auctioneer sells the
impression to an arbitrary advertiser at per-click price v, and
in expectation earns µv. If the auctioneer is myopic (γa = 0),
then q = E[Q] < p2 w.h.p, and the Hybrid scheme charges
per-impression. Here, the auctioneer sells to advertiser 1 at
per-impression price vp2. From the above, E[p2] = Ω(1),
so that E[p2]/µ = Ω(log n). Therefore, for n advertisers

with diffuse priors of the form Beta
“
1, 1

log n

”
, the auctioneer

gains a factor Ω(log n) in revenue. This is particular relevant
for obscure keywords, where the auctioneer will have very
diffuse priors.
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3.3 Uninformed Advertisers and Risk
So far, we have assumed that the advertiser is risk neu-

tral and certain about the CTR, so that he is optimizing
his expected profit. We now suppose that the advertiser is
uncertain and trying to maximize a utility function U on
his profit. The function U(x) is monotone with monotone
derivative, and U(0) = 0. If U is convex, the advertiser is
said to be risk-seeking, and if it is concave, the advertiser
is said to be risk-averse. We show that for risk-averse ad-
vertisers, pure per-click bidding is dominant, whereas pure
per-impression bidding is dominant when the advertisers are
risk-seeking.

It is natural to assume that some advertisers may be either
risk-averse or risk-seeking. Risk-aversion models advertisers
with tight budget constraints. Risk-seeking advertisers also
occur naturally in many settings; one example is when ad-
vertisers are conducting experiments to identify high perfor-
mance advertising channels and keywords. Finding a high
reward keyword may result in a higher budget allocated to
this keyword and more revenue in the future, making the
present utility function of winning this ad slot appear con-
vex at the present time.

We assume the advertisers are uninformed, which is equiv-
alent to assuming the advertiser and the auctioneer share a
common prior, so that Pj = Qj . Essentially, the advertiser
has no information and simply trusts the auctioneer’s prior3.
In this section, we focus on a single advertiser, and drop the
subscript corresponding to it. Let p = E[P] = E[Q]. As
mentioned earlier, we assume that the auctioneer is myopic
as well (γa = 0), so that q = E[Q] = p.

Let (m, c) denote the advertiser’s bid, and let v denote the
true per-click valuation. Let IR be the indicator correspond-
ing to whether the bidder gets the impression if R−j = R.
The bidding strategy of the advertiser will attempt to max-
imize:

IR ·max

„
E [U (vP −R)] ,E

»
U

„
vP − RP

p

«–«
In the above expression, the first term is the expected

profit if the impression is obtained based on the per-impression
bid; and the latter term is the expected profit if the impres-
sion is obtained based on the per-click bid. Our next lemma
captures the structure of the dominant strategy.

Lemma 3.4. If U is concave, bidding (0, v) is a dominant
strategy. If U is convex, the dominant strategy is of the form
(m, 0) for a suitably chosen m.

Proof. First consider the case when vp < R. In this

case, regardless of U , E
h
U
“
vP − RP

p

”i
≤ 0. Therefore,

to obtain positive profit, the bidder has to obtain the im-
pression based on his per-impression bid. In this case, the
expected profit is E [U (vP −R)]. Note that E[vP−R] < 0.
Therefore if g is concave:

E [U (vP −R)] ≤ U (E [vP −R]) ≤ U(0) = 0

Therefore, if U is concave and vp < R, then bidding (0, v) is
a dominant strategy. Since obtaining the impression based

3For the other extreme case of well-informed advertisers,
there is no uncertainty, and hence the risk-averse and risk-
seeking cases collapse to risk-neutral.

on the per-click bid does not yield positive profit, if U is con-
vex, bidding (m, 0) with appropriately chosen m is a domi-
nant strategy.

The next and most interesting case is when vp ≥ R. De-
fine random variable X = vP − R and Y = vP − RP

p
.

First note that E[X] = E[Y ] = vp − R ≥ 0. Further,
the cumulative distribution functions (CDFs) of X and Y
cross exactly once, with the CDF of X being initially larger
than the CDF of Y . This is sufficient to show that Y
Lorenz-dominates X. This implies that for U being con-
cave, E[U(Y )] ≥ E[U(X)] [7], so that the advertiser only
bids per click. Further, if U is convex, E[U(X)] ≥ E[U(Y )],
so that the advertiser only bids per impression.

