
Towards Rich Query Interpretation:
Back and Forth on Mining Query Templates

Ganesh Agarwal Govind Kabra Kevin Chen-Chuan Chang
Computer Science Department, University of Illinois at Urbana-Champaign

{gagarwa3, gkabra2, kcchang}@illinois.edu

ABSTRACT
In this paper, we propose to mine templates from search engine
query logs, with the goal of rich structured query interpretation. To
begin with, we formalize the notion of templates as a sequence of
keywords and domain attributes, instantiating many queries based
on the instances of these domain attributes. We identify the key
challenge in template discovery as the limited seed knowledge.
Our solution bootstraps from small seed input to discover relevant
query templates, by harnessing the wealth of information available
in search logs. We model this information in a tri-partite infer-
ence network of queries, sites and templates—together forming the
“QueST” network. We propose iterative probabilistic inferencing
framework based on dual metrics of precision and recall. We have
deployed and tested our algorithm over a real-world large-scale
search log of 15 Million queries from the MSN search engine. We
find the accuracy of our algorithm to be as much as 90% (on F
measure), with very little seed input knowledge and even incom-
plete domain schema.

1. INTRODUCTION
The wide spread of the Internet and the emergence of search

engines have rendered keyword queries as the dominating lingua
franca of information access. Meanwhile, as the nature of the Web
evolves, information search over the Web has become increasingly
diverse and thus complicated. The proliferation of semistructured
or structured data, such as those from online databases, or the so
called “deep Web,” provides abundant information in various “do-
mains” of interest. Consequently, today, users are looking for all
kinds of information online—with simple keyword queries.

The prevalence of simple keyword queries coupled with the pro-
liferation of diverse information online clearly challenges search
systems for effective data retrieval. As the key barrier, how to “in-
terpret” a query for the wide variety of target domains it may aim
at? This issue of query interpretation is central in every aspect of
search: What contents to match? What vertical search services to
invoke (e.g., in “universal search” or in vertical search routing)?
What advertisements to show? With the simplicity of keyword
queries and the complexity of information they target, query in-
terpretation has become more demanding in two ways:

First, as its traditional focus, query interpretation aims to rec-
ognize the intent, or the domain of interest—the diversity of the
Web has mandated such recognition to be specific and fine grained.
While much work has focused on classifying queries to predict their
intents (e.g., [1, 2]), the challenge is ever increasing. To effective
match queries to contents, vertical services, and ads, the recogni-
tion has evolved from high-level types (such as navigation, trans-

Copyright is held by the author/owner(s).
WWW2010, April 26-30, 2010, Raleigh, North Carolina.
.

Figure 1: “chicago new york”(Google); “palo alto weather”(Bing).

action, information), topics (travel, health) to finer-grained cate-
gories, such as hotel, flight, job, each of which represents certain
information objects (hotels or flights to book, and job to apply).

Second, as a new issue, for each specific domain, query interpre-
tation now also faces the challenge of recognizing the attributes, or
the various “aspects,” that are inherently associated with a given in-
tent. When users look for a particular domain of data objects (e.g.,
job), they naturally specify the attributes (e.g., location of jobs like
“jobs in chicago”; or type of jobs like “accounting jobs”).

This paper aims to enable rich query interpretation, which recog-
nizes intents for not only a specific domain but also its associated
attributes. Such rich interpretation is essential for search response
tailored for specific intents, in ranking contents, invoking verticals,
or matching ads. E.g., Figure 1 shows Q1: “chicago new york” from
Google and Q2: “palo alto weather” from Bing. Observe that, first,
the responses tailor to the specific domains: While Q1 does not
mention “flight”, Google lists verticals like flight Expedia. Simi-
larly, Bing directs Q2 to a weather vertical. Second, the responses
tailor to the attributes. For Q1, Google recognizes “chicago” as at-
tribute from and “new york” as to. For Q2, Bing recognizes “palo
alto” as attribute location of the desired weather forecast.

While rich query interpretation is essential, how can we achieve
such intent recognition of both domains and attributes? To date, this
problem has not been systematically addressed, although current
search engines have shown sporadic usages for certain scenarios
(such as for flight and weather as in Figure 1).

As our first contribution, while the notion of query templates has
been implicitly exploited (in search engines and in other mining
tasks; Sec. 2), this paper is the first to survey its prevalence and
formulate the new concept with formal quality metrics.

We begin by surveying, as Sec. 3 will report, a large scale search
log [3], with a sample of 28,000 queries, which indicated that a high
frequency of queries follow structured patterns– e.g., 90+% for real

estate and hotel, 80+% for automobile and rental car. Users nat-
urally refer to different aspects of their search needs, e.g., when
looking for jobs, users may mention the “location” (e.g., chicago,
boston), or the “company” (e.g., microsoft, boeing, etc..) offering
the job. Thus, across many users with same domain of interest, we
would observe that, although each of them talk about the specific
instances of different aspects, the overall template is similar, i.e.,
all these user queries may share the same template, differing only
in the specific instances. E.g., in job domain, we may see many
users queries sharing similar template, e.g., “jobs in boston”, “jobs in
seattle”, “jobs in chicago”, all of which are specific instantiations of
the common query template—“jobs in #location”, where #location
represents the location aspect in job domain.

The concept of structured query patterns as “templates” is useful
in two ways: First, it serves as a query intent classifier. Given a
query, such as “accounting jobs in chicago”, by matching to a “job”
template, say 〈#category jobs in #location〉, we can interpret the
query as intending for the Job domain. Second, it is also a query
parser. The matching will also reveal that the query is looking for
a job with #location=“chicago” and #category=“accounting”. Such
structured interpretation will help us in better handling or dispatch-
ing the query, as discussed above.

As our second contribution, this paper proposes the problem of
query template discovery, and develops a principled probabilistic
inference framework as the solution. We define the metrics for dis-
tinguishing good templates—in terms of precision and recall with
respect to the domain of queries interested. We then develop the
QueST framework, a graphical model of inference upon the net-
work of instantiation (between queries and templates) and click-
through (between queries and sites), which will infer the “proba-
bilities” of precision and recall.

The resulting dual frameworks, QuestP for precision-based rank-
ing and QuestR for recall-based ranking, show interesting duality:
We show that, in the view of inferencing as random walks, they are
simply walks of opposite directions—walking backward for preci-
sion, and forward for recall. We also identify how the dual frame-
works have close ties to several random walk-based inference mod-
els, which thus help us to directly address the formal computation
properties of our QueST algorithm through these known vehicles.
While random walk has been widely applied, to date, it is unclear
the exact difference between forward and backward walks, with
only empirical comparison [4]. To our knowledge, our work is the
first to establish the duality of precision and recall and its connec-
tion to the directions of random-walk propagation.

As our third contribution, we realized our solution and evaluated
it over a large-scale search log of 15 million queries [3]. The ex-
periments showed that QueST significantly outperforms the base-
line “classify then match” to derive query templates. We tested our
discovered templates in the actual application scenarios of predict-
ing query intents across seven domains of 28,000 manually labeled
queries. Overall, the system is effective in finding structured query
patterns that accurately predict query intents—achieving 70−90%
on F -measure, with as little as just four example sites as input, and
the performance is robust to different types and sizes of inputs, as
well as incomplete schema of attributes and instances.

2. RELATED WORK

1. In terms of problem, our work attempts to find patterns from
query log, which is an instance of the general problem of knowl-
edge discovery from query logs [5], an active area of research, with
variety of applications such as implicit relevance feedback [6, 7],
result caching [8], query suggestion [9, 10], query classification
[1], and name-entity mining [11, 12, 13]. Ours is the first work that

identifies the prevalence of query patterns, and formally addresses
this new problem of query template mining.

