
Dynamic and Graphical Web Page Breakpoints

John J. Barton
IBM Research - Almaden

650 Harry Road
San Jose CA, 95032

johnjbarton@johnjbarton.com

Jan Odvarko
Mozilla Corporation
650 Castro Street

Suite 300
Mountain View, CA, 94041-2021

odvarko@gmail.com

ABSTRACT
Breakpoints are perhaps the quintessential feature of a de-
bugger: they allow a developer to stop time and study the
program state. Breakpoints are typically specified by select-
ing a line of source code. For large, complex, web pages with
multiple developers, the relevant source line for a given user
interface problem may not be known to the developer. In
this paper we describe the implementation of breakpoints in
dynamically created source, and on error messages, network
events, DOM mutation, DOM object property changes, and
CSS style rule updates. Adding these domain-specific break-
points to a general-purpose debugger for Javascript allows
the developer to initiate the debugging process via Web page
abstractions rather than lower level source code views. The
breakpoints are implemented in the open source Firebug
project, version 1.5, for the Firefox Web browser.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
breakpoints

General Terms
Reliability

Keywords
debugging Javascript Web Firebug dynamic debugger HTML
CSS breakpoints

1. INTRODUCTION
Web pages have become complex applications. Steady

design, development, and deployment of standardized Web
programming interfaces allowed Javascript code to create in-
teresting and effective interactive applications by modifying
CSS and HTML in the page. The introduction of XML-
HttpRequest for asynchronous data update allows pages to
be more responsive by delaying data loading and more timely
by refreshing data after initial page load. These improve-
ments caused Web page development to shifted server side
to client side: the “Web 2.0” phenomenon.

For more complex Web applications, developers face a sig-
nificant challenge to start the debugging process. In princi-
ple, a developer with a complete understanding of a program
knows which line of code to break on for any given problem.

Copyright is held by the author/owner(s).
WWW2010, April 26-30, 2010, Raleigh, North Carolina.
.

In practice, this fails for several reasons. Developers can’t
remember all of the code in a large program[14, 6]. They
employ advanced programming frameworks that make pre-
dicting code paths more complex. They work in teams and
consequently they don’t know all of the code. For these rea-
sons setting breakpoints by navigating through source code
is not always the most effective or convenient solution.

In this paper we extend breakpoints for web debugging be-
yond the standard source code breakpoints. These include
breakpoints in dynamically generated code where there may
be no source file. We also describe breakpoints on events
like object-property updates, error conditions, asynchronous
network events, and markup element changes. These break-
points allow the debugger and therefore the developer to
scale up to much larger, more dynamic, multi-developer
projects.

By integrating breakpoints with runtime events as we do
here, the developer halts into code based on errors, graph-
ical changes, or network events operations. That means
they don’t need to know all of the code to start debug-
ging. Rather, they enter the salient source code based on the
user-interface issue they wish to investigate. If they wrote
the code, this form of breakpoint will help them recall the
design and begin new development work even if some time
has passed since they last studied the source. If the user-
interface operation is implemented in a framework, they can
use the call-stack in the debugger’s user interface or single
line-stepping to navigate into code they control and under-
stand. And if they are working on code written by others,
these kinds of breakpoints help them understand the rela-
tionship between the application’s operation and the source
code.

These additional breakpoint features convert a Javascript
debugger from a general-purpose source code debugger into
a domain-specific debugger for Web pages. For the purpose
of setting breakpoints, the developer thinks in terms of Web
page abstractions like HTML elements, AJAX events, and
so on. Only when the breakpoint hits do they need to con-
sider the underlying source code issues. And at that point
Firebug’s integrated presentation of program objects with
graphical objects supports more rapid program understand-
ing.