Our main result in this sub-section is the following prop-
erty which gives a single natural characterization of the op-
timum hybrid bid for both risk-averse and risk-seeking ad-
vertisers. We will then show that for risk-seeking advertisers
(U is strictly increasing and convex), the expected myopic
revenue of the auctioneer is larger in the Hybrid auction
compared to the pure per-click auction, and for risk-averse
advertisers, the Hybrid and per-click auctions coincide.

Theorem 3.5. Let m∗ = max{y|E [U (vP − y)] ≥ 0}.
Bidding (m∗, v) is a dominant strategy. Further, the auc-
tioneer’s revenue in the Hybrid scheme dominates the rev-
enue in the pure per-click scheme.

Proof. First consider the case when U is concave. Then,
E [U (vP − p)] ≤ U (E[vP − vp]) = 0. Therefore, m∗ ≤ vp,
so that bidding (m∗, v) is equivalent to bidding (0, v), which
is a dominant strategy.

Next, when U is convex, we have m∗ ≥ vp, so that bidding
(m∗, v) is equivalent to bidding (m∗, 0). The previous lemma
shows that the dominant strategy is of the form (m, 0). Since
m∗ is the largest value of R−j for which the advertiser makes
a non-negative profit, bidding (m∗, 0) must be the dominant
strategy.

The auctioneer’s revenue in the Hybrid scheme is the
second largest value of max(m∗

j , vjpj) while that in the per
click scheme is the second largest value of vjpj , which cannot
be larger.

4. SEMI-MYOPIC ADVERTISERS
In this section, we remove the assumption that the ad-

vertisers are optimizing some function of the profit at the
current step. We now generalize to the case where the ad-
vertisers optimize revenue over a time-horizon. We develop a
tractable model for the advertisers, and show a simple dom-
inant strategy for the advertisers, based on what we call the
bidding index. Though this strategy does not have a closed
form in general, we show that in many natural cases (de-
tailed later) cases, it reduces to a natural pure per-click or
pure per-impression strategy that is socially optimal. Thus,
our hybrid auctions are flexible enough to allow the auc-
tioneer and the advertiser to implement complex dynamic
programming strategies collaboratively, under a wide range
of scenarios. Neither per-impression nor per-click bidding
can exhaustively mimic the bidding index in these natural
scenarios.

Recall that the true per-click value of advertiser j is vj ,
and that the advertiser j maintains a time-indexed distribu-
tion Pjt over the possible values of the actual CTR p that
is updated whenever he receives an impression. We assume
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advertiser j’s prior is updated based on the observed clicks
in a fashion similar to the auctioneer’s prior, Qjt.

We assume the bidding strategy of the advertiser is semi-
myopic, which we define as follows: The advertiser has a
discount factor γb. The bid of an advertiser j depends on
its current state 〈vj ,Pjt,Qjt〉, and on R−j in a fashion de-
scribed next. At every step, the value of R−j is revealed. If
the advertiser j got the impression the previous time step,
the value of R−j remains the same since the states of the
other advertisers remains the same, else it changes adver-
sarially. The optimization criterion of the advertiser is to
maximize its discounted expected gain (using discount fac-
tor γb) in the contiguous time that it receives impressions
(so that the value of R−j remains the same). We make the
reasonable assumption that the advertiser cannot optimize
for a horizon beyond that, since the value of R−j changes in
an unknown fashion. Finally note that a myopic advertiser
is equivalent to assuming γb = 0.

Discussion. The semi-myopic model is closely related to
the MDP approach of analyzing repeated auctions; see for
instance [2, 3]. These works make the assumption that the
priors Pj of the advertisers are public knowledge. However,
this leads to somewhat perverse incentives in which the op-
timal strategy for an advertiser could be to underbid at the
current time step in the hope that the priors of the other ad-
vertisers resolve to low values, and he then wins the auction
on the remaining time steps at a lower price. However, note
that if there are sufficiently many bidders, this scenario is
unlikely to happen, and the bidder will attempt to win the
auction at the current time slot. We make this explicit by
making the following assumptions:

1. The bidder j is aware of the revealed R−j values of
the other bidders, but may not be aware of their prior
distributions, which are usually private information.

2. The bidder only optimizes over the contiguous time
horizon in which he receives the impressions. In this
horizon, R−j is fixed, and further, this removes the
perverse incentive to under-bid described above.

