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ABSTRACT
Commercial Web search engines have to process user queries
over huge Web indexes under tight latency constraints. In
practice, to achieve low latency, large result caches are em-
ployed and a portion of the query traffic is served using
previously computed results. Moreover, search engines need
to update their indexes frequently to incorporate changes to
the Web. After every index update, however, the content of
cache entries may become stale, thus decreasing the fresh-
ness of served results. In this work, we first argue that the
real problem in today’s caching for large-scale search engines
is not eviction policies, but the ability to cope with changes
to the index, i.e., cache freshness. We then introduce a novel
algorithm that uses a time-to-live value to set cache entries
to expire and selectively refreshes cached results by issuing
refresh queries to back-end search clusters. The algorithm
prioritizes the entries to refresh according to a heuristic that
combines the frequency of access with the age of an entry in
the cache. In addition, for setting the rate at which refresh
queries are issued, we present a mechanism that takes into
account idle cycles of back-end servers. Evaluation using a
real workload shows that our algorithm can achieve hit rate
improvements as well as reduction in average hit ages. An
implementation of this algorithm is currently in production
use at Yahoo!.
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1. INTRODUCTION
Search engines are essential services to find the content on

the Web. Commercial search engines like Yahoo! have over a
hundred billion documents indexed, which map to petabytes
of data. Searching through such an enormous amount of
data is not trivial, especially when serving a large num-
ber of queries concurrently. Thus, search engines rely upon
systems comprising large numbers of machines grouped in
clusters by functionality, such as index servers, document
servers, and caches [6].

Cache components appear in different parts of an engine
and in different forms, e.g., result, posting list, and docu-
ment caches. Herein, we focus on result caches, which store
previously computed query results. These caches may be
deployed in separate machines, acting as a proxy, or co-exist
in the same machine with query processors.1 At a high level,
a search engine receives a query from a user, processes the
query over its indexed documents, and returns a small set
of relevant results to the user. If a previously computed set
of results is cached, the query can be served directly from
the cache, eliminating the need to process the query.

Given the high volume of user queries, result caches emerge
as crucial performance components to reduce the query traf-
fic to back-end servers and also to reduce the average query
processing latency. A well-known observation from the in-
formation retrieval literature is that query frequencies fol-
low a power-law distribution [31]. This implies that a few
queries have very high frequencies and many appear very in-
frequently, often just once (singleton queries). As a number
of queries repeat often enough, result cache implementations
in practice can achieve high hit rates.

Compared to the traditional problem of caching in operat-
ing systems, the problem of result caching in search engines
is not memory space. For search engines, it is possible to
cache millions of result entries on disk and yet improve query
response latencies. On average, it takes tens of milliseconds

1Result caches are often deployed on caching proxies and
brokers of search clusters.



to process a query on a search cluster, and fetching from disk
presents a comparable latency, often lower. Furthermore, us-
ing disks to store previously computed results provides an
opportunity to eliminate the capacity misses encountered in
small result caches that use only RAM.

One major drawback of large result caches is freshness.
Search engine indexes change frequently due to new batches
of crawled documents. Consequently, it is likely that a sig-
nificant fraction of previously computed results in the cache
become stale over time, i.e., some of the top-matching re-
sults in the current index are not present in cached entries,
thus potentially degrading the quality of results. In fact, we
argue that the freshness problem becomes more severe as
the cache capacity increases.

A solution to the freshness problem is to invalidate entries
over time. There are two possible approaches for cache inval-
idation in this context: coupled and decoupled. The coupled
approach is the one of providing the cache with informa-
tion about changes to the index. This approach is difficult
to realize in practice due to the complexity and computa-
tional cost of accurately determining changes to the index
and propagating them to the result cache. Such coupled
solutions are out of the scope of this work. The decoupled
approach, which we adopt in this work, is the one of in-
validating cached entries without any concrete knowledge of
changes to the index. A simple way to achieve this goal is
to use a time-to-live (TTL) value and mark entries as ex-
pired once they have been in the cache for longer than TTL.
Once entries are invalid, they are eventually either evicted
or replaced with new results. Given that the engine is often
not processing queries at full capacity, we can leverage idle
cycles to re-process queries and refresh cache entries. If we
use the TTL approach and TTL is long enough, we may be
able to populate the cache with fresh entries that will be
hits during busy times.