Another way to describe the advantage of these kinds of
breakpoints is ’recall’ vs ’recognize’ models for information
retrieval. Conventional breakpoints support ’recall’: the
user remembers the source location and searches for it di-
rectly. The breakpoints we describe here support ’recog-
nize’: the user arrives at the source line by operating on the



application user interface. For example, the developer may
inspect the end-user view with a graphical element selector
in the debugger like Firebug’s “inspect” feature, then break
when the element is changed by Javascript code. In this case
there is no “recall” of source, the breakpoint is entirely by
browsing.

Our contribution here is some novel breakpoints, a com-
prehensive approach to Web page breakpoints, and imple-
mentation solutions in Firefox, a modern, extensible web
browser. We start with some background on the debugger
then describe the user experience for each kind of break-
point. Some kinds resemble breakpoints in debuggers for
other languages. Some are novel, enabled by the combi-
nation of Firefox and Firebug’s integration of Javascript
and HTML/CSS. Then we describe their implementation,
then conclude with related and future work. The inter-
ested reader can follow along with Firebug 1.5 and the on-
line demonstration pages[1]. We will use the abbreviation
XHR for XMLHttpRequest, and DOM for Document Ob-
ject Model; as is conventional we will use DOM to mean the
concrete data structure backing the Web page as well as the
abstract architecture.

2. BACKGROUND
The debugger we extend is “Firebug”[3]. In 2006, Joe He-

witt combined ideas from his previous work on DOMi, the
Mozilla document object model inspector[4], with a Javascript
debugger to create a “Web page debugger”. The Firebug
user interface opens in the bottom of a Web page (see Fig. 1).
It contains a toolbar on top of a set of panels labeled Con-
sole, HTML, CSS, Script, DOM and Net. (Other panels can
be added by extensions). Each panel renders information
from inside of the DOM for the Web page. For example, the
HTML panel shows the elements of the DOM rendered as
HTML. This is not the source HTML but rather the HTML
after it has been transformed by Javascript in the page.

Firebug’s Javascript support included conventional “break-
points”. To use a breakpoint, a developer navigates to a
representation of a source file, selects a line of source code
and clicks on the left side of the line (see Fig. 1). A red dot
marks the line as “having a breakpoint”. Then the developer
runs the program. Whenever the Javascript runtime exe-
cutes that line of code, the debugger “hits the breakpoint”.
It halts the execution of the Web page Javascript and be-
gins to execute debugger code to support the developer in
understanding the program state in the now frozen Web ap-
plication. Rather than examining memory directly, Firebug
allows you to examine the graphical state of the user inter-
face using the abstractions of HTML and CSS rather than
only those of Javascript. The developer has a graphically-
integrated live-object view of the web page at an execution
point in their program.

3. USER EXPERIENCE
In the following sections we describe new breakpoints that

help the developer understand more complex Web applica-
tions.

3.1 Breakpoints in Javascript from eval()

Javascript supports the creation of new executable func-
tions at runtime with the eval() function. The function
takes a string argument and compiles it; the functions de-

fined in the string are available immediately thereafter. In
a common use of eval(), the string arrives in an XML-
HttpRequest. For example, the ’dojo’ javascript framework
uses eval() in the conditional construction of an applica-
tion[2]. However, the string can be computed at runtime in
many ways and for many purposes.

Since the string argument to eval() may not be related to
any source file, the Javascript compiler associates no source
file name to the compiled functions. As a result, without
something like the implementation we describe in this paper,
the functions from eval() are not supported for debugging.

With our support, the user experience is wonderfully un-
surprising. By default, the debugger provides a stable but
hidden file name and all of the remaining debugger infras-
tructure and user interface features work as for static sources
(See Fig. 2).

When eval() is used extensively and especially when the
string being compiled corresponds to a source file, the de-
fault of a short fragment of source can be confusing. In these
cases the developer may append a special comment to the
eval() argument. The comment contains the file name after
the string sourceURL= (see Fig. 3). This comment can be
appended at any time before the eval() call. If the eval()

string corresponds to a file, the URL can be appended to
the source file. When this comment is used, the entire de-
bugging experience is as if the source had been loaded from
a script tag with the src= attribute set to the value of the
sourceURL= value in the comment.