The notion of query templates has been explored in other con-
texts, albeit implicitly; (1) in search engines for specialized han-
dling of certain queries (e.g., examples in Fig. 1); (2) in name-
entity mining literature, as intermediate bridges, by using hand
crafted patterns [11], or by learning a few top templates [12, 13],
e.g., 〈#movie-name trailer〉 to discover new instances of movie names.
In contrast, this paper formalizes the explicit concept of query tem-
plates, and defines the metrics of precision and recall of templates.

2. In terms of techniques, we compare our solution with two-
staged Classify&Match method as baseline, which first uses exist-
ing classification technique [1], and then, matches templates against
the classification results to predict their precision/recall. Our exper-
iments show this approach is ineffective in mining templates.

Our solution is based on integrated inferencing upon a tripartite
QueST graph of Queries, Sites, and Templates. In contrast, sev-
eral related techniques have used bipartite Q-S graphs [1, 14]. Our
extension to include templates in an integrated inferencing frame-
work is necessary, as we discuss in Section 5. Query logs are
known to be sparse and noisy; the integrated inferencing helps in
regulating propagation by accounting for all signals, as is demon-
strated by the superior performance of our solution compared to the
two staged baseline.

We develop random walk based solution to solve our precision
and recall based equations. Our first inference method–QuestP–
solves the precision based modeling using backward random walk.
We formally show (in Sec. 6) that precision based modeling is
equivalent to harmonic energy minimization [15]. Our second in-
ference method–QuestR–solves recall based modeling using for-
ward random walk, which has been used in the PageRank family of
inferencing frameworks [16].

While both the forward as well as backward propagation have
been used in many contexts [17, 18, 19], with some empirically
comparing their performances [4], our work is the first to establish
the correspondence of the random walk in forward and backward
direction, respectively, to the recall and precision based modeling.

3. In terms of related research areas, since our solution needs
domain schema as input, which may not be readily available, for
practical deployment, we need to extend our framework to incor-
porate automatic Named-Entity Mining (NEM) techniques that can
learn domain schema (i.e., discovering new attribute classes and
their instances). Several techniques exist, e.g., learning from Web
corpus [20, 21], and more recently, from query logs, e.g., using
hand-crafted query patterns [11], learning query patterns using seed
knowledge [12], and probabilistic framework using click-through
logs [13]. Our study in Section 7.3 demonstrates that our iterative
S
 Q
 T framework can be effectively extended to incorporate
existing NEM techniques by adding another step of T →D.

3. PROPOSAL: QUERY TEMPLATE

3.1 Motivating Survey: Structured Patterns
While structured patterns are useful for interpreting queries–do

such patterns exist? That is, for similar search purpose, do users
formulate keyword queries of similar structures? As this ques-
tion must be answered from actual query behaviors, we surveyed
a search log of 15 million queries from Microsoft’s MSN search
engine [3].

In the survey, we checked if the sampled queries followed some
patterns. As Section 3.2 defines formally, a pattern is an abstract
structure that can be instantiated into multiple query instances. For
a query s1, to see whether it follows some pattern, we identify if

id Query Structured Pattern Domain

s1 280zx scissor doors 〈#model scissor doors〉 automobile

s2 dreams about tornadoes none n/a
what does it mean

s3 fractionated stereotactic 〈#surgery #location〉 hospital

radiosurgery california
s4 j william montgomery 〈#name #location〉 people

minnesota
s5 locate mercedes 〈locate #make inventory〉 automobile

inventory
s6 morgan milzow 〈#realtorcompany〉 real estate

s7 play nintendo online 〈play #videogame online〉 video game

s8 psychology of 〈psychology of #character〉 literature

severus snape
s9 sport bike portland or 〈#model bike #location〉 motorcycle

s10 uhaul in colorado 〈#rentalcompany in #location〉 car rental

Figure 2: Structured patterns: Any queries.

Domain Schema QueriesPattern%

airfare #airline, #airport, #apcode, #location 428 73.60%

automobile #make, #model, #year, #location 1656 85.87%

hotel #hotel, #location 1378 91.36%

job #location, #category, #company 921 74.38%

real estate #location 1471 91.71%

car reantal #company, #cartype, #location 99 84.85%

movie #title, #actor, #director 723 37.62%

Figure 3: Structured patterns: 7 domains among 28K queries.

s1 mentions an instance of some attributes and if we could find
another query s2 that shares everything but the instances of the at-
tributes. E.g., consider q1 = “280zx scissor doors” in Fig. 2. By man-
ual checking, we recognized that “280zx” is a car model, which
we denoted attribute #model. Looking in the query log, we found
another query “300zx scissor doors”, where “300zx” is a different
#model instance. Thus, these queries share the pattern 〈#model
scissor doors〉, and we name their similar interests as domain auto-
mobile.

Survey 1: How likely does any random query follow some pat-
tern with any attributes we could recognize? We sampled 100
queries and, by manual checking, found that 90 of them—or a 90%
“pattern ratio”— follow certain patterns (shared with at least one
other query) that we could recognize. Figure 2 shows 10 exam-
ple queries, including one (s2) that does not follow a pattern and
others that do. For each patterned query, we also identify the pat-
tern in Fig. 2 and name the domain as we recognized. For in-
stance, in addition to s1 just mentioned, s4 shares pattern 〈#name
#location〉 (e.g., with another query “john tabor georgia”) and s10
pattern 〈#rentalcompany in #location〉 (e.g., with query “hertz in
chicago”). Overall, we believe query patterns are prevalent.

Survey 2: How likely do queries in a particular domain follow
patterns with respect to some specified attributes? We asked this
question because, often, we are only interested in a certain domain
(e.g., hotel) to tailor search for, and for each domain we would
expect some particular attributes, which we informally call “do-
main schema” (e.g., #hotel, #location). We performed this survey
for seven domains; Fig. 3 shows each domain and its schema as
we determined. As dataset, we sampled 28K queries, with random
sampling that was biased for these domains of interest so that we
could get more queries in these domains. For each query, we man-
ually labeled if it is relevant to one of the domains. If so, we further
checked if it followed some pattern w.r.t. the attributes in the pre-
specified schema, using some pre-collected “vocabularies” of these
attributes (e.g., actual hotel names for #hotel). E.g., as Fig. 3 sum-
marizes, we found 1378 of the 28K queries were in real estate, of

0

20

40

60

80

100

1 101 201 301 401 501 601 701 801 901 1001

Number of Templates

%
 o

f
Q

u
er

ie
s

co
ve

re
d Jobs

Automobile

Movie

RealEstate

Airline

Hotel

CarRental

Figure 4: Cumulative coverage of query templates.

which 1259 or 91.36% were “patterned.” In 6 out of 7 domains,
we saw the pattern ratio were greater than 70%, which revealed the
prevalence of patterns w.r.t. naturally specified schemas.

We note that the survey inevitably underestimated pattern ratios—
due to our incomplete vocabularies we were not able to recognize
all attribute instances and thus query patterns. In particular, the
low ratio in movie domain (37.62%) resulted from our incomplete
movie #title and #actor names. We would miss, say, “bolt showtimes”
for pattern 〈#title showtimes〉 if we do not include “bolt” as a #title.