Contributions. In this paper, we present the design of
the result cache used in the Yahoo! search engine. This
cache introduces the concept of refreshing cache entries and
presents a practical algorithm for prioritizing entries to re-
fresh. To the best of our knowledge, we are the first to
consider the problem of refreshing result entries in search
engine caches. More concretely, our contributions are:
• We propose a mechanism for expiring cache entries

based on a time-to-live value and a mechanism for
maintaining the cache content fresh by issuing refresh
queries to back-end search clusters, depending on avail-
ability of idle cycles in those clusters.
• We propose a novel algorithm for prioritizing cache

entries to be refreshed based on the access frequency
of entries and the age of the cached entry.
• We evaluate the performance of our techniques via sim-

ulations over a nine-day query load, containing 130
million queries.
• We provide some statistics from production systems,

reporting on our observed benefits in practice.
With the proposed techniques, we are able to obtain two

important benefits in production.
• Higher hit rates, which improve the average response

time of the search engine.
• Reduced peak query traffic on back-end search clus-

ters, which allows savings in hardware costs.
Outline. Section 2 discusses previous work. In Section 3,

we summarize the system model we assume in this work. We

present several results in Section 4, motivating the design of
a cache with refreshes. Section 5 presents our strategy to se-
lect queries to refresh and to determine the rate of refreshes.
Experimental results are given in Section 6. In Section 7, we
provide details from our experience in production. Section 8
concludes the paper.

2. BACKGROUND
Caching has been studied extensively in the context of

operating systems and memory paging [28], databases [10],
Web servers and proxies [23], as well as Web search en-
gines [19]. Herein, we do not aim to cover the literature
exhaustively. Instead, we focus on results related to the
scope of the paper.

Caching takes advantage of the hierarchical architecture
of systems and locality of references in workloads to enable
fast access to precomputed or recently used data. A cache
is characterized by its size and the eviction policy used for
selecting the entries to be removed when the cache becomes
full. Two common online policies are based on evicting the
least recently used (LRU) [9], or the least frequently used
(LFU) items from the cache. LRU is optimal when the re-
quests are drawn from the LRU stack distance distribution.
On the other hand, LFU is optimal when the requests are
drawn from a Zipf distribution, which corresponds to the in-
dependent reference model (IRM) [2]. While LRU is simple
to implement, LFU is more challenging because the running
time for a request depends on the cache size, and the cor-
rect implementation of LFU requires a complete history of
request frequencies. There have been several modifications
of LFU and LRU [14, 20, 25] as well as caching policies
combining aspects of the two policies [16].

Caching on Web servers and proxies has distinct require-
ments than memory paging [7]. First, Web pages have vari-
able size and there is a hit only if the whole page is in the
cache. Second, fetching Web pages from Web servers and
proxies has a variable latency compared to memory paging.
Third, the requests are generated by a large number of users
rather than a small number of programs.

Aggarwal et al. [1] propose a generalization of LRU for
handling size-wise heterogeneous objects in Web caches. The
size-adjusted LRU (SLRU) evicts the items with the highest
cost-to-size ratio, where the cost of an object is inversely
proportional to the total number of accesses since its last
access. Since SLRU is difficult to implement, the authors
propose Pyramidal Selection Scheme, which stores objects
in LRUs of similarly sized objects. Hence, when comparing
the cost-to-size ratios of objects, it is sufficient to compare
the values for the least recent items in each of the LRUs.
Tatarinov [29] proposes a policy for Web caches that uses
a two-dimensional array of LRU lists. The two dimensions
represent the object size and frequency of access. A cached
entry is placed in an LRU where all entries have similar size
and access frequency. When an eviction takes place, the ar-
ray of LRUs is scanned along the diagonals, starting from
the LRU which holds the largest objects with the lowest ac-
cess frequency. Access frequencies are halved periodically by
shifting LRUs in the frequency dimension to prevent cache
pollution.

Caching for Web search engines also has particular re-
quirements. The locality of user requests can be exploited
by using caching in Web search engines [19, 31]. Early work
on caching for information retrieval systems focused on the



reduction of the server load by caching data on the client-
side [3], modifying the query evaluation process based on
the cached data [13], or improving the quality of results us-
ing a set of persistent, optimal queries [24]. Web search
engines can cache both query results [11, 17] as well as
variable-size posting lists from the inverted index [18, 26,
30]. Baeza-Yates et al. [4] investigate the trade-offs be-
tween caching query results and posting lists, using static or
dynamic mechanisms. Skobeltsyn et al. [27] study the use
of pruned indexes with the user query stream filtered by a
cache. Gan and Suel [12] introduce caching mechanisms that
take into account estimations of query processing costs and
eviction policies using query features, such as query term
frequencies. Ozcan et al. [22] also use various query features
for static caching of query results.

An important issue that has been studied in the context
of caching and in particular Web proxy caching is consis-
tency [21]. Contents of a proxy cache may not correspond
to the online version of the cached Web page because the
page may have been updated. One simple approach that
leads to weak consistency, which does not guarantee that the
cached version is up-to-date, is the use of a TTL parameter2.
Furthermore, caches are most commonly considered passive
components, i.e., caches request data only in response to
a user request. However, active caches may also anticipate
future requests of cached entries by refreshing them with-
out waiting for a corresponding user request. Cohen and
Kaplan [8] evaluate a number of refreshing policies for Web
caches and find that frequency-based policies significantly
outperform recency-based policies, because the vast major-
ity of freshness misses, which can be eliminated, occur on
the more popular URLs. This is in agreement with findings
of [5]. Kroeger et al. [15] also demonstrate using Web proxy
server logs that an active cache with refreshing may decrease
the latency between the cache and the server significantly.