3.2 Breakpoints on Errors
In a Web browser, errors do not typically halt execu-

tion. Javascript syntax errors abort the compile of a single
file; CSS or HTML errors abort the processing of only the
containing syntax unit; uncaught Javascript exceptions halt
only the event handler that raise them. While this gives the
Web page user as good an experience as possible given that
something is wrong, developers are left without context for
errors beyond file and line information in the error message.

Firebug offer three approaches to get more information.
First, the developer can set an option to ask that the call
stack be recorded at each error. Second, the developer can
use Firebug’s Console panel to set a break point on the
source line of the error. Third, the developer can set Fire-
bug to break on the next error, no matter where it occurs.
We will give more detail on the second and third cases.

When Firebug is enabled for a Web page, errors occur-
ring in the page are signaled to the developer with a red
error counter in the browser’s status bar across the bottom.
Clicking on the error count opens Firebug on the Console
panel (or selects the Console panel if Firebug was open).
The error message shows as a line along with a stack trace
to the problem and one line of source, showing where the
error occured. The developer clicks on the left end of the
line to set a breakpoint on the source code line. This is a
simple form of setting breakpoints by navigation: the devel-
oper need not know or look at the complete source to set the
breakpoint. To trigger the breakpoint, the page is operated
again to reproduce the condition that caused the error.

To break on the next error, the developer clicks the Con-
sole panel’s “pause” button. This “arms” the feature, mean-
ing that we don’t break in to the debugger until the next er-
ror. The user-interface signals this change in state by chang-
ing the color of the Console panel label and animating the



Figure 1: Lower part of a Web page with the Firebug debugger open. The developer has selected the Script
panel (tab labeled 1) and set a breakpoint on line 114 (red dot under yellow triangle, labeled 2). Then they
reloaded the page and hit the breakpoint. Note the file name demo.html to the left and below the Script tab.
The yellow triangle and yellow highlight signals the executing line. Variables in the runtime are summarized
to the left and values are summarized in terms of the DOM. For example, the varible “elt” is summarized
as an HTML button with id of evalLoad (label 3). Place the mouse over the word button highlights the
corresponding part of the Web page. The developer studies the state then moves forward in execution with
the continue or step controls (label 4).

Figure 2: Part of the Firebug Script panel when we have set and then hit a breakpoint in a dynamically
compiled Javascript function. The red dot appears when we click in the left gray column to show that a
breakpoint is associated with the line. Note the file name above the source code reading “demo.html/eval:”
followed by some of the source code.



Figure 3: As in Fig. 2, but in this case the developer has appended a special comment (see line 20) to specific
the name of the source. Compare the file name here to the comment and to the file name in Fig. 2

Figure 4: Part of Firebug’s Console panel when an error has occured in the Web page. The small plus sign
to left of the error message opens the UI to show the call stack. Developers click on the faded red circle to
set a breakpoint on the line of the error. The circle will turn dark red. Also note the orange parallel bars
(“pause”) button used to arm the break-on-next feature.

Figure 5: Firebug’s Console panel when stopped on a breakpoint after break on next is set. The executing
line is highlighted; the error message bubble informs the developer of the error message but also connects
the breakpoint event to the break-on-next request in the case that multiple breakpoints may be set.



pause icon to simulate “throbbing” bars. When the break-
point hits, the user interface switches to the Script panel
and the error message is shown (see Fig. 5).

3.3 Breakpoints on Network Events
The XMLHttpRequest introduced asynchronous data up-

date; now more and more web developers are using this
technique to replace traditional model where a web page
is entirely reloaded every time the user performs an action.
The modern XHR approach allows loading additional data
or further parts of the application logic without necessity to
leave the current page. This dramatically improves usability
and responsiveness of a Web application.