Note that in our model, the bidder is indeed aware of
the current bids R−j of the other bidders. However, unlike
the model in [2, 3], the optimization time-horizon of the
bidder leads to the existence of a nicely specified dominant
strategy. We hope that our modeling, that is only slightly
more restrictive than ones considered in literature, but which
have nice analytic properties, will be of independent interest
in this and other contexts.

4.1 The Dominant Bidding Index Strategy
We first show a bidding strategy that we term the bid-

ding index strategy, and show that it is weakly dominant
in the class of semi-myopic strategies. The bidding index
B(v,P,Q) is defined as follows: Suppose the advertiser’s
current prior is P and the auctioneer’s current prior is Q.
Denote the current time instant as t = 0. Since the adver-
tiser computes this index, we assume the advertiser trusts
his own prior but not the auctioneer’s. For a parameter W ,
define the following game between the advertiser and the
auctioneer with discount factor γb: At step t ≥ 0, suppose
the advertiser has prior Pt (with mean E[Pt] = pt) and the
auctioneer, Qt (with qt = f(Qt) being the auctioneer’s in-
dex), the advertiser can either stop the game, or continue. If

he continues, he gains vpt in expectation and pays the auc-

tioneer W min
“
1, pt

qt

”
; the difference is his gain. The adver-

tiser’s value for the game is the expected discounted (accord-
ing to γb) gain for the optimal strategy. Define W(v,P,Q)
as the largest value of W for which the value of the game
with initial priors P and Q, is positive. This value can eas-
ily be computed by dynamic programming, much like the
Gittins index.

The bidding index B(v,P,Q) is defined as:

B(v,P,Q) = W(v,P,Q)min

„
1,

p0

q0

«
This is the largest per impression price at time t = 0 for
which the value of the above game is positive.

The Strategy: At any time step, when the advertiser j’s
prior is Pjt with mean pjt, and the auctioneer’s prior is
Qjt, with qjt = f(Qjt), let Wjt = W(vj ,Pjt,Qjt) and
Bjt = B(vj ,Pjt,Qjt). The bidding index strategy in-

volves bidding (Bjt,
Bjt

pjt
).

It is clear that the bidding index strategy is well-defined
for qjt being an arbitrary function f(Qjt) chosen by the
auctioneer,and not just for f being the Gittins index of Qjt

using discount factor γa.

Theorem 4.1. The bidding index strategy is (weakly) dom-
inant in the class of semi-myopic strategies.

Proof. Consider a sequence of time steps when adver-
tiser j gets the impression; call this a phase. During this
time, the value R−j used in the VCG scheme is fixed; de-
note this value R∗. Suppose at a certain time step, the mean
of the advertiser’s prior is pjt and the auctioneer computes
qjt. If the advertiser gets the impression, the price he is
charged in the VCG scheme is either R∗ per impression or
R∗/qjt per click. The advertiser optimizes this by paying
R∗ min(1, pjt/qjt) in expectation per impression. The state
evolution is only conditioned on getting the impression and
not on the price paid for it.

Since the advertiser’s strategy is semi-myopic, at any time
step, the bid should fetch him a non-negative expected profit
for the rest of the phase. This implies that R∗ ≤ Wjt. There
are two cases.

First, if pjt < qjt, the advertiser essentially bids Rjt =
Bjt

qjt

pjt
= Wjt ≥ R∗, and receives the impression at a per-

click price of R∗

qjt
. Therefore, the expected per impression

price is R∗ pjt

qjt
= R∗ min

“
1,

pjt

qjt

”
.

Next, if pjt > qjt, the advertiser essentially bids Rjt =
Bjt = Wjt ≥ R∗, and receives the impression at a per-

impression price of R∗ = R∗ min
“
1,

pjt

qjt

”
.

Therefore, the bidding scheme ensures that the advertiser
receives the impression and makes the most possible profit
in the rest of the phase. Note finally that if Wjt < R∗,
the maximum possible profit in the rest of the phase is neg-
ative, and the bidding scheme ensures the advertiser does
not receive the impression.

4.2 Social Optimality of Bidding Index
Suppose the global discount factor is γ. We define the

socially optimal strategy as follows: Suppose at time t, ad-
vertiser j with prior Pjt receives the impression resulting in
value vjpjt for him. The socially optimal solution maximizes
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the infinite horizon expected discounted value with discount
factor γ.

