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ABSTRACT
Relational autocorrelation is ubiquitous in relational domains.
This observed correlation between class labels of linked in-
stances in a network (e.g., two friends are more likely to
share political beliefs than two randomly selected people)
can be due to the effects of two different social processes.
If social influence effects are present, instances are likely to
change their attributes to conform to their neighbor values.
If homophily effects are present, instances are likely to link to
other individuals with similar attribute values. Both these
effects will result in autocorrelated attribute values. When
analyzing static relational networks it is impossible to de-
termine how much of the observed correlation is due each of
these factors. However, the recent surge of interest in social
networks has increased the availability of dynamic network
data. In this paper, we present a randomization technique
for temporal network data where the attributes and links
change over time. Given data from two time steps, we mea-
sure the gain in correlation and assess whether a significant
portion of this gain is due to influence and/or homophily. We
demonstrate the efficacy of our method on semi-synthetic
data and then apply the method to a real-world social net-
works dataset, showing the impact of both influence and
homophily effects.
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1. INTRODUCTION
Autocorrelation is a common characteristic of relational

and social network datasets, which refers to a statistical de-
pendency between the values of the same variable on related
entities. For example, friends are more likely to share polit-
ical views than randomly selected pairs of individuals. The
presence of autocorrelation offers a unique opportunity to
improve predictive models because inferences about one ob-
ject can be used to improve inferences about related objects.
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Indeed, recent work in relational learning has exploited this
property in the development of collective inference models,
which can make more accurate predictions by jointly infer-
ring class label values throughout a network (see e.g., [5, 18,
24]). In addition, the gains that collective model achieve
over conditional models (which reason about each instance
independently) increase as autocorrelation levels increase in
the data [10].

A number of widely occurring phenomena give rise to
autocorrelation dependencies. Social phenomena, including
social influence [13], diffusion processes [7], and the princi-
ple of homophily [15], can cause autocorrelated observations
through their influence on social interactions that govern
the data generation process. Alternatively, a hidden condi-
tion or event, whose influence is correlated among instances
that are closely located in time or space, can produce auto-
correlated observations through joint influence on link and
attribute changes [17, 2].

A key question for understanding and exploiting behavior
in social network domains is to determine the root cause
of observed autocorrelation. Since autocorrelation is the
primary motivation to use relational and network models
over conventional machine learning techniques, it stands to
reason that a better understanding of the causes of auto-
correlation will inform the development of improved models
and learning algorithms. For example, although previous
work in relational learning and statistical network analysis
has focused primarily on static graphs, recent efforts have
turned to the analysis of dynamic networks and develop-
ment of temporally-evolving models (e.g., [9, 21]). In order
to deal with the enormous increase in dimensionality asso-
ciated with modeling both temporal and relational depen-
dencies, these methods restrict the set of dependencies that
they consider (e.g., through choice of model form). The
ability to accurately distinguish which temporal-relational
patterns (e.g., homophily) occur in real-world datasets will
ensure that researchers can include the most promising set
of dependencies in their restricted set of patterns.

Research in social psychology and sociology has developed
two main theories of social processes that can indicate why
autocorrelation is often observed in social systems. Social
influence refers to processes in which interactions with oth-
ers causes individuals to conform (e.g., people change their
attitudes to be more similar to their friends). Homophily
refers to processes of social selection, where individuals are
more likely to form ties with “similar” individuals (e.g., peo-
ple choose to be friends with people who share their beliefs).
Both homophily and social influence can produce autocorre-



lation, since their outcome results in linked individual shar-
ing attribute values.

In this work we focus on the task of differentiating between
influence and homophily effects and determining, from the
observed autocorrelation dependencies, whether the effects
are significant. Recently, there have been a number of empir-
ical studies that investigate (and model) either social influ-
ence or homophily effects in real-world datasets (e.g., [4, 22,
6]. However, these efforts have focused primarily on demon-
strating the presence of homophily and influence—they do
not provide the means to estimate effects sizes from data
or determine whether the effects are statistically significant.
Exceptions include the work of Snijders et al. [23], Anag-
nostopoulos et al. [1], and Aral et al. [3]. Snijders et al. [23]
develop a time-evolving exponential random graph model
that can represent homophily and influence effects. Their
method support hypothesis tests for each effect, but the ap-
plicability of the approach is limited by the suitability of
the model form (e.g., random graph model, Markov assump-
tion). On the other hand, the recent work of Anagnostopou-
los et al. [1] presents a model-free approach to assessing influ-
ence effects with randomization tests. The limitation of their
framework, however, is an assumption that that the network
structure (i.e., links) does not change over time, thus they
cannot distinguish homophily effects. Aral et al. [3] correct
this issue with a development of matched sample estima-
tion framework that accounts for homophily effects, but the
method uses additional node behaviors and characteristics
in the matching process, so it will have limited applicability
in data with few observed attributes and/or time steps.

In this paper, we outline a more general randomization
framework for datasets where both attribute values and links
change over time, where changes can consist of either addi-
tions or deletions. Our aim is to determine the significance
of each effect and to distinguish the contribution of influ-
ence and homophily effects. We outline a randomization test
based on randomization of action choices. We consider the
gain in correlation over one time step in the graph and assess
the amount of gain that is due to each of the effects. The
randomization procedure then produce an empirical sam-
pling distribution of expected gains under the null hypothe-
sis (that there is no influence and/or homophily effect) and
if the observed gain is greater than expected under the null,
we can conclude there is a significant influence/homophily
effect.