Using dynamic XHR pattern for building online applica-
tions has an obvious impact on amount of code that devel-
opers have to write on the client side. The more code is
involved in the network communication, the more effective
tools for debugging are required.

Firebug already contained a tool that can be used to mon-
itor and analyze HTTP traffic between a client browser and
the server, but there was no integration with the Firebug de-
bugger. To increase developer awareness of the breakpoint
feature, we adopt a user interface solution resembling the
Script panel. Each XHR appears on a separate line; the
XHR lines are styled with a gray cell on the left end, the
developer selects a request for breaking by clicking in the
left end (see Fig. 6). This is consistent with the source-code
line display and breakpoint setting in the Script panel.

Network breakpoints halt Javascript execution when a re-
quests is made to a specific URL (see Fig. 7). To activate the
breakpoint, the developer operates the Web page to cause
the XHR event. At the breakpoint, the usual debugging op-
erations can be performed and execution can be continued.

When many XHR events occur, the developer may avoid
tedious repetitive break/continue operations by using the
conditional expresssions. A right click on the breakpoint in-
dicator opens a one-line expression input control (See Fig. 8).
The developer enters an expression using URL query string
parameters or posted data. The breakpoint hits only if the
expression evaluates to true at the time of the network event.

In the opposite extreme, the developer can elect to break
on the next XHR event of any kind by clicking the yellow
“pause” parallel bar icon (see Fig. 6). The feature can be
useful to gain understanding of the application when the
connection between XHR and Web page user interaction is
not well understood or when the XHR event timing is un-
clear. This feature can be combined with the conditional
XHR BP set to false to skip XHR events that are under-
stood.

3.4 Breakpoints on HTML (DOM Mutation)
Events

Modern Web pages create dynamic user experiences in
part by Javascript UI event handlers that add or remove
HTML elements or their attributes. The programming model
is not modular in graphical space or time: any event han-
dler can change any part of the user interface at any time
it is run. The developer then must make the connection be-
tween changes in the UI and source code. One way to do
this is to inspect the Web page with Firebug, look through
the live markup for unique strings, then search the source
code for these strings. This activity is time consuming and
distracting.

The HTML breakpoint dramatically illustrates the alter-
native “recognize” or “browse” approach to breakpoints. As
before, a developer inspects the Web page graphical area
they want to investigate. The HTML panel updates to show
the HTML reconstruction of the current state of the corre-
sponding DOM element (see Fig. 9). The developer right
clicks on the element and selects one of “break on attribute
change”, child element addition or removal, or element re-
moval. Then they operate the page and the debugger halts
on the Javascript code that causes the corresponding muta-
tion (see Fig. 10). Only at this last step does the developer
engage with the source code view. The developer need not
recall the source of the attribute change, but can arrive at
the source when the breakpoint hits.

3.5 Breakpoints on DOM Property Changes
A common feature of debuggers is to break the execution

flow when memory is written. In object-based languages,
the debugger can express this operation in terms of object
changes. Object properties are shown in Firebug as name-
value pairs on separate lines in the DOM (for Document
Object Model) panel. Following the style of the Net and
Script panels, the DOM panel shows a gray area on the left
end of the line. To set a breakpoint on a property change,
the developer clicks in this gray area (See Fig. 11). When the
breakpoint hits, Firebug highlights the source lines causing
the modification and a pop-up balloon gives the old and new
property values.

3.6 Breakpoints on CSS Style Rule Changes
As for the Net, Script, and DOM panels, the Firebug CSS

panel includes a gray column to the left of the style rules.
Clicking here sets the breakpoint for changes to the corre-
sponding CSS rule. When the rule changes and the break-
point hits, the script panel is selected and the source line
highlighted as in the other cases.

3.7 Breakpoints support for Extensions
The implementation mechanism used for most of these

breakpoints is available for Firebug extensions. This allows
extensions that support higher level abstractions outside of
Firebug’s core support to implement breakpoints more sim-
ply and with a consistent user interface. We implemented
breakpoints in FireCookie[10] to ensure that the feature
would work in an extension and to give an example for other
extension developers.

