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ABSTRACT
We present Aardvark, a social search engine. With Aard-
vark, users ask a question, either by instant message, email,
web input, text message, or voice. Aardvark then routes the
question to the person in the user’s extended social network
most likely to be able to answer that question. As compared
to a traditional web search engine, where the challenge lies
in finding the right document to satisfy a user’s information
need, the challenge in a social search engine like Aardvark
lies in finding the right person to satisfy a user’s information
need. Further, while trust in a traditional search engine is
based on authority, in a social search engine like Aardvark,
trust is based on intimacy. We describe how these considera-
tions inform the architecture, algorithms, and user interface
of Aardvark, and how they are reflected in the behavior of
Aardvark users.

1. INTRODUCTION

1.1 The Library and the Village
Traditionally, the basic paradigm in information retrieval

has been the library. Indeed, the field of IR has roots in
the library sciences, and Google itself came out of the Stan-
ford Digital Library project [18]. While this paradigm has
clearly worked well in several contexts, it ignores another
age-old model for knowledge acquisition, which we shall call
“the village paradigm”. In a village, knowledge dissemi-
nation is achieved socially — information is passed from
person to person, and the retrieval task consists of finding
the right person, rather than the right document, to answer
your question.

The differences how people find information in a library
versus a village suggest some useful principles for designing
a social search engine. In a library, people use keywords to
search, the knowledge base is created by a small number of
content publishers before the questions are asked, and trust
is based on authority. In a village, by contrast, people use
natural language to ask questions, answers are generated in
real-time by anyone in the community, and trust is based
on intimacy. These properties have cascading effects — for
example, real-time responses from socially proximal respon-
ders tend to elicit (and work well for) highly contextualized
and subjective queries. For example, the query “Do you
have any good babysitter recommendations in Palo Alto for
my 6-year-old twins? I’m looking for somebody that won’t
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let them watch TV.” is better answered by a friend than the
library. These differences in information retrieval paradigm
require that a social search engine have very different archi-
tecture, algorithms, and user interfaces than a search engine
based on the library paradigm.

The fact that the library and the village paradigms of
knowledge acquisition complement one another nicely in the
offline world suggests a broad opportunity on the web for
social information retrieval.

1.2 Aardvark
In this paper, we present Aardvark, a social search engine

based on the village paradigm. We describe in detail the ar-
chitecture, ranking algorithms, and user interfaces in Aard-
vark, and the design considerations that motivated them.
We believe this to be useful to the research community
for two reasons. First, the argument made in the original
Anatomy paper [4] still holds true — since most search en-
gine development is done in industry rather than academia,
the research literature describing end-to-end search engine
architecture is sparse. Second, the shift in paradigm opens
up a number of interesting research questions in informa-
tion retrieval, for example around expertise classification,
implicit network construction, and conversation design.

Following the architecture description, we present a statis-
tical analysis of usage patterns in Aardvark. We find that, as
compared to traditional search, Aardvark queries tend to be
long, highly contextualized and subjective — in short, they
tend to be the types of queries that are not well-serviced by
traditional search engines. We also find that the vast ma-
jority of questions get answered promptly and satisfactorily,
and that users are surprisingly active, both in asking and
answering.

Finally, we present example results from the current Aard-
vark system, and a comparative evaluation experiment. What
we find is that Aardvark performs very well on queries that
deal with opinion, advice, experience, or recommendations,
while traditional corpus-based search engines remain a good
choice for queries that are factual or navigational.

2. OVERVIEW

2.1 Main Components
The main components of Aardvark are:

1. Crawler and Indexer. To find and label resources that
contain information — in this case, users, not docu-
ments (Sections 3.2 and 3.3).



2. Query Analyzer. To understand the user’s information
need (Section 3.4).

3. Ranking Function. To select the best resources to pro-
vide the information (Section 3.5).

4. UI. To present the information to the user in an ac-
cessible and interactive form (Section 3.6).

Most corpus-based search engines have similar key com-
ponents with similar aims [4], but the means of achieving
those aims are quite different.

Before discussing the anatomy of Aardvark in depth, it is
useful to describe what happens behind the scenes when a
new user joins Aardvark and when a user asks a question.

2.2 The Initiation of a User
When a new user first joins Aardvark, the Aardvark sys-

tem performs a number of indexing steps in order to be able
to direct the appropriate questions to her for answering.

Because questions in Aardvark are routed to the user’s ex-
tended network, the first step involves indexing friendship
and affiliation information. The data structure responsible
for this is the Social Graph. Aardvark’s aim is not to build
a social network, but rather to allow people to make use of
their existing social networks. As such, in the sign-up pro-
cess, a new user has the option of connecting to a social net-
work such as Facebook or LinkedIn, importing their contact
lists from a webmail program, or manually inviting friends
to join. Additionally, anybody whom the user invites to
join Aardvark is appended to their Social Graph – and such
invitations are a major source of new users. Finally, Aard-
vark users are connected through common “groups” which
reflect real-world affiliations they have, such as the schools
they have attended and the companies they have worked
at; these groups can be imported automatically from social
networks, or manually created by users. Aardvark indexes
this information and stores it in the Social Graph, which is
a fixed width ISAM index sorted by userId.

Simultaneously, Aardvark indexes the topics about which
the new user has some level of knowledge or experience.
This topical expertise can be garnered from several sources:
a user can indicate topics in which he believes himself to
have expertise; a user’s friends can indicate which topics
they trust the user’s opinions about; a user can specify an
existing structured profile page from which the Topic Parser
parses additional topics; a user can specify an account on
which they regularly post status updates (e.g., Twitter or
Facebook), from which the Topic Extractor extracts top-
ics (from unstructured text) in an ongoing basis (see Sec-
tion 3.3 for more discussion); and finally, Aardvark observes
the user’s behavior on Aardvark, in answering (or electing
not to answer) questions about particular topics.