Survey 3: How popular are each pattern? How many patterns are
there? Since we resort to structured patterns for rich query inter-
pretation, as Section 1 motivated, we wonder how many patterns
do we need to “cover” a domain of interest, say, hotel? That is,
for each pattern, we ask how likely it will cover a query for the
domain? We thus measured the coverage of a pattern t as the ra-
tio of queries in a domain that are instances of t. Figure 4 shows
the cumulative distribution of the coverage ratios in each domain,
with color-coded curves. We order the templates of each domain,
on the x-axis, by their coverage of the domain queries. For ex-
ample, for automobile, the top template is 〈#make #model #year〉,
which covered 95 out of 1580 automobile queries as its instances
(e.g., “toyota corolla 2004”). For each rank position, we show on
the y-axis the cumulative coverage over the domain queries. We
observe that, for all domains, while the coverage increases rapidly
in the beginning, it then slows down and overall requires a large
number of patterns to cover most queries. E.g., to reach 80% cov-
erage, the hotel (brown-colored curve) and real estate (light blue)
both need about 450 templates, and job (blue) about 250 templates.
How these templates in a domain is thus our problem to solve.

3.2 Query Templates
We now propose the notion of query templates. As our objec-

tive is to find structured query patterns for query interpretation, for
intents of both domains and attributes, we will focus on templates
for a domain of interest. Each domain, as mentioned earlier, we
will assume a given schema as a set of attributes that define various
aspects of the domain and their instance vocabularies.

Definition 1 (Domain Schema): The domain schemaD = (A, I),
for a given a domain of interest, consists of:

1. A = {a1, . . ., an}, where each ai is an attribute.
2. I= {I(a1), . . ., I(an)}, where I(ai) is the vocabulary of possi-

ble instances of ai.

Example 1 (Domain Schema): For job, we may specify schema
Djob = (A, I): A contains attributes for job listings, say, A =

{#location, #category, #company}. Each attribute has a vocabulary,
which is conceptually a “dictionary” of instances, e.g., I(#location)
= {’new york’, ’chicago’, . . .}, I(#category) = {’accounting’, ’soft-
ware’, . . .}, I(#company) = {’microsoft’, ’boeing’, . . .}.

For simplicity of explanation of our technique, this paper as-
sumes that the complete domain schema is available. However, it is
important to note that this is not a limitation of our framework. In
practical deployment, our method will be coupled with widely stud-
ied named-entity mining (NEM) techniques (e.g., from Web corpus
[20, 21], or from query log [11, 12, 13]). Our experiments in Sec.
7.3 empirically demonstrate that our framework can effectively in-
corporate existing NEM techniques, to provide robust results even
under the scenario of incomplete domain schema. Without loss
of generality, for rest of the development, we will assume domain
schema is available.

With respect to a schema, we now define templates for the do-
main. As eluded so far, in general, a query template is an abstract
query pattern that specifies certain structure characteristics– which
can be instantiated into multiple (concrete) query instances that pre-
serve the characteristics. E.g., our discussion used templates like tj

= 〈jobs in #location〉. Here, template tj specifies the characters that
“jobs” and “in,” in that order must appear as the first two words and
that some #location instance must follow them.

To concretely define template, we must decide the types of char-
acteristics we wish to use. For simplicity, while our framework can
handle any patterns (when the computational requirement of “tem-
plate generation” is met; see 4.1), we assume a template as simply
a sequence of literal keywords or abstract attributes. E.g., template
tj is a sequence of keyword jobs, in, and then attribute #location.

Definition 2 (Query Template): With respect to domain schema
D = (A, I) and W as the universe of all keywords, a query tem-
plate t is a sequence of terms 〈v1 . . . vn〉, where each vi ∈ Ω, for
the vocabulary Ω = W ∪ A, such that at least one of the terms is
an attribute, i.e., ∃ j ∈ [1, n] for which vj ∈ A.

Such a template, by definition, can be instantiated into different
queries; i.e., it represents a class of queries, where the sequence and
the keywords are preserved, while the attributes become instances.
E.g., template tj can be instantiated into queries like q1: “jobs in
chicago” and q2: “jobs in new york” or, generally, “jobs in p”, where
p is a phrase (one or multiple words) in I(#location). A template
is thus also a parametrized query, which can be “materialized” into
various queries, by filling in instance values at the attribute slots;
thus, in this view, q2 = tj(“new york”).

Definition 3 (Template Instantiation): Given a query template t
= 〈v1 . . . vn〉 and query q = “u1 . . . um”, with respect to domain
schema D= (A, I), we say that t is instantiated into q, or q instan-
tiates t, which is denoted by q ∈ I(t), if m = n and ∀i: ui ∈ I(vi)
when vi ∈ A, or ui = vi otherwise.

For our motivation, a template is useful for “interpreting” queries
that instantiate it. Given a template for a domain D, for a query q
that instantiates the template, we can interpret q with the structure
and meaning of t. E.g., given tj for job, since q1 instantiates tj ,
we know that q1 has an intent of the job domain (i.e., finding job
listings) and that “chicago” refers to the place of desired jobs.

4. PROBLEM: TEMPLATE DISCOVERY

4.1 Problem: Mining Templates
Our objective in this paper is to discover good templates for

query interpretation for a given domain D. Let L(D) denote all
the possible queries in D—for now, assume it is ideally given, say,

by identifying them by some oracle from a search log. Our desired
templates are those that can match (i.e., be instantiated into) and
thus interpret those domain queries L(D).

Template Universe T : For template discovery, we need to first
identify the set of possible templates as our closed universe to con-
sider. We are only interested in “relevant” templates—ones that can
be instantiated into some queries q in L(D).

To form such a universe, instead of looking at each possible form
of templates (e.g., arbitrary combinations of any keywords and any
attributes in any lengths), we assume the ability to enumerate rele-
vant templates. That is, given query q and domain schema D, we
assume function U(q), which can “unify” q with respect to D into
its relevant templates—by abstracting keywords as the attributes in
D; i.e., U(q) = { t | q ∈ I(t) w.r.t. D}.

Note that, while a template t can be instantiated into multiple
queries, which is I(t), a query q can also instantiate multiple tem-
plates, which is U(q). We stress that this “template enumeration”
into a closed relevant universe is the only assumption in our tem-
plate modeling—our framework can support any template model as
long as this assumption is valid. For our simple model (Definition
2), to generate U(q), we need only check if any subsequence of q
matches an attribute—and substitute it with the attribute if so.

Example 2 (Template Generation): From Example 1, consider q:
“accounting jobs in new york”. Matching keywords to Djob, we find
’accounting’ ∈ I(#category) and ’new york’ ∈ I(#location). We
then enumerate templates by these attributes: x1:〈#category jobs
in chicago〉, x2:〈accounting jobs in #location〉, and x3:〈#category
jobs in #location〉. Thus, U(q) = {x1, x2, x3}.

By generating relevant templates, our problem becomes to dis-
cover good templates from the template universe generated by all
domain queries, i.e., T = {t | t ∈ U(q), ∀q ∈ L(D)}.

Quality Metrics: As the target metrics, how do we measure the
“quality” of a template t? Naturally, we measure the quality of t
by how it can interpret L(D); i.e., how the queries that t can be
instantiated into, I(t), match those of L(D).

First, t should broadly capture as much coverage over L(D) as
possible. We thus ask: What faction of L(q) queries are instanti-
ations of t? Some templates are more “popular” than others; they
match more queries in the domain, which means users are more
likely to formulate instances of such templates as their queries. Our
Survey 3 measured in Figure 4 such coverage, where we saw that
a few templates (e.g., 〈#make #model #year〉 for automobile) are
more popular than others. Given L(D) as the “target” set and I(t)
as the “matched” set, such coverage is the standard metric of recall:

R(t) = |L(D) ∩ I(t)/|L(D)| (1)

Second, t should precisely capture only L(D) to make accu-
rate prediction of intent. We thus ask: What fraction of I(t) ac-
tually fall in L(D)? Due to the inherent ambiguity of keyword
queries, a template may make wrong predictions. E.g., the sim-
ple template 〈#company〉—say, for query “microsoft”—may mean
to find job at a company, but it may also mean to find something
else about the company, say, product. In contrast, template 〈jobs at
#company〉 (“jobs at microsoft”) seems more reliable, although not
perfect: Query “jobs at apple” may intend for “Steve Jobs” and not
an employment. Such accuracy is the standard metric of precision:

P (t) = |L(D) ∩ I(t)|/|I(t)| (2)

Note that precision and recall are well known to be “competing.”
A broad template, such as 〈#company〉, may have good recall by

• Input: (Q, S, C), D = (A, I), Q0, threshold θ.