4. IMPLEMENTATION
Firebug works within Firefox, a production Web browser

having an underlying C++ core with a layer of interpreted
graphics on top. Firebug works entirely in the interpreted
layer, using API calls to extract information from Firefox or
to manipulate the Web page.

4.1 Dynamically Created Javascript
To support breakpoints in dynamically created code, we

need to associate a unique identifier with the code. This
identifier needs to be robust across page reloads, since the
dominant paradigm for debugging is to set a breakpoint
then reload the page to stop on the breakpoint and examine
the browser state. For Javascript source included with the
script tag, the value of the src attribute provides such an
identifier. Dynamic functions have no source file as far as



Figure 6: Setting a XHR breakpoint in the Firebug Net panel view. The developer locates the XHR request
they wish to break on, and clicks in the left column. The red dot gives the user feedback that the breakpoint
is set.

Figure 7: Hitting a XHR breakpoint in the Firebug Script panel view. The cause of the breakpoint is given
in a popup bubble over the source code line.

Figure 8: Breakpoint condition editor for the Net panel XHR event



Figure 9: Setting an attribute breakpoint in the Firebug HTML panel view. The developer locates the
element using Firebug’s inspector then uses the contextual menu to set a “break on attribute change”.

Figure 10: A part of the Firebug UI when a developer has hit a breakpoint set by selecting “Break On
Attribute Change” as shown in Fig. 9. Note that this may be the first time the developer sees the source
code, all previous operations to set the breakpoint are graphical.

Figure 11: Part of the Firebug DOM panel, showing a breakpoint set on a property of an object.



the browser is concerned. The compiler sees only a string,
the argument to eval(str). The string may be prepared in
memory just before execution and the developer may never
have seen the particular instance executing.

In the particular case of the Firefox browser, obtaining
the string passed to the compiler involved manipulating the
javascript runtime through the debug interface. The com-
piler provides notification of compilation (onScriptCreated)
but not source compiled nor an indication of whether that
source is from eval(), a script tag, or a browser gener-
ated source. To distinguish these cases it was necessary to
set a breakpoint in the compiled code at program counter
zero and, when the engine hit the breakpoint, examine the
call stack heuristically. Ideally this approach would not be
necessary, but it is worth noting that a debugger has this
ability to create such un-conventional control flows.

Given the source string we need a unique identifier for it.
Our initial implementation followed previous suggestions to
encode the source string as a ’data:’ URL[13]. The ’data:’
URL is a valid input to various parts of the brower, making
it attractive for this purpose and for small programs this
approach was effective. However the performance of this
implementation was unacceptably slow, probably because it
more than doubles the memory required for source files and
the encoding algorithm is not highly optimized.

We reimplemented the identifier computation in two ways.
First, as described in Sec. 3.1, we look for a sentinel string
at the end of the eval() string giving a user-defined value
for the identifier; this can be used by, for example, to con-
nect the compiled source to the download URL. Second, we
use the browser’s builtin MD5 hash computation function
to create a 128 bit identifier very likely to be unique to
the string. The built-in function for MD5 is highly opti-
mized. The sentinal string methods works even if the devel-
oper modifies the source; the MD5 method works even if the
developer does not or cannot add the sentinal string. These
two combine to support the needs of most development use
cases.

Attempts to apply the same solution to functions cre-
ated by Javascript’s new Function feature failed because the
heuristics to access the source string became too complex.
Additional support from the browser will be needed for that
case.

Firefox also generates functions, for example, to imple-
ment ‘click’ event handler. These functions wrap an expres-
sion given within HTML markup. We support debugging
these generated handlers by decompiling their Javascript
bytecodes using a service provided by the Firefox Web browser
API. We could have used this decompilation for the dynamic
code. However the decompiled code has no comments, is re-
formatted, and has different line numbers from the original
dynamic code. The user experience cannot resemble debug-
ging normal source files.