We evaluate our proposed method on semi-synthetic so-
cial network data, showing that the test has low Type I error
(i.e., it does not incorrectly conclude there is an effect when
in fact the data are random) and high power when the data
exhibit sufficient change over time (i.e., they correctly con-
clude there is an effect when there is one). We then apply
our method to a real-world dataset to investigate the as-
pects of observed autocorrelation. Our analysis of a public
university Facebook network shows that autocorrelation in
group memberships is due to significant influence and ho-
mophily effects, yet different groups exhibit different types
of behavior.

2. PROBLEM DEFINITION
In this work, we consider relational data represented as

an undirected, attributed graph G = (V,E), with V (nodes)
representing objects and E (edges) representing relation-
ships. The nodes V represent objects in the data (e.g.,

Graph(t) Graph(t+1) Graph(t+2)

Attributes(t) Attributes(t+1) Attributes(t+1)

InfluenceInfluence

Homophily Homophily

Figure 1: Illustration of homophily and influence
affect on attributes and links over time.

people) and the edges E represent relationships (e.g., friend-
ships) between pairs of objects (eij : vi and vj are friends).
Each node v ∈ V and has a number of associated attributes
Xv = (Xv

1 , ..., X
v
m) (e.g., age, gender).

We assume that both the attributes and links may vary
over time. First, attribute values may change at each time
step t: Xt = {Xv

t } = {(Xv
1t, ..., X

v
mt)}. Second, relation-

ships may change at each time step. This results in a dif-
ferent data graph Gt = (V,Et) for each time step t, where
the nodes remain constant but the edge set may vary (i.e.,
Et 6= Et′ for some t, t′).

Figure 1 illustrates influence and homophily dependencies.
If there is a significant influence effect then we expect the
attribute values in t + 1 will depend on the link structure
in t. On the other hand, if there is a significant homophily
effect then we expect the link structure in t+ 1 will depend
on the attributes in t.

If either influence or homophily effects are present in the
data, the data will exhibit relational autocorrelation at any
given time step t. Relational autocorrelation refers to a sta-
tistical dependency between values of the same variable on
related objects—it involves a set of related instance pairs, a
variable X defined on the nodes in the pairs, and it corre-
sponds to the correlation between the values of X on pairs
of related instances. Any traditional measure of association,
such as Pearson’s correlation coefficient or information gain,
can be used to assess the association between these pairs of
values of X. In this work, we use the chi-square statistic.

Definition 1. Relational Autocorrelation
Let PR = {(vi, vj) : eij ∈ E} be a set of related instance
pairs in G. Let X be a binary attribute defined on the
nodes V . Then we compute the relational autocorrelation
of X in G with the following contingency table T :

Xi = Xj = x ¬(Xi = Xj = x)
(vi, vj) ∈ PR a b
(vi, vj) 6∈ PR c d

We define relational autocorrelation as the chi-square statis-
tic that is computed from T (with dof=1):

C(X,G) = χ2 =
(ad− cb)2 ·N

(a+ b)(c+ d)(b+ d)(a+ c)

where N = a+ b+ c+ d, is the total count of all cells in T .

The first column of the contingency table counts pairs of
nodes that both have the same value for attribute X. The
second column counts pairs of nodes that do not match on



X. The first row counts pairs of nodes that are related in
G. The second row counts pairs of nodes that are not linked
in G. Note that this contingency table encompasses every
possible combination of nodes in the graph and thus has a
stable size even when the total number of links change in
the graph (i.e., it doesn’t depend on the size of E).

To measure the autocorrelation between attributes and
relationships at time t, we compute the chi-square statistic
C(Xt, Gt) from the graph Gt using the attribute values in
Xt. Using a similar table for the attributes and links in t+1,
we can compute C(Xt+1, Gt+1).

Now that we have a method of computing the correlation
at any time step, we can can use correlation gain to assess
the effects of homophily and influence, where the observed
correlation gain G from t to t+ 1 is:

gain(t, t+ 1) = C(Xt+1, Gt+1)− C(Xt, Gt)

The gain in correlation from one time step to the next can
be due to: (1) homophily gains due changes in the graph
structure in t + 1, or (2) influence gains due to changes in
attributes in t + 1. To show this, we will define influence
and homophily and show how they impact the chi-square
statistic from one time step to the next.

“Homophily” is typically used to refer to the general ten-
dency of people to associate with similar others (see e.g., [15])—
we operationalize this in the following way to investigate
whether attribute similarity influences choice of friends (i.e.,
are friendships formed based on a pair’s attribute similar-
ity).

Definition 2. Homophily
Let Xt and Xt+1 be the attribute values at time t and t+ 1
respectively. Let PR(t) and PR(t+1) be the related pairs at

time t and t+1 respectively. Let Lijt+1 refer to the case when
pair (vi, vj) form a link at time t + 1 (i.e., (vi, vj) /∈ PR(t)

and (vi, vj) ∈ PR(t+1)). Let U ijt+1 refer to the case when pair
(vi, vj) drops a link at time t + 1 (i.e., (vi, vj) ∈ PR(t) and
(vi, vj) /∈ PR(t+1)). Then a dataset exhibits homophily if the
following hold:

p(Lijt+1|(X
i
t = Xj

t = x)) > p(Lijt+1|¬(Xi
t = Xj

t = x))

p(U ijt+1|¬(Xi
t = Xj

t = x)) > p(U ijt+1|(X
i
t = Xj

t = x))

In other words, the probability of link formation over time
(from t to t+ 1) is higher for pairs with matching attribute
values and the probability of link dissolution over time is
higher for non-matching pairs.