In the case of Web search engines, the issue of consis-
tency or freshness appears in two different forms. First, the
indexed documents may correspond to an older version of
the Web pages, due to the delay of the crawling and index-
ing processes. Second, the documents matched for a cached
query may correspond to an older version of the index after
an index update. In this work, we focus on the second as-
pect of the problem. With the exception of Alonso et al. [3],
which mention cache consistency and the use of TTL, no
work on caching for Web search engines addresses issues of
index updates and freshness of results.

3. SYSTEM MODEL
Search engines execute essentially three main tasks: crawl-

ing, indexing, and query processing. The crawler of a search
engine continuously updates its document collection by fetch-
ing new or modified documents from the Web and deleting
documents that are no longer available. The indexer peri-
odically processes the crawled document collection and gen-
erates a new inverted index. Alternatively, an incremental
indexer can be used to continuously reflect every change in
the collection to the inverted index. Finally, query proces-
sors evaluate online user queries over the inverted index.

In the design of a Web search engine, another typical com-
ponent is a cache of results. A result cache contains a set

2A cached entry is considered invalid or stale when it has
been cached for longer than the time specified by the TTL.

of entries indexed by queries. Typically, a hash function is
used to map queries to entries. Once a new query request
arrives, the cache hashes the query string and determines if
a corresponding entry is present or not. If a query is not
cached, the engine evaluates it and caches the results, evict-
ing another query if necessary. A result cache provides two
desirable benefits: it reduces the average latency perceived
by users, and it reduces the load on back-end query proces-
sors. Such a cache may run on the same machines as query
processors or on separate machines. Herein, we assume that
the result cache resides on separate machines and that most
resources of those machines are available to the cache.

Given current storage technology and configurations of
commodity servers, it is possible to have result caches that
can accommodate a very large number of result entries (e.g.,
of the order of millions), thus making them perform as an
infinite cache. A consequence of this observation is that,
in these caches, replacement policies become less important.
With such a large number of entries, hit rates are determined
by the number of singleton queries, not the eviction policies.

At the same time, current commercial search engines have
an incentive to update their indexes as frequently as possible
to increase the degree of freshness of served results. How-
ever, as the index evolves, there is a need to invalidate cache
entries that contain stale results. One trivial way of achiev-
ing freshness is having indexers notify the cache whenever
the inverted index is updated, and having the cache inval-
idate all entries (i.e., flushing). Unfortunately, given the
large size of the cache, re-warming the cache may take a
long time and, during this period, hit rates remain lower
compared to the steady state. Hence, flushing the cache
content often severely impacts the hit rate, while not flush-
ing for a long period impacts freshness. In the next section,
we present some motivating results for deriving a simple al-
gorithm to invalidate entries, without any feedback from the
indexer and without flushing upon every index update.

4. MOTIVATING THE CACHE DESIGN
In this section, we discuss a number of issues considered

during the design of our cache. We begin by discussing the
query log we used for the experiments throughout the paper.

4.1 Query log
In the experiments, we use a query log obtained from the

traffic of the Yahoo! Web search engine. The log contains
130, 320, 176 queries (65, 100, 647 unique), received during
nine consecutive days of operation. Queries are obtained
from a subset of cache servers and represent only a portion
of the entire Yahoo! query traffic. Since queries are sliced
between the cache servers based on their MD5 hashes and
the query log is large enough, we assume that the query
distribution is similar to that of the entire query traffic.

Fig. 1 shows the query frequency distribution, which fol-
lows a power-law distribution, as also observed in some pre-
vious work [4]. In our query log, there are 49, 679, 763 sin-
gleton queries, and the most frequent query appears 372,447
times. Fig. 2 shows inter-arrival time of queries, and we ob-
serve that some queries repeat within short time intervals.
More specifically, 32.1% of consecutive query repetitions are
within a minute, and 53.2% within an hour. These two ob-
servations motivate, respectively, the use of LFU- and LRU-
based heuristics in a refresh algorithm. Fig. 3 shows the
hourly query traffic, where we observe periods of low ac-



10
0

10
1

10
2

10
3

10
4

Query frequency

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

F
re

q
u
e
n
c
y

Figure 1: Frequency dis-
tribution of queries (log-
log scale).

10
0

10
1

10
2

Inter-arrival time (in hours)

10
2

10
3

10
4

10
5

10
6

F
re

q
u

e
n

c
y

Figure 2: Frequency dis-
tribution of inter-arrival
times of queries (log-log
scale).

tivity. In production, as we will discuss, these low-activity
periods are used for issuing refresh queries to the back-end
clusters. Throughout the motivating experiments in this
section, we simulate an LRU-based caching algorithm.

4.2 Cache capacity
In general, there is a correlation between the hit rate and

the capacity of a cache, i.e., the possibility of a hit increases
as we keep more entries in the cache. Figure 4 shows3 that
hit rate increases with the cache capacity, given in number
of entries. Depending on the cache capacity, after an initial
warm-up period, hit rates tend to fluctuate within a fixed in-
terval (e.g., [0.25–0.35] for a one-million entry cache). With
an infinite cache, hit rates up to 0.6 are possible with our
query log, almost doubling the hit rate of the cache with one
million entries.