• Output: Templates t, ranked by score(t).

1: classify Q to L(D) from Q0, thresholded by θ.
2: T = {t | t ∈ U(q), ∀q ∈ L(D)} //candidates.

3: for (each template t in T) do

4: X = L(D) ∩ I(T) //queries in D ∧ match t.

5: compute score(t) //by P (t), R(t), or F (t).
6: end for

7: return T sorted by score(t)

Figure 5: Baseline algorithm: Classify&Match.

matching many queries but poor precision due to its also match-
ing non-domain queries. A strict template like 〈jobs at #company〉
may have good precision but poor recall. The trade off depends on
applications; we may also adopt the combined F -measure F (t).

We can now state our problem quite simply as finding good tem-
plates by precision, recall, or F -measure, from a search log L, with
respect to domain schema D and labeled example queries Q0.

Problem: Query Template Mining from Search Log

Input: • Search log: (queries Q, sites S, click-through C).
• Schema D = (A, I) for domain D.
• Seed queries Q0 labeled as in domain D.

Output: Ranked list of templates t, sorted by score(t),
for score(t) ≡ P (t), R(t), or F (t).

The input consists of the following: 1) For our purpose, a query
log gives a set of queries Q, a set of URLs or sites S, and how
queries clicked-through to sites. We denote the click-through queries
of site s ∈ S by C(s) = {q|q ∈ Q, and q clicks to s}. 2) The domain
schema specifies attributes A and instance vocabularies I . 3) We
also need “seed knowledge” about domain relevance, i.e., example
queries that are in the domain. While seed knowledge is necessary,
we should require only “minimal” supervision. For simplicity, here
we assume a few seed queries q ∈ Q0. Our framework will work
generally for seed sites or templates, and we will will experiment
with all settings (Sec. 7).

The output returns a ranked list of templates, sorted by their use-
fulness. For scoring, we must be able to adopt different measures:
precision, recall, or F , depending on application requirements.

4.2 Baseline Approach
To motivate our solutions, we start with a natural baseline al-

gorithm. Since our goal is to find templates that match domain
queries, if we were able to separate L(D) from all queries Q in
the log, we can simply count in L(D), for each template, how it
performs in terms of precision and recall.

A natural baseline is thus Classify&Match (Fig. 5), with two
stages. The first stage classifies log Q to find domain queries L(D),
applying some threshold θ on the results. The second stage matches
each t in the template universe T to this “estimated” L(D), to esti-
mate P (t), R(t), or F (t) as score(t).

The two-staged baseline, while intuitive, suffers two major is-
sues inherent from the separation of the two stages. Our experi-
ments show the poor performance of this approach, using a state
of the art classifier [1] for query log as the stage 1. These deficien-
cies motivated our development of a robust, principled probabilistic
inference framework.

First, it lacks probabilistic modeling. In order to straightfor-
wardly connect the two stages, we have to decide a threshold for
the classifier to divide Q as L(D) and ¬L(D). As we explained,

Sites S
s1: moster.com
s2: motorola.com
s3: us401k.com

Queries Q
q1: jobs in chicago
q2: jobs in boston
q3: jobs in microsoft
q4: jobs in motorola
q5: marketing jobs in motorola
q6: 401k plans
q7: illinois employment statistics

Templates T
t1: jobs in #location
t2: jobs in #company
t3: #category jobs in #company
t4: # location employment statistics

t1

t2

t3

t4

q1

q2

q3

q4

q5

q6

q7

s1

s2

s3

10

25

12
4

4

2
4

1

1

1
1

1

1

1

tqs
Iq ItCqCs

Cqs Iqt

General Form:

Example Graph:

Figure 6: Example: a toy search log and the graph.

queries are ambiguous, and such hard division is crude—in our ex-
periments, we tried several choices of threshold (in the range of
[0.80, 0.95] and none worked well. What we need is more robust
probabilistic modeling that captures the fuzzy nature of semantic
relevance and, in turn, that of recall and precision.

Second, it lacks integrated inference. Search logs, while valu-
able for learning query interpretation, are also known to be noisy
and sparse. They are noisy: A click-through does not always mean
semantic relevance—it might be a trial or a mistake. They are also
sparse: Users only click on a few sites for each query. By sepa-
rating template induction (stage 2) from query classification (stage
1), the baseline is critically missing semantic connections through
templates during query classification, which will lead to subopti-
mal results. With templates integrated in the loop of inference, the
“global inference” will regulate noises, since irrelevant queries are
less likely to share templates. They will also enrich sparsity, by
connecting queries through sharing the same templates.

5. MODELING: QueST FRAMEWORK
We now develop our overall framework, Algorithm QueST, as

Fig. 7 summarizes, for discovering templates with recall and pre-
cision as the quality metrics. As just motivated, we will model
the quality measures in the probabilistic sense, upon which we will
then cast the discovery as a semi-supervised learning problem.

5.1 Probabilistic Modeling
As the foundation, we develop the probabilistic sense of recall

and precision, for all constructs—templates, queries, and sites.
First, we generalize P and R for templates to the probabilistic

sense. Eq. 1 and 2 and define them in the standard set-semantics in-
tersections, where L(D) and I(t) are both “crisply” defined. How-
ever, a random query q, with the inherent ambiguity of keywords,
may be only likely to be in domain D; e.g., as explained earlier,
query “microsoft” might be in job or product.

Thus, we need the probabilistic notion of semantic relevance—a
probability of how things are intended to match. To simplify nota-
tions, we will “generically” denote match(A, B) for the event that
A and B are semantically matching (for some A and B pertinent
in discussion). In particular, how is a query q relevant to domain
D? E.g., is “jobs in chicago” matching domain job? This statement
is, in terms of the set notation above: How likely is q ∈ L(D)?
We write match(q, D) for the event that q is relevant to D, and
p(match(q, D)) is their probability of relevance. Similarly, we
write match(q, t) for that q is semantically matching t, among the
multiple templates (as discussed earlier) that q can be instantiated
from. We will denote match(q, s) for query q relevant to a site s

(among the multiple sites that q clicks to). Together, we note that
such probabilistic “matching” is necessary—not only that keyword
queries are ambiguous, but click-throughs are also noisy in nature.

Now, we can view Eq. 1 is a statistical way: Since the numerator
is the count of (L(D) ∩ I(t)), it is proportional to the probability
that, when we draw a random query q, p(q ∈ L(D)∧ q ∈ I(t)) or,
in our “match” notation, p(match(q, D), match(q, t)). Similarly,
the denominator becomes p(match(q, D)). Substituting them into
Eq. 1, we get the probabilistic recall as the conditional probability
below. Similarly, we can rewrite Eq. 2 statistically.

R(t) = p(match(q, t)|match(q, D)) (3)

P (t) = p(match(q, D)|match(q, t)) (4)

Second, we extend precision and recall to each query q and site s.
By this extension, we will be able to “interrelate” P and R between
these related events, and thus achieving inference across them.

For site s, we can model its precision similar to that of a template
t. As Eq. 3 states the recall R(t) for template t, we can analogously
capture the precision of a site s, R(s), as the probability of how a
query q may match D, if it matches s.