“Social influence” is typically used to refer to the general
case of a person’s behavior being influenced by others (see
e.g., [14])—we operationalize this in the following way to in-
vestigate whether a person’s friends influence their intrinsic
attributes (i.e., are attribute values changed to match one’s
friends).

Definition 3. Social Influence
Let Xt and Xt+1 be the attribute values at time t and t+ 1
respectively. Let PR(t) and PR(t+1) be the related pairs at

time t and t + 1 respectively. Let Aijt+1 refer to the case
when pair (vi, vj) change their attribute values to agree at
time t + 1 (i.e., ¬(Xi

t = Xj
t = x) and (Xi

t+1 = Xj
t+1 = x)).

Let Dij
t+1 refer to the case when pair (vi, vj) change their

attribute values to diverge at time t+1 (i.e., (Xi
t = Xj

t = x)

and ¬(Xi
t+1 = Xj

t+1 = x)). Then a dataset exhibits social
influence if the following hold:

p(Aijt+1|(vi, vj) ∈ PR(t)) > p(Aijt+1|(vi, vj) /∈ PR(t))

p(Dij
t+1|(vi, vj) /∈ PR(t)) > p(Dij

t+1|(vi, vj) ∈ PR(t))

In other words, the probability of agreement over time (from
t to t + 1) is higher for related pairs and the probability of
disagreement over time is higher for unrelated pairs.

Given these definitions we can show that homophily and
influence will result in a correlation gain over time.

Theorem 1. Influence Gain
Let Xt and Xt+1 be attribute values at time t and t + 1
respectively and let PR(t) be the related pairs at time t. Let

k = |Aijt+1| be the number of agreements from t to t+ 1. Let

m = |Dij
t+1| be the number of disagreements from t to t + 1

and let k = m. Then if an influence effect is present in the
data, the autocorrelation will increase when we consider the
attribute changes from time t to time t+ 1:

C(Xt+1, Gt) > C(Xt, Gt)

The proof of this theorem is included in Appendix A.

Theorem 2. Homophily Gain
Let PR(t) and PR(t+1) be the set of related nodes at time t
and t+ 1 respectively and let Xt be the attributes at time t.
Let k = |Lijt+1| be the number of link additions from t to t+1.

Let m = |U ijt+1| be the number of link dissolutions from t to
t+1 and let k = m. Then if a homophily effect is present in
the data, the autocorrelation will increase when we consider
the link changes from time t to time t+ 1:

C(Xt, Gt+1) > C(Xt, Gt)

The proof of this theorem follows the same form and argu-
ment as for Theorem 1.

Now that we have illustrated the connection between gains
in autocorrelation and influence/homophily, we can define
the correlation decomposition problem as follows. Given
an observed network change over two time steps, Gt, Xt,
Gt+1, Xt+1, determine whether (1) the attribute changes
from t to t + 1 exhibit a significant amount of influence,
and (2) the link changes from t to t+ 1 exhibit a significant
amount of homophily. In section 4, we will outline a novel
randomization test to separate these effects and assess their
significance.

3. RELATED WORK
Current approaches relevant to this work fall into three

categories: empirical investigation and modeling of social
influence and homophily effects, significance tests for rela-
tional and social network data, and modeling techniques for
distinguishing homophily and influence effects.

Researchers in social psychology and sociology have stud-
ied social influence and homophily for much of the past forty
years (see [14] for an extensive review). This work has fo-
cused primarily on developing theory about underlying psy-
chological processes such as persuasion, conformity, assimi-
lation, and selection. Experimental investigation is typically
performed in smaller-scale laboratory environments, with in-
dividual or dyad-level analysis. Consequently, the modeling
techniques do not need to model the interdependence among



individuals, nor do they need to be applicable for large-scale
networks of thousands of nodes.

Recently, with the surge of interest in online social net-
works and relational data, there has been a growing body
of research in the data mining community that has focused
on modeling network and behavior change over time. For
example, Backstrom et al. [4] investigated the evolution of
network structure and group membership in MySpace and
LiveJournal and showed that homophily can be used to im-
prove predictive models of group membership. Singla and
Richardson [22] investigate the correlation between individ-
ual search topics among people that interact using instant
messaging, and show that not only does a correlation exist
but that it increases with the amount of time the users com-
municate. Crandell et al. [6] study the temporal evolution of
link structure and attribute similarity in Wikipedia and pro-
pose a mathematical model that includes both influence and
homophily effects to predict future behavior in the network.

The majority of this recent work is empirically-based—
focused primarily on demonstrating the presence of homophily
and influence in real-world data. The proposed methods and
analysis techniques do not provide the means to estimate ef-
fects sizes from data or determine whether the effects are
statistically significant.

There has been some work on developing significance tests
for social network and relational domains, but this work
has focused primarily on static networks, so the null mod-
els clearly limit the types of conclusions that can be drawn
from the analysis. For example, Milo et al. [16] generate
randomized network structures while holding node degree
constant to assess whether subgraph motifs are observed a
significantly higher frequency than would be expected due
to random chance. Karrer et al. [12] consider the signifi-
cance of community structure in the network, by using net-
work perturbations to assess the variance of community pat-
terns. Jensen et al. [11] propose attribute-based random-
ization tests to accurately assess the significance of feature
association in the presence of relational autocorrelation. El-
dardiry and Neville [8] develop resampling procedures for
attributed networks that can also be used to assess variance
of feature scores in static networks. In addition, work in so-
ciology on exponential random graph models (see e.g., [20])
includes methods for determining the significance of param-
eter estimates learned from data (again on static networks).