Practical result caches in large Web search engines per-
form approximately as infinite caches because they store a
large number of entries using RAM and disk. When equipped
with a large enough cache, only singleton queries result in
a cache miss (compulsory misses) and have to be evaluated.
Note that processing a query may require cycles from hun-
dreds of computers. Consequently, retrieving the results of a
query from the disk rather than recomputing it over a huge
Web index uses substantially fewer resources.

Having a large result cache improves hit rates. However,
it also implies storing the same result for arbitrarily long
periods of time. This is not a desirable behavior in a pro-
duction environment as the freshness of results determines
the quality perceived by users (especially for certain query
classes such as news queries). In practice, freshness is an
issue even for small caches: some popular cache entries are
never evicted, leading to poor freshness for such entries.

To assess freshness of results, we use the average age4 of a
hit. The use of this metric is motivated by the fact that the
probability of having stale results increases with the age of
an entry. This is a consequence of periodic index updates,
which increase the likelihood over time that the cached re-
sults no longer match those computed using the current in-
dex. The age of an entry, however, is just an indication,
and it does not imply that results have effectively changed.
Verifying whether results have changed would require re-
computing queries upon index updates, which is unrealistic

3All data points in the plots are hourly snapshots.
4The average age of a hit is the difference between the time
of the hit and the last time the entry has been updated.
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Figure 3: Query traffic.

both in our experimental and production settings.
To illustrate the freshness issue, Fig. 5 displays the vari-

ation of the average age of a hit over time. As expected,
the freshness problem is more severe with the infinite cache,
which never evicts its entries. We see that, after nine days,
the average age of a hit on the infinite cache becomes about
5.6 days, which is definitely not acceptable for today’s Web
search standards. A linear increase is observed in the aver-
age age of a hit for fixed-capacity caches as well. Even with
the relatively small, one-million-entry cache, the average hit
age rises to 18.6 hours after only nine days of operation.

Having an unbounded cache implementation is not trivial
in practice. One of the main issues is having a mapping (of-
ten a hash map) in memory from queries to entries, and such
a mapping ideally should fit completely in RAM. However,
it is practical to have a cache that is large enough so that a
large fraction of the queries evicted are singletons, and con-
sequently there are no or very little capacity misses. In our
analysis, we are interested in the behavior of caches that are
large enough to approximate an infinite cache, consequently
the following experiments assume an infinite cache.

4.3 Flushing
A näıve solution to the freshness problem is to periodically

flush the content of the cache and re-warm it from scratch
with new queries. This approach guarantees that all poten-
tially stale results are discarded, and it enforces processing
of every future query over the current index at least once.
As shown in Fig. 6, reasonable and consistently low average
hit ages can be achieved by flushing the cache. With a flush-
ing period of every 16 hours, the average hit age is under 8
hours. We observe that the average hit age always remains
below half of the flushing period.

Although flushing improves freshness, it can lead to sig-
nificant degradation of hit rates due to many compulsory
misses. This problem is illustrated in Fig. 7. In general, the
hit rate is seen to be somewhat recovered throughout the
time interval between two consecutive flushes. However, the
sharp drop of hit rate right after flushes is not affordable
to a search engine serving thousands of queries per second.
Such a sudden and sharp drop of hit rate may lead to a high
query traffic to the back-end search clusters, perhaps even
exceeding the maximum query processing throughput the
clusters can sustain. Such a load spike leads to degradation
when evaluating queries (thus deteriorating result quality)
or queries may even be discarded without processing.
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4.4 Time-to-live (TTL)
A viable alternative to the freshness problem is to bound

the amount of time the search engine is allowed to serve a
given entry from the cache by associating a TTL value with
each entry. An entry is said to be expired if the difference
between the current time and the last time the entry is up-
dated is larger than the TTL value. Otherwise, the entry is
fresh. The content of an expired entry is considered stale.
Hence, every hit on an expired entry is treated as a miss,
and the corresponding query is forwarded to the back-end
clusters. This approach sets an upper-bound on the age of
a hit, but does not prevent the search engine from serving
stale results, as expiration is not synchronized with updates
to the index. Consequently, under this scheme, it becomes
crucial to carefully select a value that provides an acceptable
degree of freshness. Setting TTL to low values may not have
a significant impact on freshness as changes to the Web may
take days to be available on search engines.

Although TTL is not an optimal solution to the fresh-
ness problem, it is easy to implement and provides a flexible
mechanism5. Fig. 8 shows variation of the average hit age
over time for three different, typical TTL values. After the
initial warm-up period, the average age values are seen to
fluctuate within fixed intervals. The hit age averages after
nine days are 2.1, 4.5, and 7.5 hours for TTLs of length 8,
16, and 24 hours, respectively.