4.2 Breakpoints on Errors
Error-selected source-code line breakpoints simply set a

conventional source code breakpoint on the line indicated
by the error message. Thus they are a user-interface short
hand.

The break-on-next exception implementation relies on the
Firefox engine’s onError() method, called for every excep-
tion. When onError() is called we don’t directly enter the
debugger’s user interface code. Rather we call a method

breakNow() which sets a break-cause object containing the
error message and then executes a single Javascript state-
ment debugger;. This triggers the JS engine to call our
onDebugger() handler function. In this handler we examine
the stackframes, skip frames from the debugger itself, then
find the file and line number for the developer’s frame. We
pick up the break cause, position the source code view to the
file and line, and pop up a bubble giving cause of the break,
an error message in this case. The breakNow() function is
used for many of our breakpoints to increase code reuse and
ensure a consistency in the user experience.

4.3 Breakpoints on Network Events
Firebug intercepts network requests and responses to im-

plement the Net panel view. On each event we compare
the URL to a list of breakpoints; matches are further tested
with conditional expression evaluation if required. Success-
ful matches set the breaking cause object to the XHR event
and call the breakNow() function described above.

4.4 Breakpoints on HTML (DOM Mutation)
Events

The W3C DOM Events standard[12] implemented by Fire-
fox supports DOM mutation events raised for each change
in the DOM. The breakpoint implementation for the HTML
panel simply adds listeners for each DOM mutation event
and calls the breakNow() function described above.

4.5 Breakpoints on DOM Property Changes
Firefox supports a watch() method available for all ob-

jects. The method (if defined) is called whenever an ob-
ject property value is set. The breakpoint implementation
simply defines the watch() to call breakNow() as described
above.

4.6 Breakpoints on CSS Style Rule Changes
No standard nor Firefox specific API supports notifica-

tion of CSS changes. We implemented CSS breakpoints by
inserting a shim API layer in the web page for every CSS-
changing API call. For example, we define a new function for
CSSStyleDeclaration.prototype.setProperty() that checks
if this property has a breakpoint set. If so, the breaking
cause is set to CSS property change and the breakNow()

function is called. Whether or not we enter the breakpoint,
we call the original function to complete the developer’s in-
tent.

A major complicating factor for this implementation is the
requirements of Web browser security. The shim functions
must be compiled into the Web page, but we cannot call
breakNow() directly from the Web page. Therefore we must
request breakNow() by raising an event on an element in the
Web page. In Firebug, a listener for these events makes the
actual function call. Because of this extra complexity, we
did not deploy the CSS breakpoints in production versions
of Firebug. We are currently working with the Firefox team
to find a better alternative.

5. DISCUSSION
We added support for dynamic Javascript to Firebug in

2007. Based on bug reports, blog and newsgroup postings,
the feature is effective and used. The “break on errors”
feature has also been a part of recent version of Firebug,
with a different user interface control. Feedback from the



“break on next error” feature indicated that it was both
useful for many users, but also triggered too often for other
users. Discussion of these problems led us to generalize the
breakpoints as we report here.

The remaining breakpoints are only now available in Fire-
bug. We do not as yet have objective evidence that these
approaches are effective. We chose not to invest in an iso-
lated user study of these features. As developers ourselves,
we believe that the concept behind these breakpoints are
compelling and a small scale user study would not add signif-
icant new information. To be correct, a user study requires
developers to be skilled in the use of the breakpoints and yet
it would require developers unfamiliar with the breakpoints
as control subjects. These requirements conflict and they
make any such study very time comsuming.

On the other hand, since Firebug is widely used, we have
an attractive alternative: measure adoption of the break-
points. We anticipate being able to report on the adoption
of these features early in 2010.