The work most relevant to our proposed method is that
of Snijders et al. [23], Anagnostopoulos et al. [1], and Aral
et al. [3]. Snijders et al. [23] extend the exponential ran-
dom graph models to incorporate time evolution (in both
attributes and links) with a Markov model assumption (i.e.,
attribute/links at one time step depend only the previous
time step). The method facilitates the inclusion of social in-
fluence and homophily dependencies in the model and gen-
eralized Neyman-Rao score tests, based on methods of mo-
ments estimators, are used to test hypotheses of the form:
H0 : θi = 0, H1 : θi 6= 0. The main limitation of this ap-
proach is that it is model-based so the accuracy of hypoth-
esis tests will be impacted by the suitability of the model
form (e.g., random graph model, Markov assumption). In
contrast to the work of Snijders et al. [23], our method is
a data-driven, model-free approach based on randomization
tests.

The recent work of Anagnostopoulos et al. [1] also out-
lines a randomization procedure for assessing whether an

observational datasets exhibits a significant influence effect.
However, their framework assumes that the network struc-
ture (i.e., links) does not change over time, thus they do
not present a method for assessing whether a significant ho-
mophily effect is present as well. In particular, their times-
tamp shuffling test requires a longitudinal view of the evolu-
tion of the data. To estimate the effects of social influence,
they compare the number of people the adopt a trait, given
they have a neighbors with that trait already, to the num-
ber of people that do not adopt, given the same a neighbors
with the trait. This calculation requires future knowledge
about who will not adopt a trait. Otherwise, if the com-
parison is made using a single time step, the vast majority
of users will not have adopted and the effect will lost in the
noise. Furthermore, their method only considers data where
attributes are added over time.

Concurrent work by Aral et al. [3] has corrected the main
limitation of [1] in their development of a matched sample
estimation framework, which accounts for homophily effects
as well as influence. However, their method uses additional
node behaviors and characteristics in the matching process,
so it will have limited applicability in data with few observed
attributes and/or time steps. In this work, we outline a gen-
eral randomization framework where both attribute values
and links change over time, changes can consist of additions
or deletions, and focus on assessing both influence and ho-
mophily effects in data with few available time slices.

4. METHOD
Randomization tests are a model-free, computationally-

intensive statistical technique for hypothesis testing [19].
The tests generate many replicates of an actual data set—
typically called pseudosamples—and uses the pseudosamples
to estimate a score distribution. Pseudosamples are gener-
ated by randomly reordering (or permuting) the values of
one or more variables in an actual data set. A score is then
calculated for each pseudosample, and the distribution of
these randomized scores is used to estimate a sampling dis-
tribution for the score statistic under the null hypothesis.
The value of the observed score on the original data is then
compared to the distribution of scores on the randomized
pseudosamples, and if it is significantly higher (or lower)
than this distribution, the observed score will be deemed
significant.

In contrast to conventional hypothesis tests, randomiza-
tion tests make a relatively small number of assumptions
about the data. For example, randomization tests make no
assumptions about the form of the distributions from which
variable values are drawn. In addition, they can be used
to form sampling distributions for estimators whose precise
statistical properties are not known. The key issue in devel-
oping a randomization test is to formulate an appropriate
null hypothesis and permute the data in a way that accu-
rately reflects the null hypothesis.

Tables 1-2 outline the specific significance tests that we
use throughout this work. The significance tests determine
whether an observed gain in autocorrelation is significant by
using a randomization test to estimate an empirical sampling
distribution of gains that would be expected if change in
links (attributes) is random and thus not due to homophily
(influence).

The empirical sampling distribution is estimated from the
gains observed in pseudosamples generated by the random-



HomophilySigTest(Gt, Gt+1, Xt, Xt+1, numIters, α)

gainsR = ∅
// compute original gain
gainO = C(Xt, Gt+1)− C(Xt, Gt)
// randomize
For iter in 1.. numIters

G′t+1 = Randomize(Gt, Gt+1)
Compute gainr = C(Xt, G

′
t+1)− C(Xt, Gt)

gainsR = gainsR ∪ {gainr}
// test significance of gain
If gainO > 1− α

2
critical value of gainsR

Return significant/positive
Else if gainO < α

2
critical value of gainsR

Return significant/negative
Else

Return not significant

Table 1: Homophily significance test method

InfluenceSigTest(Gt, Gt+1, Xt, Xt+1, numIters, α)

gainsR = ∅
// compute original gain
gainO = C(Xt+1, Gt)− C(Xt, Gt)
// randomize
For iter in 1.. numIters

X ′t+1 = Randomize(Xt, Xt+1)
Compute gainr = C(X ′t+1, Gt)− C(Xt, Gt)
gainsR = gainsR ∪ {gainr}

// test significance of gain
If gainO > 1− α

2
critical value of gainsR

Return significant/positive
Else if gainO < α

2
critical value of gainsR

Return significant/negative
Else

Return not significant

Table 2: Influence significance test method

ization procedure. The method compares the observed gain
value to the empirical sampling distribution, if the value is
higher than (1− α

2
)% (or lower than α

2
%) of the scores ob-

served in the randomized data, the gain is deemed to be
significant and the null is rejected.

The gain in autocorrelation from one time step to the next
can be due to: (1) homophily gains due to friend changes
in t + 1, or (2) influence gains due to changes in attributes
in t+ 1. To separate the effects of influence and homophily,
we define two different randomization tests to use as the
Randomize( ) method inside the significance test.