A major drawback of using TTLs is the negative impact
of expired entries on hit rate (remember that any request
for an expired entry is considered a miss). Fig. 9 shows
the variation of hit rate in time for different TTL values
(the same TTL value is used for all entries). In general, the
observed hit rate is higher than those when flushing and it
is more stable. Hit rate still drops with respect to the no-
TTL case, but lower average age of entries (topmost curves
in Fig. 4 and Fig. 5, respectively) justifies the use of TTL.

4.5 Refreshing
An important enhancement to the TTL scheme is to use

idle cycles of the back-end query processors to refresh ex-
pired cache entries by re-computing the results of cached
queries. We assume that query processors are engineered

5In a Web search engine, search clusters may have different
requirements and may require adjusting TTL separately.

to have a budget of cycles, and these cycles are not used
for any other task if not used to process queries. Given the
daily and weekly cycles of traffic, there are typically periods
of low activity providing some spare capacity.

Adding a mechanism for cache refreshes on top of the
TTL mechanism brings two major benefits to a search en-
gine. First, we are able to increase hit rates by reducing
the number of misses due to requests on expired entries.
An important implication of higher hit rate is lower average
latency experienced by users. Second, the number of user
queries hitting the back-end search clusters drops, which re-
duces the amount of back-end hardware used.

A refresh mechanism requires a policy to select entries to
refresh and order them. Ideally, we keep a set of entries
fresh such that the hit rate is maximized and the average
age is minimized, with a given constraint on the number of
queries the back-end clusters are able to process per second.
There are several possible criteria for selecting the entries
to be refreshed, e.g., frequency of the query, recency of the
query, cost of processing the query at the back-end, and the
probability of a change in the cached results.

In this work, we use the frequency and recency informa-
tion since they are good indicators of queries that are valu-
able enough to be refreshed. We do not consider the cost
of query processing since this is difficult to estimate in an
online fashion. Similarly, we do not incorporate to our tech-
niques the probability that an entry’s content is stale, as
estimating this probability accurately requires communica-
tion with the index servers. In the following section, we
propose a novel caching algorithm that combines the TTL
and refresh mechanisms, utilizing the recency and frequency
information obtained from the past query traffic.

5. REFRESH STRATEGY
In this section, we discuss an important data structure

that we use to maintain cached queries and our policies to
select queries to refresh (Section 5.1). In Section 5.2, we
present the algorithm we use to adjust the refresh rate.

5.1 Selecting queries to refresh
There are several possible policies we can use to decide

the order of queries to assign to refresh slots. We chose to
give higher priority to “hotter” and “older” queries. That



0 24 48 72 96 120 144 168 192 216
Time (in hours)

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
C

a
c
h
e
 h

it
 r

a
te

24 hours
16 hours
8 hours

Figure 7: Hit rate with different
flushing periods.

0 24 48 72 96 120 144 168 192 216
Time (in hours)

0

1

2

3

4

5

6

7

8

9

10

11

12

A
v
e
ra

g
e
 a

g
e
 o

f 
a
 h

it
 (

in
 h

o
u
rs

)

24-hour ttl
16-hour ttl
8-hour ttl

Figure 8: Average age of a hit for
different TTL values.

0 24 48 72 96 120 144 168 192 216
Time (in hours)

0.25

0.3

0.35

0.4

0.45

0.5

C
a
c
h
e
 h

it
 r

a
te

24-hour ttl
16-hour ttl
8-hour ttl

Figure 9: Hit rate for different
TTL values.

is, queries that appear more frequently (hot queries) and
that have been in the cache longer (older queries) have a
higher priority for refresh. To keep track of temperature and
age, we use a two-dimensional bucket array, as illustrated
in Fig. 10 (each circle corresponds to a bucket containing a
linked list of query entries). We use T and A as the number
of temperatures and age buckets, respectively.

The hottest temperature and the freshest age are both
zero. We initially add a query to bucket (T − 1, 0) and
increase the age of cached entries by shifting the buckets
along the age dimension as times elapses. We determine the
interval between age shifts using two input parameters: the
number of age buckets and the number of requests that we
call singleton requests. The number of singleton requests is
the number of requests that must be processed to declare a
query a singleton. A singleton request is a request to process
a query that only appears once in a given time frame. If we
select, for example, 24 hours, then we estimate the number
of requests using the arrival rate of user queries. We could
have alternatively specified this parameter as an amount of
time, but we have chosen not to do so due to implementation
constraints (e.g., how to keep track of time when the cache
is off for maintenance).

We adjust the temperature according to the frequency of
occurrence. To avoid unnecessary fluctuations due to varia-
tions in the frequency of queries over time, we use the his-
torical average of temperatures as a factor to compute a new
average upon a hit. Instead of scanning the bucket array pe-
riodically, we update the temperature of cache entries lazily,
and we recompute the temperature of a query upon either
a hit or a refresh attempt. This is a desirable feature be-
cause scanning the bucket array structure periodically and
recomputing temperature values can be costly due to the
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Figure 10: Bucket array.

large number of entries. Also, updating the temperature of
queries lazily affects neither the hit rate nor the order of
refreshes (for the same age, we always update higher tem-
peratures first).