R(s) = p(match(q, s)|match(q, D)) (5)

P (s) = p(match(q, D)|match(q, s)) (6)

For query q, we can also model its precision and recall, by cap-
turing the semantic relevance to domain D. The recall of q is the
“fraction” of domain queries that are actually q,i.e., the probabil-
ity that x = q among queries x matching D. The precision, on the
other hand, is simply the probability that q matches D.

R(q) = p(x = q|match(x, D)) (7)

P (q) = p(match(q, D)) (8)

5.2 Inference Framework
Our framework, in order to discover templates by their proba-

bilistic recall and precision, will resort to integrated inference (un-
like the partitioned phases in baseline Classify&Match) between
all related constructs–queries Q, sites S, and templates T . To cap-
ture their potential semantic relevance, we build a tripartite graph,
QST-graph. Figure 6 shows the graph for a toy example. In the
QST-graph G = (V , E), the nodes are V = Q ∪ S ∪ T , and the
weighted edges E are as follows:

• ∀q ∈ Q, ∀t ∈ T : if q ∈ I(t), or q instantiates t, there is an edge
in between, with weight Iqt = 1.
• ∀q ∈ Q, ∀s ∈ S: if q ∈ C(s), or q clicks to s, there is an edge

in between, with weight Cqs as the click-through frequency.

Our problem is to discover good templates from seed queries,
which now translates to inferring the quality metrics—probabilistic
recall and precision—of each template through the semantic con-
nections as the graph captures. Upon the QST-graph as a graphical
network, we will develop the inference mechanism in Section 6.

As a semi-supervised learning problem, initially, we are given
a few seed queries Q0, where each query x is labeled with preci-
sion P0(x). Note that, while users can label seed precision as how
likely x indicates the domain of interest, it is infeasible for users
to provide “seed recall,” which depends on all relevant queries. As
an estimate, we initialize the seed recall as precision normalized
among all the given queries. Our initial condition is thus the given
precisions (which are ground truth) and estimated recalls (which
will be re-estimated through the inference process), as follows.

∀x ∈ Q0: P (x) = P0(x); R(x) = R0(x) ≡ P0(x)P
x∈Q0

P0(x)
(9)

• Input: (Q, S, C), D = (A, I), Q0 with P0 (and P0; Eq. 9)

• Output: Templates t, ranked by score(t).

1: T = {t | t ∈ U(q), ∀q ∈ Q} //or, materialize t on demand.

2: construct QST-Graph G by Q, S, T , C, I.
3: inference recall by QuestR on G with R0

4: update R till convergence by R1, R2, R3
5: inference precision by QuestP on G with P0

6: update P till convergence by P1, P2, P3
7: return T sorted by score(t) = P (t), R(t), or F (t)

Figure 7: Algorithm QueST: Mining query templates.

Our goal of inference is to estimate R(t) and P (t), ∀ t ∈ T ,
that satisfy the probabilistic dependencies captured in the graph; as
necessary intermediaries, the inference will also estimate R(q) and
P (q), ∀ q ∈ Q as well as R(s) and P (s), ∀ s ∈ S.

Overall, we develop Algorithm QueST, for template discovery.
As Fig. 7 shows, it starts by generating template candidates and
constructing the QST-graph. We note that the construction is only
conceptual; we can “materialize” the graph during inference only
as needed. On this graph, starting from Q0 with given P0 (and
estimated R0), QueST will infer R and P for each node. It infers
recall by QuestR and precision by QuestP, as we will develop
next in Sec. 6. Finally, QueST will rank templates by P , R, or the
combined F -measure (depending on application requirements).

6. INFERENCE: QuestR AND QuestP
To complete the QueST framework, we develop inferencing equa-

tions that propagate the precision and recall across the QST-graph.
Specifically, we will derive probability estimation of a node in terms
of its neighbors, through the semantic relevance across their edges.
As Fig. 8 summarizes, we will study the inference equations for
both recall and precision, deriving QuestR and QuestP—which
reveals surprising duality.

As the result of our modeling, the QueST framework is a Markov
random field over the tripartite QST-graph. The probability (of pre-
cision or recall) of a node depends on only its direct neighbors
(through instantiation or click-through). The desired semantics–
precision or recall– result in different dependency equations as we
will derive in Fig. 8. These inference equations, together, constrain
the most probable configuration over the random field.

We will study the intuitive interpretations of the inferencing mech-
anisms, which turn out to be random walk of opposite directions
for recall and precision—To our knowledge, this paper is the first to
identify this interesting duality. To understand the solutions of such
inferencing, we will formally connect to existing learning frame-
works for their computational properties.

6.1 Recall: Quest Forward
We now establish the inference of probabilistic recall, deriving

equations R1, R2, and R3 as Fig. 8 summarizes. To begin with,
as input, the system is given initial recall estimates R0(x) for a
small number of seed queries x∈Q0, as calculated from their given
precisions (Eq. 9). The inference is to determine, from the seed
knowledge, the recall measures of every node (including updating
the seed nodes). We thus must “interconnect” the nodes by their
dependencies– i.e., how to estimate the probability P (xi), for each
xi ∈ V , given all the neighbor nodes, which it depends on. As the
graph is tripartite of the form S–Q–T (Fig. 6), we must specify
inference of Q→ T , S← Q, as well as Q←T and S→ Q.

We will derive Equation R1, for Q→ T , inferencing the recall of
template t from those of its neighboring q, by rewriting R(t) from
definition as given to an expression in terms of R(q). Step 1 starts

1) QuestR: Quest Forward for Recall Inference 2) QuestP: Quest Backward for Precision Inference

R1: R(t) =
∑

q∈I(t) Iqt/Iq · R(q), where Iq =
∑

∀t:q∈I(t) Iqt P1: P (t) =
∑

q∈I(t) P (q) · Iqt/It, where It =
∑

∀q:q∈I(t) Iqt

R2: R(s) =
∑

q∈C(s) Cqs/Cq ·R(q), where Cq =
∑

∀s:q∈C(s) Cqs P2: P (s) =
∑

q∈C(s) P (q) · Cqs/Cs, where Cs =
∑

∀q:q∈C(s) Cqs

R3: R(q) =

{

β1R0(q) + β2 ·
∑

∀t:q∈I(t) Iqt/It ·R(t)

+(1− β1 − β2) ·
∑

∀s:q∈C(s) Cqs/Cs · R(s)
P3: P (q) =

P0(q) if q ∈ Q0;

α ·

∑

∀t:q∈I(t) P (t) · Iqt/Iq

+(1− α) ·
∑

∀s:q∈C(s) P (s) · Cqs/Cq otherwise.

Figure 8: The QueST dual inferencing framework: QuestP and QuestR.

tq

x
ItIqt

D
P0(x)

(b) Precision propagates backward.

tq

x
Iq Iqt

D
R0(x)

(a) Recall propagates forward.

Figure 9: Inferencing recall and precision.

with the definition of R(t) (Eq. 3). In step 2, to bring in queries,
we expand it to the joint distributions with every qi ∈ Q. Step
3 restricts qi to only those instantiated by t, or qi ∈ I(t), which
are the neighbors of t, so that match(qi, t) can have a non-zero
probability. By the Bayes’ theorem, step 4 rewrites using p(AB|C)
= p(A|BC) p(B|C). In step 5, since match(q, t) depends only
on what q is– i.e., it is conditionally independent of match(q, D),
given q = qi– we can remove match(q, D). As the first term
equals Iqit/It (where It is a shorthand given in Fig. 8) and the
second term R(qi) (Eq. 7), step 6 completes the rewriting.