The key issue in developing a randomization test is to for-
mulate an appropriate null hypothesis and permute the data
in a way that accurately reflects the null hypothesis. We for-
mulate three null hypotheses with respect to homophily and
influence:

• HH
0 : link changes are random and are not due to at-

tribute values in t (i.e., no homophily effect)

• HI
0 : attribute changes are random and are not due to

friends in t (i.e., no social influence effect)

• HF
0 : both attribute and link changes are random (i.e.,

no homophily nor influence effect)

To identify possible permutations for these null hypotheses,
we consider four types of data changes that can occur in the
data from time t to time t+ 1:

Edge additions: ∆+
E = {eij ∈ Et+1 ∧ eij 6∈ Et}

Edge deletions: ∆−E = {eij ∈ Et ∧ eij 6∈ Et+1}

Attribute additions: ∆+
X = {xv ∈ Xt+1 ∧ xv 6∈ Xt}

Attribute deletions: ∆−X = {xv ∈ Xt ∧ xv 6∈ Xt+1}

Note that attribute value changes can be easily modeled as
an addition/deletion pair. Clearly, homophily will impact
edge changes and influence will affect attribute changes.

For the null hypothesis concerning homophily (HH
0 ), we

want to randomize the edge changes to remove any associa-
tion with attribute values in t. To do this, we can randomize
the choice of edge target so that it does not depend on the
attributes of the source node. For example, if node i adds
a link to node j at time t + 1, then we can maintain the
edge addition in t + 1 but randomize the choice of target
node j to replace eij with eij′ so that any association of
attribute similarity between i and j is destroyed. However,
to ensure that the degree of j′ remains the same after ran-
domization, j′ must have been part of an edge addition ekj′
in the original set. The randomization procedure for edges
can be thought of as swapping the endpoints of edge ad-
ditions/deletions such that each node will have the same
number of additions and deletions in the randomized set,
but the partner of those links will have changed.

Randomization for the null hypothesis concerning influ-
ence (HI

0 ) will follow a similar procedure by swapping at-
tribute adoptions and abandonments between nodes, remov-
ing any influence of edges in t. If node i adds a attribute
value x at time t + 1, then we can maintain the attribute
addition in t+1 but randomize the choice of value to replace
x with x′ so that any similarity of the attribute value x with
the attribute values of i’s linked friends in t is destroyed.

We call the procedures based on this form of randomiza-
tion choice-based methods, since they randomize the results
of choices (attribute/link changes). Tables 3-4 outline the
specifics of the choice-based method for HH

0 (homophily)
and HI

0 (influence) respectively. We can combine the two
methods, randomizing both the attribute and link changes
to estimate a distribution for HF

0 .
However, calculating choice-based randomizations are non-

trivial. A particular target edge or attribute can be selected
for swapping only if it has not been selected before, and
nodes cannot add edges or attributes if they had them in
time step t, nor can they drop edges or attributes if they
lack them in t. Given these sets of constraints, it may be
difficult to find a valid random assignments (apart from the
original), which is problematic for a test that depends on
generating a distribution of random pseudosamples.

We address this issue by taking a greedy assignment ap-
proach. First, we collate the edge and attribute changes
such that all additions and deletions for a node or attribute
can be decided at once. Then, we sort the nodes and at-
tributes from those with the least number of random op-
tions to those with the largest number of random options.
Random options here refers to the amount of freedom the
node has when selecting additions or deletions and is given
by the number of available selections minus the number of
assignments needed. This value can be calculated for edge



Randomizehomchoice(Gt, Gt+1)

∆+
E = {eij ∈ Et+1 ∧ eij 6∈ Et} (added links in t+ 1)

∆−E = {eij ∈ Et ∧ eij 6∈ Et+1} (dropped links in t+ 1)
// targets for random selections
T+ = ∆+

E

T− = ∆−E
// randomize
For eij ∈ ∆+

E

Randomly select ekj′ ∈ T+, where j′ 6∈ Eit
Replace eij in G′t+1 with eij′
Remove ekj′ from T+

For eij ∈ ∆−E
Randomly select ekj′ ∈ T−, where j′ ∈ Eit
Add eij to G′t+1

Remove eij′ from G′t+1

Remove ekj′ from T−

Return (G′t+1)

Table 3: Choice-based randomization method for as-
sessing homophily

Randomizeinfchoice(Xt, Xt+1)

∆+
X = {xv ∈ Xt+1 ∧ xv 6∈ Xt} (added attributes in t+ 1)

∆−X = {xv ∈ Xt ∧ xv 6∈ Xt+1} (dropped attributes in t+ 1)
// targets for random selections
T+ = ∆+

X

T− = ∆−X
// randomize
For xv ∈ ∆+

X

Randomly select x′u ∈ T+, where xu 6∈ Xu
t

Replace xv in X ′t+1 with x′v

Remove x′u from T+

For xv ∈ ∆−X
Randomly select x′u ∈ T−, where xu ∈ Xu

t

Add xv to X ′t+1

Remove xu from X ′t+1

Remove x′u from T−

Return (X ′t+1)

Table 4: Choice-based randomization method for as-
sessing influence

additions by |ekj′ ∈ T : j′ 6∈ Eit | − |eij |, and similar val-
ues can be calculated for the deletions, as well as attribute
cases. The assumption in the greedy approach is that nodes
and attributes with many random options, at the start, are
unlikely to run out of available options even if their assign-
ments are decided later in the algorithm.