To select queries to refresh, we use a policy that selects
hotter and older queries first. For every temperature τ and
age α, we compute the value of s = (T − τ) ∗ α, and or-
der buckets according to decreasing order of the value of s.
The policy we use currently in production prioritizes expired
queries: it refreshes all eligible expired queries before select-
ing fresh queries. An important decision in this procedure
is how many queries to refresh at a time. We determine the
rate of refreshes dynamically, and we discuss it next.

5.2 Refresh-rate adjustment
Based on the analysis of key performance metrics, includ-

ing latency, CPU, and memory usage on back-end nodes, we
have chosen latency as the main guidance in cache refresh
rate adjustment. In the production system, latencies of all
queries are monitored, and an average latency (tick latency)
is generated after every tick (a time unit that is usually set
to 1 or 2 seconds). Depending on the query traffic volume
and normal workload, for every cache node, we have an ex-
pected latency range, [L..H], where L and H are lower and
upper latency bounds, respectively. The system is said to
be running under healthy conditions during a time period if
all tick latencies are within the expected range.

The basic idea of refresh rate adjustment is simple: af-
ter every tick period, we try to reset the target number
of queries, T , which includes both user queries and refresh
queries, for the next tick period based on tick latency lat
(Algorithm 1). If lat is below L and the total number of
queries processed in the previous tick, Q, is greater than or
equal to T , we increase T by δ1. If the tick latency is higher
than H and Q is less than or equal to T , we decrease T by δ2

(both δ1 and δ2 are configurable parameters). Otherwise, T
remains unchanged. Usually, an upper limit M is enforced
as a safeguard for T , and δ2 is set to a number much larger
than δ1 so that refresh rate can drop quickly in response to
latency spikes due to load spikes.

Because tick latencies may fluctuate significantly in pro-
duction, T might be adjusted too frequently and never reach
the expected value. To address this problem, we keep an
array of tick latencies for the past n ticks, where n is config-
urable parameter. Instead of using only the last tick latency



Algorithm 1 Adjust target number of queries (T )

lat← getTickLatency()
Q ← getNumQueriesProcessed()
if lat < L and Q ≥ T then
T ← min(T + δ1,M)

else if lat > H and Q ≤ T then
T ← max(T − δ2, 0)

else
T ← T

end if

lat, we use the running average of last n tick latencies in
Algorithm 1. A larger value of n leads to a more stable
and consistent view of overall latency. Similarly, we keep
track of the number of latest consecutive tick latencies higher
than H. Once this number reaches a configurable value of
m, we decrease T by δ2. To be conservative, m can still be
set to 1.

6. CACHE EVALUATION

6.1 Simulation parameters
We evaluate the performance of the proposed algorithm

using a simulator, actively used in production for tuning
purposes. In all experiments, we assume that we have an
infinite cache, even though we have verified that caches of
15 million entries (with a TTL of 16 hours) already saturate
hit rates (i.e., hit rates do not increase with a larger cache).

We use 8, 16, and 24 hours for the TTL values (the TTL

parameter). To determine the number of refreshes that can
be realized at a given time, we adopt the following strategy.
At every second, the simulator measures the difference be-
tween a given threshold for the peak throughput sustainable
by the back-end and the incoming query rate. For example,
if the back-end is able to process at most 100 queries per
second and the number of queries received in the last sec-
ond is 75, then 100−75=25 cache entries are refreshed, i.e.,
25 refresh queries are issued to the back-end. If the differ-
ence is not positive, then the back-end is assumed to have no
idle cycles and no refreshes are performed within that sec-
ond. In our simulations, we try 100, 150, and 200 query/s
as the threshold values for the peak sustainable throughput
(the PST parameter). Finally, we try different age values for
which we would be willing to perform a refresh. For exam-
ple, if this value is set to 8 hours, only the entries that are
older than 8 hours are considered candidates for a refresh.
In our experiments, the minimum refresh age (the MRA pa-
rameter) depends on the TTL parameter and equals to TTL/2,
TTL/4, or TTL/8.

6.2 Baseline algorithms
As the baseline for a performance comparison, we initially

tried a simple refresh algorithm, which seeks in the LRU
queue the entries stored longer than MRA. Each time there is
a possibility (idle cycles) for refreshes, this algorithm initi-
ates a new scan starting from the head of the LRU queue,
traversing towards the tail of the queue until enough entries
are found for refreshing. We observed, however, three issues
with this approach. First, as the LRU queue grows (remem-
ber that we have an infinite cache), some entries are never
refreshed because each time the algorithm starts from the

head and never reaches the entries near the tail, i.e., there
is starvation. Second, we observed that traversing the entire
LRU queue is too costly in practice (in our simulations, in
the worst case, about 65 million entries had to be traversed
under a second). Third, most entries right after the head
are unnecessarily scanned many times since they are either
fresh or have been just scanned.