R(t) ≡1 p(match(q, t)|match(q, D))

=2 P
qi∈Q p(match(q, t), q = qi|match(q, D))

=3 P
qi∈I(t)

p(match(q, t), q = qi|match(q, D))

=4 P
qi∈I(t)

p(match(q, t)|q = qi, match(q, D))

·p(q = qi|match(q, D))

=5 P
qi∈I(t)

p(match(q, t)|q = qi) · p(q = qi|match(q, D))

=6 P
qi∈I(t)

Iqit/Iqi ·R(qi) (10)

We can similarly derive the other two inference equations, which
we omit due to space limit. As Fig. 8 shows, Equation R2 is in a
form parallel to R1, since S←Q is symmetric to Q→ T at the two
sides of the tripartite graph. At the center, R(q) for query q ∈ Q
depends on the initial estimate R0(q) and the recalls from the two
sides, R(t) and R(s), thus the mixture of the dependence sources
combined by parameters β1 and β2.
Interpretation. We observe that the result is simple yet interesting.
Consider R1: The recall of t, R(t), is the sum of the neighboring
recalls, R(q), each of which is distributed proportionally among its
outgoing edges towards t—or, t receives recall proportionally from
its neighboring query nodes.

While several interpretations are possible, it is intuitive to view
the inferencing as random walk. As Fig. 9 illustrates, we think of
R(t) as the probability of arriving at t, in a random walk starting
from some hidden origin—the hidden domain D. The hidden do-
main is only specified through its probability R0(x) to reach seed
nodes x. This random walk interpretation of R(t), in hindsight, is
consistent with what probabilistic recall, in Eq. 3, shall capture: the
proportion of queries from D that will reach t. Equation R1 thus
means—the probability of arriving at t sums up the probabilities of
arriving at its neighbors and then one last hop to t.

In sum, as we generalized recall from the standard deterministic
sense (Eq. 1) to a probabilistic measure (Eq. 3), upon the semantic

relevance graph, we observe that the inference mechanism (as R1,
R2, and R3 captures) lends itself naturally to the random walk in-
terpretation. We identify the walk in the forward direction, from
given seeds x (indicating the hidden domain as the origin) to un-
known nodes t.
Connections: The recall inference, as a forward walk model, con-
nects to the PageRank [22] family of models. In particular, with
“seed nodes” assignments, QuestR connects directly to topic-sensitive
or personalized PageRank ([23, 16]). (We can rewrite Eq. R1,
R2, and R3 to matrix forms that directly parallel the personalized
PageRank formulation.) The connection thus allows us to under-
stand that (subject to making the graph irreducible) iterative matrix
computation would converge to the solutions.

6.2 Precision: Quest Backward
We next establish the inference of probabilistic precision—in

which, we witness the interesting duality of recall and precision
on the graph—The derivation of precision inference follows an ex-
actly symmetric process to recall inference just discussed. Fig. 8
also summarizes the precision Equations P1 (for Q→ T), P2 (for
S ← Q), and P3 (Q ←T and S → Q). We omit the symmetric
process due to space limit. As the only difference, here, for seed
queries q, as their P0(q) are specified in labeling (Eq. 9; unlike
R0(q) which is only estimated), R(q) will take this “ground truth”
and will not change throughout inferencing.
Interpretation. With the symmetry between precision and recall
in the derivations of their inference, we also observe interesting
duality in their interpretations. Consider P1: The precision of t,
P (t), is the sum of the neighboring precisions, P (q), each of which
is weighted by how t can reach q. As Fig. 9 illustrates, we think
of P (t) as the probability of reaching D, the domain as a hidden
destination, in a random walk starting from t. The hidden domain
is specified through P0(x), i.e., how seed queries x can reach D.

This random walk interpretation of P (t) is, again, consistent
with what probabilistic precision, in Eq. 4, shall capture: the pro-
portion of queries from t that will reach D. Equation P1 thus
means—the probability of t reaching D sums up the probabilities
of one hop to its neighbors and then going from there.

While we identified recall inference as forward random walk, we
now recognize that the inference of probabilistic precision turns out
to be the opposite—backward random walk, from unknown nodes t
to given seeds x (indicating the hidden domain as the destination).

Connections: The backward random walk interpretation connects
QuestP to a relatively recent semi-supervised learning framework,
harmonic energy minimization [15], over a graph with labeled and
unlabeled nodes. As the result of our formulation, we obtained in-
ference equations P1, P2, and P3, which are harmonic—i.e., the
value P (u) of a node u is the (weighted) average of its neighbors.
The harmonic update functions will lead to the assignment of P
values over graph G in a way that will minimize the quadratic en-
ergy function below: That is, the closer nodes u and v are, i.e.,
the larger their edge weight wuv is, the closer their P values shall
be. Thus, on the QST-graph, nodes that are close with edges (of
instantiation or click-through) will have similar precision.

Type Size: small Size: median Size: large
site 2 sites 4 sites 8 sites
query 5 queries 20 queries 50 queries
template 2 templates 5 templates 10 templates

Figure 10: Seed input configurations.
Domain f-Quest b-Quest

Job
#location jobs #companyname #location job fairs

jobs in #location #location #industry positions

Airfare
cheap flights to #location #airline #location reservations

#airline airlines #location #airport airport

Automobile
#year #make #model #location #make used cars

#make #model #year #make #location for sale

Car Rental
#carrentalcompany rental car #carrentalcompany rental car #location

#carrentalcompany rental #cartype rent a car

Hotel
#hotelname #location #hotelname #location hotels

#location hotels #hotelname at #location

Movie
#movietitle #actorname new movie

#actorname #movietitle characters

Real Estate
#location real estate #location area homes for sale

#location homes for sale #location commerical real estate

Figure 11: Top 2 templates derived by QuestRand QuestP.

E(P) =
1

2

X
u,v∈G

wuv(P (u)− P (v))2 (11)

As essentially an instance of the harmonic energy minimization
framework [15], the solution of QuestP is unique, and can be eval-
uated by iterative matrix computation till convergence.

7. EXPERIMENTS
We report our evaluation of QueST for template discovery over

a large scale real query log across a range of query domains. Over-
all, the experiments demonstrate that QueST is accurate for finding
templates for predicting query intents, outperforming the baseline
of Classify&Match significantly, and is robust over a wide range of
seed input types and sizes. Further, we extend QueST to handle in-
complete schema, which shows the robustness for discovering not
only new instances of attributes, but also new attributes.

7.1 Experiment Setting
Query Log: We used a real world query log from the MSN search
engine [3] with 15 million queries and 12.25 million click-through
(query, site) pairs. We preprocessed this query log: (i) As we were
only interested in the clicked site, we truncated the clicked URL to
its top-level domain name, e.g., monster.com, rather than the com-
plete URL. (ii) We remove navigational queries [24] (e.g., “ebay”),
whose target is a particular site (ebay.com). The preprocessing re-
sulted in 2.8 million unique queries. We used 80% of these queries
as the “query log” for mining templates from, and used the rest
20% for testing the discovered templates.

Target Domains: We experimented widely over seven domains—
airfare, automobile, hotel, job, real estate, car rental, movie—as
our survey (Sec. 3) also studied. For the overall performance, we
will report all the domains (Fig. 15). Due to space limit, for fine
grained studies, we report only for job domain, as the results are
similar in all the domains.

Application Scenarios: We evaluated the usefulness of query tem-
plates, as QueST aims to discover, directly in their applications—
for predicting query intents (by matching user queries). As the
ground truth to test against, we sampled 28,000 unseen queries
(see next)—the same set of queries that we manually labeled and
surveyed, as Sec. 3 reported. In particular, as Fig. 3 summarizes,
among the 28K, 921 queries are for job, of which 74.38% (i.e.,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

b-Quest
Threshold=0.95

Threshold=0.9
Threshold=0.85

Threshold=0.8

(a) Scoring by precision

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

f-Quest
Threshold=0.95

Threshold=0.9
Threshold=0.85

Threshold=0.8

(b) Scoring by recall

Figure 12: Comparison of QueST with Classify&Match.