However, the greedy approach cannot guarantee that a
node or attribute will have a valid random option at the
point in the algorithm in which it is assigned. If this is
the case, the particular node or attribute will retain its
original assignment. This will not preserve the degree of
nodes and attributes in the original data (since those orig-
inal assignments may already have been given to others
in the randomization). However, since the assignment for
that node/attribute is identical to the original, it will pre-
vent Type I errors from occurring. Ideally, after assign-
ing additions and deletions to a node or attribute we could
recompute the random options available to the remaining

nodes/attributes and resort the list of edges/deletions. How-
ever, recomputing in this manner during the algorithm is
computationally very expensive, and did not provide an in-
crease in performance in practice, so we do not consider it
further.

Finally, in addition to determining the significance of each
effect, the sampling distributions for the randomization tests
may also provide an estimate of the expected gain for each
effect independently (where the full randomization is used
to remove any joint effects from the estimation of gains due
to homophily and influence):

E[gainhom] = µgainsI
R
− µgainsF

R

E[gaininf ] = µgainsH
R
− µgainsF

R

E[gainoth] = µgainsF
R

We can define the overall expected gain as a function of
these independent components to compare the proportion of
gain due to each effect:

E[gainobs] = E[gainhom] + E[gaininf ] + E[gainoth]

= [µgainsI
R
− µgainsF

R
] +

[µgainsH
R
− µgainsF

R
] + µgainsF

R

= µgainsI
R

+ µgainsH
R
− µgainsF

R

5. SYNTHETIC DATA EXPERIMENTS
This section describes our investigation of the character-

istics of the proposed randomization tests on semi-synthetic
data. We are interested in two characteristics of statistical
tests. (1) Type I error : the probability of rejecting a true
null hypothesis (i.e., incorrectly concluding that there is a
significant effect when there is not). (2) Power : the proba-
bility of rejecting a false null hypothesis (i.e., correctly con-
cluding that there is a significant effect when there is one).
If a statistical test has elevated levels of Type I error, that
implies that many of the conclusions we draw from the test
may be incorrect. In contrast, if a statistical test has low
statistical power, that implies that legitimate performance
differences may not be detected as significant.

We start with a base of real-world social network data
and use the distributions of observed changes to generate
data with different characteristics. On data with random
changes we evaluate the Type I error of the test; on data
with simulated homophily/influence effects, we evaluate the
statistical power of the tests. The results show that our
proposed tests have low Type I error and power increases as
the number of data changes increase.

5.1 Data
Using a small subset of the real-world data gathered from

Facebook (see section 6) as base for time t, we generated
semi-synthetic data sets for time t + 1 designed to either
maximize or minimize the presence of homophily or influ-
ence effects. The synthetic data in time t + 1 uses the dis-
tribution of changes in the original Facebook sample (i.e.,
number of adds/drops per person), however our data gener-
ation procedure chooses a new set of changes to ensure the
data have certain characteristics (e.g., homophily).

More specifically, we hold Gt and Xt constant but gen-
erate new data for Gt+1 and Xt+1 to create three types of
datasets:



Random: Changes are made randomly so there is no ho-
mophily or influence effect.

Homophily-rich: Attribute changes are made randomly,
link changes are designed to maximize homophily.

Influence-rich: Link changes are made randomly, attribute
changes are designed to maximize influence.

To generate data with homophily, link additions are cho-
sen to maximize similarity among the incident nodes. When
selecting a new link, the following weights are assigned to
each possible link: 1+γ∗(#overlaps). Here #overlaps is the
number of attribute values that the nodes share. The link
weights are then normalized over all possible new links (pairs
of unlinked nodes) to produce a probability of selecting any
given link. The probabilities are used to randomly select the
appropriate number of link additions, while weighting the
likelihood heavily toward similar pairs of nodes. Dropping
links is done in a similar manner except that this probability
is calculated across current links in t and the inverse is used
to drop links among pairs of nodes that are most dissimilar.

To generate data with influence, we add attribute values
in a similar way. Here we again compute a weight for each
attribute value: 1 + γ ∗ (#overlaps), but #overlaps is de-
fined to be the number of neighbors who have the attribute
value under consideration. Likewise the inverse is used to
determine which attribute values are dropped.

5.2 Methodology
Type I errors correspond to cases when the null hypothesis

is incorrectly rejected—in other words, false positive assess-
ments of significance, when there is in fact no significant
homophily/influence effect. To estimate the Type I error
rate for each of the tests, we generated data with random
changes in time t+1. Thus any observed gain in C is entirely
random—so any assessment of significance will correspond
to a Type I error. To evaluate the Type I error of the tests,
we used the procedure outlined in Table 5.

Type II errors correspond to cases when the null hypoth-
esis is incorrectly accepted—in other words, false negative
assessments of significance, when there is in fact a significant
homophily/influence effect. Power is the complement of the
Type II error rate—the proportion of significant effects that
are correctly identified (1− P (TypeII)). To estimate Type
II error of the tests, we generated data for time t+1 with ei-
ther homophily or influence effects. Thus all observed gains
in C should be deemed significant—any test that fails will
correspond to a Type II error. To evaluate the statistical
power of the tests, we used the procedure outlined in Ta-
ble 6.

5.3 Experimental Results
We evaluated the Type I error rates of each test using

semi-synthetic data, where the attribute and link changes
are made at random. The power of the homophily and in-
fluence tests were evaluated using the Homophily-rich and
Influence-rich data, respectively. For these experiments, un-
less otherwise noted, we used N = 20, α = 0.05, γ = 100,
and report average rates over 50 attribute values (i.e., group
meberships).