To prevent the above-mentioned problems, we modified
the algorithm slightly. In the new algorithm, herein referred
to as cyclic refresh, a scan continues from where the previous
scan terminated. If the tail of the queue is reached, the scan
is restarted from the head of the queue. As the baseline, we
use this cyclic refresh algorithm and a TTL-based algorithm
with no refreshes (referred to as no refresh in the plots). It
should be noted that there are other simple heuristics that
may be used as a baseline (e.g., refreshing the most stale
entry first). However, most of them are not practical enough
to be implemented in a real-life search engine with an infinite
cache. Therefore, we do not consider them here.

6.3 Comparison
Hit rates for different policies are shown in Fig. 11 (TTL=16,

PST=150, MRA=TTL/4). In general, the proposed algorithm,
referred to as age-temperature, achieves higher hit rates, and
the no-refresh policy performs the worst, as expected. The
average hit rates computed over nine days are 0.403, 0.392,
and 0.372, for the age-temperature, cyclic refresh, and no-
refresh policies, respectively. Table 1 displays the hit rates
achieved by different policies and parameters.

Fig. 12 shows the variation of the average hit age in time
under different policies (TTL=16, PST=150, MRA=TTL/4). An
interesting observation is that the cyclic refresh algorithm
occasionally results in higher hit ages than the no-refresh
policy. This is a bit counter-intuitive as refreshing is ex-
pected to decrease the hit age. The reason is that the cyclic
refresh algorithm reduces the possibility of hits on expired
entries, but it is not fast enough to refresh frequent queries
more often. It spends most of its limited refresh budget
for refreshing entries that are not frequent (especially, the
singleton queries). The no-refresh policy, however, by let-
ting the entries expire achieves a reduction in the number
of hits on entries with large age values. The mean aver-
age hit age, computed over nine days, is very close for no-
refresh and cyclic refresh policies (around 4.5 hours). The
age-temperature algorithm performs much better due to bet-
ter selection of entries to refresh. The mean average age is
around 2.5 hours. Table 2 displays a comparison of average
hit age for various parameters. In remaining experiments,
we use the age-temperature algorithm.

6.4 Impact of peak sustainable throughput
The peak throughput of the back-end is an important pa-

rameter that affects the impact of refreshing. As the value
of PST increases, we have more opportunity to perform re-
freshes. Note that the number of refresh queries also de-
pends on the current hit rate of the cache. If the current
cache hit rate is high, we have more free slots to use for
submitting refresh queries to the back-end.

Fig. 13 shows the increase in hit rate as we increase the PST
value (TTL=16, MRA=TTL/4). Every increase of 50 query/s in
PST brings about 1% increase in hit rate, on average. Greater
improvements are achieved in average hit age with increasing
PST. The mean average age for no refresh is around 4.5 hours
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Figure 16: Hit age as minimum re-
fresh age varies.

while the age-temperature algorithm achieves 3.6, 2.5, and
2.1 hours for a PST of 100, 150, and 200, respectively. In
general, the mean average hit age can be halved with respect
to the no-refresh policy (see Table 2).

6.5 Impact of minimum refresh age
Another important parameter is the minimum refresh age,

which sets a bound on the freshness of entries that we will
be willing to refresh. Setting this to a lower value has the
advantage that more entries will be refreshed, which may
be feasible if we have enough idle cycles in the back-end. If
there are not enough idle cycles, however, then it might not
be possible to refresh older entries before they expire, which
induces more misses. Validating this claim, Fig. 15 shows
that hit rates are similar with varying MRA values (TTL=16,
PST=150) and average hit rates slightly decrease as MRA in-
creases (see Table 1). Savings in the average hit age saturate
(Fig. 16) as MRA changes from TTL/4 to TTL/8.

7. PRODUCTION EXPERIENCE
The cache elements we discuss in Section 5 have been im-

plemented and deployed, and this implementation is cur-
rently in production use in the Yahoo! search engine. We
present below some evidence that our design is practical,
and discuss briefly the issue of degradation.

7.1 Performance in production
Figs. 17 and 18 show hit rate and hit age for produc-

tion nodes, using an implementation of the age-temperature
algorithm. The plots have been extracted from our moni-
toring system. To generate these plots, we have turned off
refreshes in n nodes (n > 1) and compare against n oth-
ers that receive equivalent traffic (they are part of the same
cluster). Each figure shows the corresponding metric over a
period of 3 days for these cache nodes. We can observe in
these graphs the exact time when we turn refreshes off. For
hit rate (Fig. 17), top curves correspond to nodes with the
refresh on, and the absolute difference is higher than 10%
at several points. The average hit rate with and without
refreshes is 49.2% and 41.0%, respectively, and the absolute
difference is 8.1%.

For hit age (Fig. 18), the bottom curves correspond to
cache nodes with refreshes off. The TTL we use for these
nodes is 18 hours and the average hit age with and without
refreshes is 411.8 and 362.3 minutes, respectively. The dif-
ference is 49.5 minutes, which is less than 5% of the TTL.
The average hit age is higher with refreshes due to the extra
hits (hits correspond to queries that have been in the cache
for some time).