685) have patterns. We thus used these 685 queries (which have
patterns) as ground truth that our discovered templates should ide-
ally match—and we used such matching to calculate the precision
and recall of intent prediction in every experiment for job domain.

Test Set: Our test set included 28K unique queries—20K sampled
randomly and 7K sampled with domain-focus (from queries click-
ing on manually enumerated sites relevant for our 7 domains). To
facilitate the task of labeling, we created a labeling interface which
showed results for each query from google.com—the search results
for a given query helped our labelers to understand the intents. At
peak speed, our labelers (undergraduate students in Psychology)
could label 600 queries per hour.

Evaluation Metrics: Our algorithms (Figure 7) as well as the base-
line method (Figure 5) produce a ranked list of templates. For each
template, we compute its precision, recall, and F-measure by count-
ing the number of matches to positively labeled vs. negatively la-
beled queries in the test set of 28K queries (the application scenar-
ios for intent prediction as just discussed).

Seed Input Configuration: Our QueST algorithm can take any
types of seeds (site, query, template) as input, and requires only a
modest size of input. We studied all the three types of input, w.r.t.
three different sizes, as Fig. 10 summarizes. For each configuration,
we manually compiled the specified number of input seeds (e.g., 5
queries for the query-small configuration).

Parameter Setting: We experimented with different settings α, β1

and β2 referred to in Fig. 8. Here, we report the results for α = 0.5,
β1 = 0.1, and β2 = 0.45.

7.2 Results

Illustrative Results: As shown in Fig. 11, the top-2 templates pro-
duced by QuestR and QuestP algorithms illustrate that the two
methods very well match the desired objectives of ranking tem-
plates based on recall and precision, respectively. These illustra-
tive results are for input configuration of medium size input sites.
E.g., for job, top-2 templates produced by QuestR algorithm are
〈#location jobs〉 and 〈jobs in #location〉, indicating QuestR method
ranks “popular” templates first. Likewise, for QuestP we see that
the top-2 templates, i.e., 〈#companyname #location job fairs〉 and
〈#location #industry positions〉, are “surely” for job domain.

Baseline: Classify&Match As our first experiment, we compare
the performance of our algorithms to the two-staged baseline method
of Classify&Match method, as described in Section 4.2. We imple-
mented Algorithm 1 of [1] for query classification, and ran it for 20
iterations. We report results for job domain, with input configura-
tion of type as sites and size as medium.

As Fig. 12 (a) shows, QuestR (red color) consistently outper-
forms baseline method with recall based scoring (other colors), for
all values of threshold.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Small Seed
Medium Seed

Large Seed

(a) Input sites

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Small Seed
Medium Seed

Large Seed

(b) Input queries

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Small Seed
Medium Seed

Large Seed

(c) Input templates

Figure 13: Performance under different seed input configurations

Likewise, Fig. 12 (b) shows QuestP (red color) outperforms
baseline method with precision based scoring (other colors). Our
QuestP method provides quite reliable ranking of templates—precision
stays high for lower recall values, and gradually drops as recall in-
creases. On the other hand, baseline method with precision based
scoring ranks several non-relevant templates in top ranked posi-
tions, which results in poor precision even at low recall values.

Thus, we validate a key hypothesis of this paper, that—in order
to mine templates, iterative bootstrapping must be interleaved and
regulated via templates, as in our QueST network.

Robustness to Seed Input Configurations: Next, we study the
performance of QueST framework under different input configu-
rations. We report results for QuestP algorithm; the behavior for
QuestR algorithm is similar. Also, we present results only for job
domain, while we observed similar robustness in other domains.
We can see from the P-R curve in Fig. 13 that our framework
provides similar performance for all types of inputs. For varia-
tion in input size, we tend to get better results as the input size
increases; however, the increase in performance is more significant
from small (blue color) to medium (green color) than from medium
(green color) to large (red color).

We also tested the performance under hybrid input configuration,
by providing a combination of medium size of sites, queries and
templates together as input. Our framework tends to provide sim-
ilar performance for this hybrid input configuration as well, with
optimal F-measure of 0.87 in job domain.

We note that for all configurations, our algorithm converges in
4-5 iterations.

Duality of Forward vs. Backward QueST: We study the duality
of recall-based (QuestR), i.e., forward propagation, vs. precision-
based (QuestP), i.e., backward propagation on the QueST net-
work. We report results for job domain for medium sized input.

We first compare the cumulative precision and recall at each
ranked position for the two methods in Fig. 14 (a). As expected,
QuestR finds out higher recall templates earlier. For example, the
top 75 templates give a recall of 0.41 for QuestR (pink color) com-
pared to 0.16 for QuestP(blue color). However, on precision met-
ric, QuestP (red color) performs better than QuestR(green color).
Thus, the two algorithms QuestR and QuestP optimize for recall
and precision, respectively.

Next, we combine the two rankings to get an overall better per-
formance. In particular, we studied F -measure scheme; for each
template, we obtained combined score as harmonic mean of the
predicted recall (by QuestR) and predicted precision (by QuestP).
As shown in Fig. 14 (b), combined ranking (blue color) performs
better on F-measure metric than each of the two methods (other
colors). At top ranked positions, QuestR (green color) performs
better; while at later ranked positions, QuestP (pink color) per-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

P
re

ci
si

on

Recall

Precision(b-Quest)
Precision(f-Quest)

Recall(b-Quest)
Recall(f-Quest)

(a) QuestR vs. QuestP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

F
-M

ea
su

re

Rank

b-Quest
f-Quest

Combined

(b) Combined Ranking

Figure 14: The duality of Forward and Backward QueST

Domain Input Conf Intvl Input Conf Intvl Input Conf Intvl

Site Query Template

Job .82 .82 ± .05 .75 .77 ± .06 .83 .83 ± .05

Airfare .79 .78 ± .05 .73 .75 ± .05 .77 .78 ± .06

Automobile .81 .80 ± .04 .81 .81 ± .03 .86 .85 ± .04

CarRental .91 .89 ± .11 .89 .88 ± .10 .91 .89 ± .11

Hotel .76 .77 ± .04 .77 .78 ± .05 .78 .78 ± .05

Movie .76 .75 ± .06 .72 .73 ± .06 .75 .76 ± .06

RealEstate .76 .76 ± .04 .70 .70 ± .04 .75 .76 ± .04

Figure 15: Optimal F-measure over all domains.

forms better. The performance of combined method, interestingly,
follows the performance of the better of the two methods.

In summary, QuestR is better in finding popular templates whereas
QuestP ranks more precise templates higher. Furthermore, better
F-measure can be obtained by combining the two scores.

Overall Performance in All Domains: We present the optimal F-
measure for QuestP algorithm for each of the 7 domains, in Fig.
15. While both the methods have their merit, we observed that
QuestP achieves higher optimal F-measure compared to QuestR.
We used medium size input configuration for this experiment.

We observed that for all types of input, and for all 7 domains,
our method can achieve F-measure of 70-90%. Averaged over all
domains, our method can achieve F-measure of 0.80, 0.81 and 0.76
using sites, templates and queries, respectively.

Confidence Interval: We also report 95% confidence interval for
overall performance by partitioning the test set into 5 parts and
evaluating each partition independently. Confidence interval is cal-
culated as Mean± (z−score∗StandardError), where z-score
=1.96 for 95% confidence interval and Standard Error is calculated
as (StandardDeviation/ NumberofTrials). We can see the
confidence intervals for the experiments in Fig. 15, which shows
that our algorithm gives a stable performance.