The first column of Table 7 reports the Type I rates of the
choice-based randomization test. Since we used α = 0.05, we
expect the error rates to be less than 0.05. This is indeed

TypeIError(Gt, Xt,∆G,∆X , N, α)

For i in 1..N
Generate Git+1, X

i
t+1 with random changes

numIncorrectSigTests = 0
For j in 1..N

SignificanceTest(Gt, Xt, G
i
t+1, X

i
t+1, N, α)

If significant : numIncorrectSigTests++
typeIError(i) = 1

N
numIncorrectSigTests

avgTypeIError = 1
N

P
i typeIError(i)

Table 5: Method to measure Type I error rate.

Power(Gt, Xt,∆G,∆X , N, α)

For i in 1..N
Generate Git+1, X

i
t+1 with homophily/influence

numIncorrectSigTests = 0
For j in 1..N

SignificanceTest(Gt, Xt, G
i
t+1, X

i
t+1, N, α)

If not significant : numIncorrectSigTests++
typeIIError(i) = 1

N
numIncorrectSigTests

avgPower = 1
N

P
i(1− typeIIError(i))

Table 6: Method to measure statistical power.

the case for both the homophily and the influence tests,
indicating that the tests are likely to be accurate in practice.

Next we evaluated statistical power. In this case we cre-
ated data with only the effect we were trying to identify:
(1) random attribute changes, homophily-based link changes
(2) random link changes, influence-based attribute changes.
These results are shown in columns 2 and 3 of Table 7.

The average power of the test for identifying homophily
was 0.57, meaning an effect was correctly identified 57% of
the time on data generated to include homophily. The aver-
age power for detecting influence based on our initial semi-
synthetic datasets was significantly lower at 0.20. We con-
jectured that this was due to the presence of fewer changes in
attribute values in the original data, compared to changes
in the link structure. In particular, many fewer attribute
values were being added—in the Facebook sample, the aver-
age number of link adds per node was 4.08 while the average
number of attribute adds was 0.26 for the same set.

Figure 2(a) shows the interaction between the number of
attribute additions and statistical power. As we increase
the number of additions for each node in the graph, the
power increase, reaching a maximum of 0.65 given a γ of
50. This is partially due to an increase in effect size (i.e.,
increase in overall level of influence) but the quantity of
attribute changes adds an additional effect, over and above
any increase in correlation gain due to increased influence.

The synthetic data generates homophily and influence by
selecting link and attribute changes such that the correlation
between node neighbors is maximized. If there are no such
changes available, there will be less homophily and influence
present in the synthetic data which degrades the power of
the randomization tests. In addition, the distribution af-
ter randomizing will be closer to the original data as fewer
changes can be randomized, which also reduces the power
of the tests. In future work, we will attempt to tease apart
these effects.

Figure 2(b)-2(c) shows the increase in statistical power
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(a) Influence test power, as number of
group additions increases.
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(c) Homophily test power, as effect size
increases.

Figure 2: Power analysis of influence and homophily randomization tests.

P(TypeI) Power Power
Rand. ∆X Rand. ∆X Infl. ∆X

Rand. ∆G Hom. ∆G Rand. ∆G

Homophily test 0.035 0.57 na
Influence test 0.04 na 0.76

Table 7: Type I error and power for the choice-based
randomization method.

as we systematically decrease the effect size for either influ-
ence or homophily. Specifically, we varied γ to change the
probability of selecting links and groups that produce auto-
correlation in the synthetic data. For the influence test we
used γ values of 1, 10, 20, 50 and for the homophily test val-
ues of 1, 10, 50, 100. We then plotted the expected power of
the tests against the median chi gain of the groups. Greater
chi gain places the group further from the null distribution,
increasing the effect size. As expected, the power of each
test decreases as the effect size decreases.

6. REAL DATA EXPERIMENTS

6.1 Data
We evaluated our approach on data from the public Pur-

due Facebook network. Facebook is a popular online so-
cial network site with over 250 million members worldwide.
Members create and maintain a personal profile page, which
contains information about their views, interests, and friends,
and can be listed as private or public. Friendship links are
undirected and are formed through an invitation by one user
along with a confirmation by the other. To be affiliated with
a University network, users must have a valid email account
within the appropriate domain (e.g., purdue.edu), thus the
members consist of students, faculty, staff, and alumni. The
network we considered comprised more than 3 million pub-
lic friendship links among 56,000 members. Users had an
average and median degree of 46 and 81 respectively.

In addition to the friendship links, we considered a set of
attributes corresponding to public group membership. Group
membership information is posted in the users’ profile pages.
Each “group” maintains a separate page reflecting some in-

Influence
Significant ¬Significant

Homophily
Significant 7 111
¬Significant 25 351

Table 8: Number of groups detected by randomiza-
tion tests

terest (e.g., friends of AAAI), and users who share that in-
terest can become members of the group.

For this work, we considered the set of 2648 (public) Face-
book users belonging to the class of 2011 student network.
For the first time step, we used the friendship links and
group memberships from March 2008. For the second time
step we used friendship links and group memberships from
March 2009. The students in this sample belong to 494
groups, so we consider each group membership as a binary
attribute that can change from one time step to the next.

6.2 Experimental results
To investigate homophily and influence in Facebook, we

computed the observed correlation gain for each group mem-
bership attribute from t = 2008 to t + 1 = 2009. We then
applied the choice-based randomization procedure to deter-
mine if the gains exhibited significant homophily and/or in-
fluence effects. Due to the low type I error of the choice-
based test, the discovered significant patterns are likely to
be correct. However, the low power for influence identifi-
cation (given the observed number of attribute changes in
the sample) means that the influence test may not be able
detect all effects in the data.

Of the 494 groups, notably 143 (29%) exhibited a sig-
nificant correlation gain of some type. The assessments of
significance are summarized in Table 8. Note that there
are more groups that exhibit significant homophily effects
(118) compared to significant influence effects (32). This is
likely due the larger number of link changes, which results
in higher power for the homophily test.