We chose Firebug as the base for our work on breakpoints
for five reasons: 1) when we started our work it was the only
Web debugger (other Javascript-only debuggers were avail-
able but they would have required much more work), 2) both
Firebug’s entire source code and the source for Firefox’s de-
bugging support code are readily available, 3) Firebug is
implemented in Javascript, a well-supported and garbage-
collected language easing development, 4) Firebug’s open
BSD source code license allows unemcumbered commercial
redistribution helping us to support our work, 5) Firebug has
an active developer and user community providing a ready
source of feedback. After we started this work, web debug-
gers appeared for Opera (DragonFly) and Internet Explorer
8. (Web Inspector for Safari has features similar to parts
of Firebug but no support for Javascript debugging). We
believe that all of the techniques we describe here could be
implemented in any of these other Web debuggers.

6. RELATED WORK
Existing debuggers, for example Eclipse, support source

code breakpoints and breaking on exceptions. Eclipse’s break
on exception supports breaking based on the type of the er-
ror object, while our break on next error has no such fil-
ter. The Java types are known in advance because of Java’s
static typing, but of course the type of the actual error is
not known until runtime. Once the error occurs, we support
setting a breakpoint directly on the source line.

ZStep[8] supports integration of graphical objects and source
code. Our approach is quite different since the Web page run
time model allows any Javascript function to operate on any
part of the page. This means that the binding of an object
and the source is only meaningful during the function in-
vocation. For that reason our integration uses breakpoints
and re-running the code to find the connection.

As a specialized debugger, Firebug resembles debuggers
for domain-specific languages[16]. However, the breakpoints
we introduce here support higher-level graphical and net-
work abstractions, not higher-level source-code abstractions.
Firebug has domain-specific breakpoints but when they hit,
you are in general purpose source code. On the other hand,
the extensive integration of Javascript and HTML/CSS in
the Document Object Model combined with Firebug’s inte-
gration of debugger views and the Web page blurs the line.

WhyLine[5] supports integration of graphical state and

source code though queries into data created while running
a program. The queries are generated by demonstration on
the graphical user interface. When successful, this approach
can lead directly to the source that caused the transition
demonstrated. In our approach, multiple breakpoints might
be hit before you find the one place in the source that causes
the graphical change of interest; we mitigate this problem
with conditional breakpoints. Our breakpoints have much
less run time overhead and build on existing developer ex-
perience.

FireCrystal[11] records Web page and sequences of diffs
to support a graphical time line view of the page. Sweeping
along the time line can be used to navigate to a graphical
transition visually. The transitions are connected to the
code running at that point in the time line. Our approach is
more “spatial” and causes minimal run time overhead, but
broadly they should be quite complementary.

7. FUTURE WORK AND CONCLUSION
The breakpoints we have introduced here fit easily into

the Firebug user interface and, consequently, the UI oper-
ations needed to set them are easy to explain to develop-
ers. There are cases where more complex solutions may be
needed. For example, developers need to know why an el-
ement has the color “green” independent of whether that
color came from CSS parsing, changes to element attributes
(for example CSS class or style), changes to the structure
of the document that caused new CSS rules to apply, or
changes to the CSS rules themselves.

Firebug provides good tools to master “space”, both the
2D space of the Web page and the interface to the network.
Our breakpoints help connect these spatial dimensions to
the source code that modifies them. But breakpoints are
intrinsically “at the wrong time”: developers set them then
run the program to hit them at a later time. This limits
the kind of immediacy of debugging advocated by Ungar et
al.[15].

Omniscient Debugging[7], WhyLine[5], and FireCrystal[11]
point to powerful new approaches to temporal issues in de-
bugging. Omniscient Debugging records information while
a program runs to support reversal of control flow, that is
working backward in time. Recent improvements reduce
the overhead of Omniscient Debugging from 100 times to
more like 7 times[9]. Since Javascript event-handlers often
complete in less than a second, real-time recording may be
feasible even in Javascript and we still have the potential
for more performance by implementing the recorder in the
C++.