We show that the bidding index strategy implements the
socially optimal solution in each of the following two situa-
tions: (1) The advertiser and the auctioneer share the same
prior (Pjt = Qjt), and either (1a) only the advertisers are
strategic (γa = 0 and γb = γ) or (1b) only the auctioneer is
strategic (γa = γ and γb = 0); and (2) The advertisers are
certain about their CTR (Pj = pj) and (2a) the auctioneer’s
index qjt is always at most pj . The bidding index also has
a particularly simple form when the advertisers are certain,
and (2b) the auctioneer’s qj,t is monotonically decreasing
with t and always larger than pj,t. In both (2a) and (2b),
the bidding index strategy reduces to bidding (vjpj , vj).

These scenarios are not arbitrarily chosen, and are the
most illustrative scenarios we could find. Scenario (1) cor-
responds to an advertiser and an auctioneer that trust each
other and hence have a common prior; in case (1a), the auc-
tioneer merely discloses its current estimate and trusts the
advertisers to bid in an optimal fashion, whereas in (1b)
the advertisers delegate the strategic decision making to the
auctioneer. In scenario 2, the advertisers have a definitive
model of the CTR in (2a), we model the case where the
auctioneer starts with an underestimate of the click-through
rate and hence the qj,t are always smaller than pj to which
they will hopefully converge as this advertisement is shown
more times and the auctioneer’s prior gets sharpened, and
in (2b) we model the mirror situation where the qj,t’s are
always an over-estimate. It will be interesting to find a gen-
eral theorem about the bidding index that unifies all these
diverse scenarios.

In each of these cases, the bidding strategy can be imple-
mented using either per-impression or per-click bidding or
both, but neither per-impression nor per-click bidding can
exhaustively mimic the bidding index in all scenarios.

Shared Priors. When the advertisers are uncertain and
simply share the auctioneer’s prior, we have Pjt = Qjt. Let
Gjt denote the Gittins index of Pjt with discount factor γ.
The socially optimal solution always gives the impression to
the advertiser with highest vjGjt at time t.

Theorem 4.2. For shared priors, the bidding index strat-
egy implements the socially optimal solution in the following
two cases:

1. The advertisers are strategic, i.e., γb = γ, and the
auctioneer is myopic, i.e., γa = 0.

2. The advertisers are myopic, i.e., γb = 0, and the auc-
tioneer is strategic, i.e., γa = γ.

Proof. For the first part, we have qjt = pjt since γa =

0. Therefore, min
“
1,

pjt

qjt

”
= 1, so that the value Wjt is

the largest charge per impression so that the advertiser’s
discounted revenue is non-negative. This is precisely the
definition of the Gittins index with discount factor γb =
γ. Therefore, the bidding index strategy involves bidding

(vjGjt, vj
Gjt

pjt
). This can easily be seen to be equivalent

to bidding either (vjGjt, 0) or (0, vj
Gjt

pjt
), and hence can be

mimiced with either pure-impression or pure-click bidding.
Also, we have Rjt = vjGjt, so that the bidding index imple-
ments the socially optimal strategy.

For the second part, since the advertiser is myopic, the
bidding index reduces to bidding (vjpjt, vj). Since γa = γ,
we have qjt = Gjt ≥ pjt. Therefore, Rjt = vjGjt, so that
the bidding index implements the socially optimal solution;
this can also be mimiced using per-click bidding but not
per-impression bidding.

Well -Informed Advertisers. We next consider the case
where the advertisers are certain about their CTR pj , so
that Pjt = pj . The socially optimal solution always gives
the impression to the advertiser with the largest vjpj . We
show the following theorem:

Theorem 4.3. When Pjt = pj, then the bidding index
strategy reduces to bidding (vjpj , vj) in the following two
scenarios:

1. The auctioneer’s qjt is always at most pj. In this case,
the strategy is equivalent to bidding (vjpj , 0) and is so-
cially optimal.

2. The auctioneer’s qjt is at least pj, and is monotonically
decreasing with t.

Proof. When pj > qjt for all t, we have min
“
1,

pj

qjt

”
= 1,

so that the value Wjt is the largest per-impression price for
which the advertiser’s discounted revenue is non-negative.
This is precisely vjpj , so that the bidding index strategy
reduces to bidding (vjpj , vj). This is clearly socially optimal.
Since qjt < pj , this is equivalent to bidding (vjpj , 0, but can
not be simulated using per-click bids.