7.3 Extensions: Incomplete Domain Schema
Our framework can be easily extended to application domains

where domain schema is not fully available, i.e., the list of at-
tributes, or vocabulary instances are incomplete. Recent research
on named-entity mining (NEM) using search engine query logs
has shown the usefulness of templates in discovering new attribute
classes as well as instances of existing attribute classes, e.g., us-
ing hand-crafted query patterns [11], learning query patterns using
seed attribute classes and instances [12], and probabilistic frame-
work using click-through logs [13].

All of these techniques start with generating candidate terms us-
ing templates, and then grouping them into homogeneous clusters.
In our iterative S
 Q
 T framework, we can add another step
of T → D, to infer domain schema from templates. Suppose, for
example, in job listing domain, only 2 instances of #location were
known, e.g., I(()#location) = {chicago, seattle}.

First, we use “inferencing” query templates to obtain the list of
candidate terms for inclusion in existing attributes, or for forming
new attribute classes. We replace the attributes of existing tem-
plate, e.g., 〈jobs in #location〉 to formulate inferencing template,
e.g., 〈jobs in *〉, where * can match any term. This inferencing
template will match many more queries such as jobs in boston,
jobs in microsoft, jobs in houston, jobs in yahoo, etc. Collecting
the terms matching * position, we get the candidate list of terms
for schema extension, i.e., {boston, microsoft, houston, yahoo}.

Second, we cluster the candidate terms for schema extension
based on their contextual similarity, i.e., by comparing the over-
lap of the terms in query log that co-occur with each candidate
term. In our implementation, we use Jensen-Shannon divergence
(JSD), which is a smoothed and symmetric version of Kullback-
Liebler divergence, as was also used in [12]. In this step, we will
then be able to group the candidate terms into two separate groups:
{boston, houston}, whose context is similar to existing instances
of #location, and {microsoft, yahoo}, which will formulate the new
attribute class of #company.

We evaluated our extension in two domains: job and automo-
bile. For job, we provided only one attribute, #location, without
giving (#category. For automobile, we only specified #make and
#year, without giving #model. For each of the attributes, we pro-
vided only 10 instances, compared to our full vocabulary in earlier
experiments. We used QuestP algorithm for these experiments,
using medium-size seed input, and sites as input type.
Inferring Domain Schema: For both the domains, not only our
algorithm could discover all the missing attributes, it also discov-
ered new attributes. In job domain, we discovered the missing at-
tribute #category, and also a new attribute (not included in our orig-
inal experiments) #company. Likewise, in Automobile domain, we
discovered #model, and also a new attribute #location. We should
mention that in Automobile domain, we observed four clusters of
new attributes, of which one was #model, and the other three rep-
resented #country, #state and #city. Thus, the algorithm can also
discover attribute classes at different levels of granularity.
Impact on Quality of Templates: With incomplete domain schema,
the performance of basic QueST framework was 0.27 and 0.16
for Job and Automobile domain, respectively, as measured on F-
measure metric. With our extension to infer domain schema, we
could improve the corresponding performance to 0.75 and 0.73.
While this is still lower than the performance when complete do-
main schema was available (0.82 and 0.73), it is significantly better
than the performance with no extension.

8. CONCLUSION
As keyword queries have become the standard query language

for searching over the Web, we believe rich query interpretation—

understanding not only the intent but also the structures of key-
word queries—is crucial for better search. In this paper, we for-
mally define the concept of query templates and propose the prob-
lem of template discovery from search logs. We develop QueST,
an inferencing framework over the graph of queries, sites, and tem-
plates to discover good templates. We define the quality measures
of templates based on the dual metrics of precision and recall– and
propose iterative inferencing using backward and forward random
walks, respectively. We evaluated the system over a query log of
15 million queries from MSN search, and the results indicated high
accuracy for query intent prediction. We look forward to extending
the techniques for more complex and expressive query patterns.

9. REFERENCES
[1] Xiao Li, Ye-Yi Wang, and Alex Acero. Learning query intent from regularized

click graphs. In Proceedings of the 31st annual international ACM SIGIR
conference on Research and development in information retrieval, Singapore,
Singapore, 2008. ACM.

[2] Steven M. Beitzel, Eric C. Jensen, Ophir Frieder, David D. Lewis, Abdur
Chowdhury, and Aleksander Kolcz. Improving automatic query classification
via semi-supervised learning. In ICDE, 2005.

[3] Microsoft Research. Microsoft live labs: Accelerating search in academic
research 2006 rfp awards. Research Grant, 2006.

[4] Nick Craswell and Martin Szummer. Random walks on the click graph. In
SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval. ACM Press,
2007.

[5] Ricardo Baeza-Yates. Applications of web query mining. ECIR, 2005.
[6] T. Joachims. Optimizing search engines using clickthrough data. In KDD, 2002.
[7] E. Agichtein, E. Brill, and S. Dumais. Improving web search ranking by

incorporating user behavior information. In SIGIR, 2006.
[8] Charles Ling, Jianfeng Gao, Huajie Zhang, Weining Qian, and Hongjiang

Zhang. Improving encarta search engine performance by mining user logs.
Journal of Pattern Recognition and Artificial Intelligence, 2002.

[9] Ricardo Baeza-Yates, Carlos Hurtado, and Marcelo Mendoza. Query
recommendation using query logs in search engines. EDBT, 2004.

[10] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. Li. Context-aware
query suggestion by mining click-through and session data. In SIGKDD, 2008.

[11] Marius Pasca and B. Van Durme. What you seek is what you get: Extraction of
class attributes from query logs. In IJCAI, 2007.

[12] Marius Pasca. Organizing and searching the world wide web of facts - step two:
Harnessing the wisdom of the crowds. In WWW, pages 101–110, 2007.

[13] Gu Xu, Shuang-Hong Yang, and Hang Li. Named entity mining from
click-through data using weakly supervised latent dirichlet allocation. In KDD,
2009.

[14] Ariel Fuxman, Panayiotis Tsaparas, Kannan Achan, and Rakesh Agrawal.
Using the wisdom of the crowds for keyword generation. In WWW. ACM, 2008.

[15] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-supervised learning
using gaussian fields and harmonic functions. In ICML, 2003.

[16] Taher Haveliwala. Topic-sensitive PageRank. In Proceedings of the Eleventh
International World Wide Web Conference, 2002.

[17] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and
Bernhard Sch Olkopf. Learning with local and global consistency. Advances in
Neural Information Processing Systems 16, 16, 2004.

[18] M. Szummer and T. Jaakkola. Partially labeled classification with markov
random walks. Advances in Neural Information Processing Systems, 2001.

[19] Jason K. Johnson, Dmitry M. Malioutov, and Alan S. Willsky. Walk-Sum
interpretation and analysis of gaussian belief propagation. In Advances in
Neural Information Processing Systems 18. MIT Press, 2006.

[20] Sergey Brin. Extracting patterns and relations from the web. WebDB, 1998.
[21] Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal

Shaked, Stephen Soderland, Daniel S. Weld, and Alexander Yates.
Unsupervised named-entity extraction from the web: An experimental study.
Artificial Intelligence, 165(1):91–134, 2005.

[22] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical report, Stanford
Digital Library Technologies Project, 1998.

[23] Glen Jeh and Jennifer Widom. Scaling personalized web search. In In Proc. of
12th WWW, 2003.

[24] Uichin Lee, Zhenyu Liu, and Junghoo Cho. Automatic identification of user
goals in web search. In WWW, pages 391–400, 2005.