WhyLine requires similar recording but adds queries as a
navigation solution. Finding ways to introduce Web devel-
opers to query based debugging would be an important step
towards realizing the potential of these new techniques.

FireCrystal demonstrates some of the potential of trace
recording integrated with graphical recording to address the
“why is this green” question. Since it is implemented in
Javascript, it provides a direct prototype for exploring the
integration of trace based solution with breakpoint based
solutions and for exploring how the developer community
can become successful with the tracing solutions.

Debugging is a special challenge in highly dynamic graph-
ical Web pages. We think our breakpoints are in important
improvement and a first step towards providing much better
support for developers. There are many more steps needed



and we hope this paper will encourage others to see that
new debugging tools are feasible and exciting to create.

8. ACKNOWLEDGMENTS
The Firebug project is an open source project and we

gratefully acknowledge inputs from many users and devel-
opers that shapes our thinking on these paper. We thank
Prof. Eric Tanter, Prof. Brad Myers, Tessa Lau, Salman
Mirghasemi, and Jeff Nichols, for timely and valuable sug-
gestions on the paper.

9. REFERENCES
[1] J. J. Barton and J. Odvarko. Firebug breakpoints

demo, 2009. http:
//getfirebug.com/doc/breakpoints/demo.html.

[2] J. Heuser. Just in time loader for javascript, 2007.
http://www.felocity.org/blog/article/just_in_

time_loader_for_javascript/.

[3] J. Hewitt. Firebug: Web development evolved, 2007.
http://getfirebug.com.

[4] J. Hewitt. DOM Inspector, 2009.
http://en.wikipedia.org/wiki/DOM_Inspector.

[5] A. J. Ko and B. A. Myers. Debugging reinvented:
asking and answering why and why not questions
about program behavior. In ICSE ’08: Proceedings of
the 30th international conference on Software
engineering, pages 301–310, New York, NY, USA,
2008. ACM.

[6] A. J. Ko, B. A. Myers, S. Member, M. J. Coblenz, and
H. H. Aung. An exploratory study of how developers
seek, relate, and collect relevant information during
software maintenance tasks. IEEE Transactions on
Software Engineering, 32:971–987, 2006.

[7] B. Lewis. Debugging backwards in time. In Fifth
International Workshop on Automated Debugging
(AADEBUG 2003), 2003.
http://xxx.lanl.gov/abs/cs.SE/0309027/.

[8] H. Lieberman and C. Fry. Bridging the gulf between
code and behavior in programming. In CHI’95:
Human Factors in Computing Systems, pages
480–486. ACM Press, 1995.

[9] A. Lienhard, T. Gı̂rba, and O. Nierstrasz. Practical
object-oriented back-in-time debugging. In ECOOP
’08: Proceedings of the 22nd European conference on
Object-Oriented Programming, pages 592–615, Berlin,
Heidelberg, 2008. Springer-Verlag.

[10] J. Odvarko. Firecookie, 2009.
http://www.softwareishard.com/blog/firecookie/.

[11] S. Oney and B. Myers. Firecrystal: Understanding
interactive behaviors in dynamic web pages. In IEEE
Symposium on Visual Languages and Human-Centric
Computing, 2009.

[12] T. Pixley. Document object model (dom) level 2
events specification, 2000.
http://www.w3.org/TR/DOM-Level-2-Events/.

[13] J. Ross and B. Eich. Bug 307984 - line numbers in
errors from evalinsandbox are incorrect, 2005. https:
//bugzilla.mozilla.org/show_bug.cgi?id=307984.

[14] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil.
An examination of software engineering work
practices, 1997.

[15] D. Ungar, H. Lieberman, and C. Fry. Debugging and
the experience of immediacy. Commun. ACM,
40(4):38–43, 1997.

[16] H. Wu, J. Gray, and M. Mernik. Debugging
domain-specific languages in eclipse, 2004.