To explore the types of groups exhibiting each type of
effect, we examined a set of group names selected at random
from each cell in Table 8. Table 9 list some examples from
each category.

Groups with significant homophily effects seem to include



Homophily and Influence (7 groups)
Purdue Habitat for Humanity
Tell 10 to Tell 10
Levee Tan
I started doing homework but I ended up on Facebook
Homophily Only (111 groups)
Purdue Capture the Flag
Honors Engineering Community 2007-2008
Boiler Gold Rush 2008
Purdue Opportunity Awards 2007-2008
Influence Only (25 groups)
NOBAMA IN 08
I bet I can still find 1,000,000 people who dislike

George Bush
Hokay, so here’s the Earth
i need numberss asap
No Effect (351 groups)
I support Welcome Home
We miss Cody Lehe
4-H alumni
Harrison Band

Table 9: Example groups with each possible combi-
nation of effect.

opportunities for members to meet in person. For exam-
ple, Boiler Gold Rush is a freshman orientation program for
Purdue where members are likely to meet, members of the
Capture the Flag group presumably meet to play the game,
and Levee Tan is a local tanning salon.

Groups with significant influence effects seem to have a po-
litical or activist aspect to them. This includes anti-Obama
and anti-Bush groups as well groups like Habitat for Human-
ity and Tell 10 to Tell 10, which is a breast cancer awareness
group.

Another group of note is i need numberss [sic] asap. This
group was created by a user who had lost his phone and
wanted his friends to post their phone numbers to the group
wall. The members of this group already had friendship links
between them and were joining the group to share phone
numbers with other friends which naturally produces a de-
tectable influence effect.

7. CONCLUSION AND FUTURE WORK
In this paper, we presented a novel randomization proce-

dure to investigate the causes of observed autocorrelation in
network data. The test focuses on distinguishing social influ-
ence effects from homophily effects, and enables the accurate
assessment of whether the effects are statistically significant.

The advantage of the proposed choice-based method in-
cludes: (1) a model-free approach which makes a relatively
small number of assumptions about the data, (2) the ability
to assess both homophily and influence effects, and (3) low
Type I error with reasonable levels of power that increase as
the number of changes in the data increase.

We evaluated our proposed methods on semi-synthetic so-
cial network data, showing efficacy of the approach. We then
applied the choice-based method to a real-world dataset to
investigate the aspects of its observed autocorrelation. Our
analysis of a public university Facebook network shows that
autocorrelation in group memberships is due to significant

influence and homophily effects. However, different groups
exhibit different behavior, which indicates homophily and
influence vary with respect to group properties. In future
work, we plan to investigate this variability more deeply, us-
ing multiple time steps to control for the amount of change
expected in a single time step and investigating the asso-
ciation of effects with other group properties (e.g., density,
popularity).

In addition, herein we have only considered randomiza-
tion procedure for first-order effects (i.e., dyad-level depen-
dencies). Considering second-order effects such as structural
similarity and community level change may help to decom-
pose additional external effects that are not explicitly en-
coded in the data, but are implicit in the temporal-relational
dynamics.

Although we have investigated the characteristics of our
modeling approach on social network data, the methods are
broadly applicable to relational and network domains that
are changing over time. Relational data often record infor-
mation about people (e.g., organizational structure, email
transactions) or about artifacts created by people (e.g., ci-
tation networks, World Wide Web) so it is likely that social
phenomena such as homophily and influence will contribute
to autocorrelated observations in a wide array of relational
domains.
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APPENDIX
A. PROOF OF THEOREM 1

Proof. As defined in Section 2:

C(Xt, Gt) = χ2
t =

(ad− cb)2 ·N
(a+ b)(c+ d)(b+ d)(a+ c)

where a, b, c, d,N are defined with respect to Xt and PR(t).

Let k̂r and k̂u be the expected number of agreements among
related and unrelated people respectively in time t+1. Sim-
ilarly, let m̂r and m̂u be the expected number of disagree-
ments among related and unrelated people respectively. The
changes to the contingency table will be as follows:

Xi
t = Xj

t = x ¬(Xi
t = Xj

t = x)

(vi, vj) ∈ PR(t) k̂r − m̂r −k̂r + m̂r

(vi, vj) 6∈ PR(t) k̂u − m̂u −k̂u + m̂u

Since there is influence in the data, the probability of
agreement is higher for related pairs and the probability of
disagreement is higher for unrelated pairs. Thus k̂r > k̂u
and m̂r < m̂u.

Subsequently, the change to the a, d diagonal is positive:

∆ad = (k̂r − m̂r) + (−k̂u + m̂u)

= (k̂r − k̂u) + (m̂u − m̂r)

> 0

And the change to the b, c diagonal is negative:

∆bc = (k̂u − m̂u) + (−k̂r + m̂r)

= (k̂u − k̂r) + (m̂r − m̂u)

< 0

However, the net change to N and each marginal is 0
(since k = m, k̂r + k̂u = k, and m̂r + m̂u = m). Let

[ad]′ = (a+k̂r−m̂r)(d+m̂u−k̂u). From above we know that

[ad]′ > ad. Similarly let [cb]′ = (c+ k̂u − m̂u)(b+ m̂r − k̂r).
Again, from above we know that [cb]′ < cb.

Thus, the autocorrelation will be higher due to influence:

C(Xt+1, Gt) =
([ad]′ − [cb]′)2 ·N

(a+ b)(c+ d)(b+ d)(a+ c)

> C(Xt, Gt)