When pj ≤ qjt for all t and qjt is monotonically decreasing
with t, the expected price Wjt

pj

qjt
charged to the advertiser

increases with time. At any time t, the advertiser maximizes
Wjt by setting it to vjqjt and stopping after the first step.
Therefore, Wjt = vjqjt, and Bjt = vjqjt

pj

qjt
= vjpj . There-

fore, the bidding index strategy reduces to bidding (vjpj , vj);
this is also equivalent to (0, vj), but can not be simulated
using per-impression bids.

5. EXPLORATION BY ADVERTISERS
We now show a simple bidding strategy for a certain (i.e.

well-informed) advertiser to make the auctioneer’s prior con-
verge to the true CTR, while incurring no extra cost for the
advertiser; per-click bidding would have resulted in the ad-
vertiser incurring a large cost. More concretely, this models
the scenario where the advertiser has side information about
the advertisement’s CTR but the auctioneer does not have
a good prior, for example, because the keyword may be ob-
scure. The advertiser has incentive to help the auctioneer
“learn” the true CTR because this improves the advertiser’s
chance of winning an ad slot in a pure per-click scheme.

To motivate why this is important, imagine a situation
where the advertiser would not get the slot if the scheme
were pure per-click, and he were to bid truthfully per-click,
letting the auctioneer use his own estimate qj of the CTR.
Therefore, in the pure per-click scheme, the advertiser has
to overbid on the per-click valuation to get the slot enough
number of times to make the CTR used by the auctioneer
converge to the true value; we show that this results in loss
in revenue for the advertiser. However, allowing for per im-
pression bids preserves truthfulness, and furthermore, helps
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the auctioneer “learn” the true CTR, while incurring no rev-
enue loss to the advertiser. This is our final argument in
support of hybrid auctions, and may be the most convinc-
ing from an advertiser’s point of view.

Formally, we consider an advertiser that is certain about
its CTR pj , where vjpj > R−j so that the advertiser can
(and would like to) win the auction but where qjt < pj , and
where the goal of the advertiser is to make the auctioneer’s
prior converge to the true CTR. We show that the advertiser
can achieve this goal without any loss in revenue, whereas
achieving the same objective using per-click bidding would
have resulted in a large revenue-loss. We assume the auc-
tioneer’s prior is a Beta distribution.

We show a candidate strategy for an advertiser to make
the Gittins index of the auctioneer’s distribution, Qjt =
Beta(αjt, βjt) converge close to its true CTR pj while in-
curring no loss in revenue. The loss is defined as the value
earned from actual clicks minus the amount paid to the auc-
tioneer.

We focus on a single advertiser and drop its subscript.
For any ε > 0, suppose the advertiser’s strategy is as fol-
lows: During an “explore” phase, submit a bid of (vp′, v)
where p′ = p(1− ε), and then switch to bidding (0, v). Dur-
ing the explore phase, suppose the advertiser gets T impres-
sions on a price per impression basis resulting in n clicks.
Then the worst-case loss in revenue of the advertiser dur-
ing the explore phase is v(Tp′ − n). The “explore” phase
stops when the auctioneer’s posterior mean of the distribu-
tion Beta(α+n, β+T −n) is at least p(1−ε). Note that this
also implies that the Gittins index for Beta(α+n, β+T −n)
is at least p(1− ε) irrespective of the discount factor γ; this
in turn implies that by switching to pure per-click bidding,
the advertiser is assured that q ≥ p(1 − ε), so that bidding
(0, v) yields Rj ≥ vp(1− ε).

Claim 5.1. Suppose the advertiser knows its true CTR is
p, and the auctioneer’s initial prior is Beta(α, β). For any
ε > 0, the explore phase incurs no loss in revenue for the
advertiser.

Proof. Let T denote the random stopping time of the
explore phase and suppose it results in N clicks. First note
that if T > 0, then p(1− ε) > α

α+β
. The posterior mean on

stopping is α+N
α+β+T

≥ p(1−ε), which implies N/T > p(1−ε).

Therefore, Tp(1− ε)−N < 0, which shows there is no loss
in revenue (provided T is finite with probability 1, which
follows from the law of large numbers in this case).