Compared to our simulation results, we observe the fol-
lowing. First, the hit rate difference between refreshing and
not refreshing is between 7% and 10% in production and at



Table 1: Hit rates averaged over the entire query log

Cyclic Refresh Age-Temperature
TTL MRA No Refresh Flushing PST=100 PST=150 PST=200 PST=100 PST=150 PST=200

TTL/2 0.337 0.311 0.338 0.343 0.35 0.352 0.373 0.388
8 TTL/4 0.337 0.311 0.338 0.343 0.349 0.352 0.372 0.381

TTL/8 0.337 0.311 0.338 0.343 0.348 0.352 0.372 0.381
TTL/2 0.372 0.345 0.374 0.382 0.395 0.389 0.407 0.41

16 TTL/4 0.372 0.345 0.374 0.382 0.392 0.389 0.403 0.41
TTL/8 0.372 0.345 0.374 0.381 0.39 0.389 0.402 0.407
TTL/2 0.398 0.369 0.401 0.409 0.424 0.417 0.426 0.427

24 TTL/4 0.398 0.369 0.401 0.409 0.42 0.416 0.426 0.428
TTL/8 0.398 0.369 0.401 0.41 0.422 0.416 0.424 0.427

Table 2: Hit ages averaged over the entire query log

Cyclic Refresh Age-Temperature
TTL MRA No Refresh Flushing PST=100 PST=150 PST=200 PST=100 PST=150 PST=200

TTL/2 2.079 1.36 2.086 2.11 2.141 1.954 1.595 1.484
8 TTL/4 2.079 1.36 2.077 2.097 2.13 1.953 1.448 1.122

TTL/8 2.079 1.36 2.079 2.112 2.129 1.953 1.447 1.089
TTL/2 4.488 3.121 4.513 4.592 4.686 3.773 3.209 3.11

16 TTL/4 4.488 3.121 4.504 4.511 4.611 3.632 2.508 2.147
TTL/8 4.488 3.121 4.484 4.492 4.593 3.627 2.389 1.915
TTL/2 7.51 5.332 7.557 7.5 7.225 5.791 5.092 5.047

24 TTL/4 7.51 5.332 7.556 7.415 7.286 5.329 3.826 3.524
TTL/8 7.51 5.332 7.517 7.454 7.317 5.322 3.525 3.009
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Figure 17: Hit rate in production (%).

most 5% in our simulations. In production, we have been
able to fine-tune our caches to obtain higher hit rates. Sec-
ond, hit ages are higher when refreshing in production due to
more conservative refreshing. We have not felt so far a need
to boost it to improve our performance. However, as our
simulation results show, it is possible to reduce the average
hit age by refreshing more aggressively. It is also important
to observe that the refresh rate is adjusted according to per-
formance and the plots reflect this adjustment (Section 5.2).

7.2 Degradation and TTL
In a production environment, back-end nodes may expe-

rience workload spikes due to various unpredictable reasons.
When this happens, a degradation logic kicks in on back-
end nodes, which return degraded (or partially degraded)
search results to cache nodes. Whether degraded search re-
sults should be cached and how long they should be cached
then becomes an issue. If the percentage of degraded results
is high, not caching degraded results means that the hit rate
will be very low and workload sent to the back-end cannot
be reduced quickly, which, in turn, results in more degraded
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Figure 18: Hit age in production.

results. On the other hand, caching degraded results means
that we are going to serve users with lower-quality results
as long as the cache entries are not expired.

With the help of cache refresh, it is easier to find a good
solution to this problem. Based on the degree of degrada-
tion, we can find suitable TTLs for cache entries such that
results with a lower degree of degradation receive a longer
TTL, whereas results with a higher degree of degradation
receive a much shorter TTL. This way results with a high
degree of degradation are given a higher refresh priority. In
general, we can cache and serve results with acceptable qual-
ity for a longer time while reducing the pressure on back-end
nodes to help them recover.

8. CONCLUSIONS
We treat the result caching problem for Web search en-

gines in a novel way. We reformulate the setting in which we
examine result caching, and argue that eviction policies are
less important in our setting as we can obtain in production
large caches by using disk space to store query results. The



problem we have investigated instead is keeping cached re-
sults consistent with the search engine’s index while sustain-
ing a high hit rate. We show that flushing the cache is not
efficient and propose a TTL-based strategy to expire cache
entries. Using a real workload, we show that result caching
with a TTL parameter improves the average hit age with
a loss in hit rate, and also, that actively refreshing cached
entries is able to improve both hit rate and age. To improve
hit rate and freshness, we introduce a refresh mechanism.
The refresh mechanism uses two dimensions corresponding
to access frequency and age of cached entries to efficiently
select the entries for refreshing. Our simulation results show
that it is able to achieve higher hit rate and average hit age
than an LRU cache with refreshes. Results from our pro-
duction setting also confirm our claimed improvement to hit
rate as we are able to obtain 7% to 10% more hits compared
to not refreshing.
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