Suppose R−j = vjpj(1 − ε). In a pure per-click bidding
scheme, the advertiser would have to bid at least vj(1 −
ε)pj/qjt at time t < T with an expected loss (i.e. profit −
cost) of pjvj((1−ε)pj/qjt−1). For a myopic auctioneer with
initial prior (1, β), the total loss of revenue for the advertiser
till time T is Ω(vjpjβ) which can be arbitrarily large.

6. MULTI-SLOT AUCTION
In this section, we generalize the hybrid auction to mul-

tiple slots under the standard separable CTR assumption,
such that the resulting generalization is truthful in a myopic
setting analogous to Section 3. Assume there are K slots,
where slot i is associated with a CTR multiplier θi ∈ [0, 1].
Slot 1 is the topmost slot; since the CTRs decrease with slot
number, we have 1 = θ1 ≥ θ2 ≥ · · · ≥ θK ≥ 0. We will also
define θK+1 = 0.

As before, advertiser j and the auctioneer maintain priors
on the CTR value for this advertiser in ad slot 1. As before,
we denote these priors as Pj and Qj respectively. Let pj =
E[Pj ] be the expected CTR estimated by the advertiser,
and let qj = f(Qj) denote the Gittins index (or for that
matter, any other function) of the auctioneer’s prior. Let vj

denote the true per-click valuation of advertiser j. Note that
the priors Pj and Qj correspond to the estimated CTR for
advertiser j in the first ad slot, so that the expected CTR
for the ith slot based on the advertiser’s estimate is θipj .

Advertiser j bids (mj , cj), which is interpreted as the per-
impression and per-click bids for obtaining the first slot. The
auction is modeled after the laddered auction in [1], which
is equivalent to VCG under the separability assumption [4].
First, compute the effective bid Rj = max{mj , cjqj} for
every advertiser as described in section 2. Assume without
loss of generality that there are K + 1 advertisers, and that
R1 ≥ R2 ≥ . . . ≥ RK+1. Then, the auction proceeds as
follows:

1. Advertiser j is placed in slot j, for 1 ≤ j ≤ K.

2. An “effective charge”, ej is computed for advertiser j

as ej =
PK

i=j

“
θi−θi+1

θj

”
Ri+1.

3. If mj > cjqj then the advertiser is charged ej per
impression; else it is charged ej/qj per click.

It is easy to see that ejθj = Rj(θj − θj+1) + ej+1θj+1.
Informally, advertiser j’s effective charge is the same as the
effective bid of the (j + 1)-th advertiser for the additional
click-rate at the j-th position, and the same as the effective
charge of the (j + 1)-th advertiser for the click-rate that
would have already been realized at the (j + 1)-th position.

Theorem 6.1. If pj = E[Pj ] and the advertiser is my-
opic and risk-neutral, then regardless of the choice of qj, the
(strongly) dominant strategy is to bid (vjpj , vj).

The proof of the above theorem is obtained by extending
the proof of theorem 3.1 exactly along the line of the proof
of truthfulness of the laddered auction in [1], and is omitted
from this version. This proof can also be obtained using
the analysis of VCG with probabilistic allocations, due to
Myerson [9].

7. CONCLUSION
Advertising is a major source of revenue for search en-

gines and other web-sites, and a major driver of innovation
in web technology and services. Advertising spots are typ-
ically sold on the web using auctions, and these auctions
have typically been either Cost-Per-Click (CPC), Cost-Per-
Impression (CPM), or Cost-Per-Action (CPA). We defined a
single-slot hybrid auction, which allows advertisers to enter
per-impression as well as per-click bids. We showed that this
auction is truthful for risk-neutral, myopic advertisers, the
setting under which such auctions have typically been ana-
lyzed. When advertisers are risk-seeking, or non-myopic, or
when the advertiser has much better information about the
Click-Through-Rate (CTR) than the auctioneer, we show
that the hybrid auction offers stronger revenue guarantees
and advertiser flexibility than either pure CPC or CPM. The
hybrid auction generalizes naturally to multi-slot scenarios
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and is equally applicable to (CPM,CPA) or (CPC,CPA) bid-
ding. Finally, the hybrid auction is fully backwards compat-
ible with a CPC auction, in the sense that advertisers en-
tering (optional) per-impression bids in addition to per-click
bids can seamlessly co-exist with advertisers entering only
per-click bids in the same auction.
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