The set of topics associated with a user is recorded in
the Forward Index, which stores each userId, a scored list of
topics, and a series of further scores about a user’s behavior
(e.g., responsiveness or answer quality). From the Forward
Index, Aardvark constructs an Inverted Index. The Inverted
Index stores each topicId and a scored list of userIds that
have expertise in that topic. In addition to topics, the In-
verted Index stores scored lists of userIds for features like
answer quality and response time.

Once the Inverted Index and Social Graph for a user are
created, the user is now active on the system and ready to
ask her first question.
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Figure 1: Schematic of the architecture of Aardvark

2.3 The Life of a Query
A user begins by asking a question, most commonly through

instant message or text message The question gets sent from
the input device to the Transport Layer, where it is normal-
ized to a Message data structure, and sent to the Conversa-
tion Manager. Once the Conversation Manager determines
that the message is a question, it sends the question to the
Question Analyzer to determine the appropriate topics for
the question. The Conversation Manager informs the asker
which primary topic was determined for the question, and
gives the asker the opportunity to edit it. It simultaneously
issues a Routing Suggestion Request to the Routing Engine.
The routing engine plays a role analogous to the ranking
function in a corpus-based search engine. It accesses the
Inverted Index and Social Graph for a list of candidate an-
swerers, and ranks them to reflect how well it believes they
can answer the question, and how good of a match they
are for the asker. The Routing Engine returns a ranked list
of Routing Suggestions to the Conversation Manager, which
then contacts the potential answerers — one by one, or a
few at a time, depending upon a Routing Policy — and asks
them if they would like to answer the question, until a sat-
isfactory answer is found. The Conversation Manager then
forwards this answer along to the asker, and allows the asker
and answerer to exchange followup messages.

3. ANATOMY

3.1 The Model
The core of Aardvark is a statistical model for routing

questions to potential answerers. We use a network variant
of what has been called an aspect model [12], that has two
primary features. First, it associates an unobserved class
variable t ∈ T with each observation (i.e., the successful
answer of question q by user ui). In other words, the proba-
bility p(ui|q) that user i will successfully answer question q
depends on whether q is about the topics t in which ui has
expertise1:

p(ui|q) =
X
t∈T

p(ui|t)p(t|q) (1)

1Equation 1 is a simplification of what Aardvark actually
uses to match queries to answerers, but we present it this
way for clarity and conciseness.



The second main feature of the model is that it defines
a query-independent probability of success for each poten-
tial asker/answerer pair (ui, uj), based upon their degree of
social connectedness and profile similarity. In other words,
we define a probability p(ui|uj) that user ui will deliver a
satisfying answer to user uj , regardless of the question.

We then define the scoring function s(ui, uj , q) as the com-
position of the two probabilities.

s(ui, uj , q) = p(ui|uj) · p(ui|q) = p(ui|uj)
X
t∈T

p(ui|t)p(t|q)

(2)
Our goal in the ranking problem is: given a question q

from user uj , return a ranked list of users ui ∈ U that
maximizes s(ui, uj , q).

Note that the scoring function is composed of a query-
dependent relevance score p(ui|q) and a query-independent
quality score p(ui|uj). This bears similarity to the ranking
functions of traditional corpus-based search engines such as
Google [4]. The difference is that unlike quality scores like
PageRank [18], Aardvark’s quality score aims to measure
intimacy rather than authority. And unlike the relevance
scores in corpus-based search engines, Aardvark’s relevance
score aims to measure a user’s potential to answer a query,
rather than a document’s existing capability to answer a
query.

Computationally, this scoring function has a number of
advantages. It allows real-time routing because it pushes
much of the computation offline. The only component prob-
ability that needs to be computed at query time is p(t|q).
Computing p(t|q) is equivalent to assigning topics to a ques-
tion — in Aardvark we do this by running a probabilistic
classifier on the question at query time (see Section 3.4).
The distribution p(ui|t) assigns users to topics, and the dis-
tribution p(ui|uj) defines the Aardvark Social Graph. Both
of these are computed by the Indexer at signup time, and
then updated continuously in the background as users an-
swer questions and get feedback (see Section 3.3). The com-
ponent multiplications and sorting are also done at query
time, but these are easily parallelizable, as the index is
sharded by user.

3.2 Social Crawling
A comprehensive knowledge base is important for search

engines as query distributions tend to have a long tail [13].
In corpus-based search engines, this is achieved by large-
scale crawlers and thoughtful crawl policies. In Aardvark,
the knowledge base consists of people rather than docu-
ments, so the methods for acquiring and expanding a com-
prehensive knowledge base are quite different.

With Aardvark, the more active users there are, the more
potential answerers there are, and therefore the more com-
prehensive the coverage. More importantly, because Aard-
vark looks for answerers primarily within a user’s extended
social network, the denser the network, the larger the effec-
tive knowledge base.

This suggests that the strategy for increasing the knowl-
edge base of Aardvark crucially involves creating a good
experience for users so that they remain active and are in-
clined to invite their friends. An extended discussion of this
is outside of the scope of this paper; we mention it here only
to emphasize the difference in the nature of “crawling” in
social search versus traditional search.

Given a set of active users on Aardvark, the effective

breadth of the Aardvark knowledge base depends upon de-
signing interfaces and algorithms that can collect and learn
an extended topic list for each user over time, as discussed
in the next section.

3.3 Indexing People
The central technical challenge in Aardvark is selecting

the right user to answer a given question from another user.
In order to do this, the two main things Aardvark needs
to learn about each user ui are: (1) the topics t he might
be able to answer questions about psmoothed(t|ui); (2) the
users uj to whom he is connected p(ui|uj).

Topics. Aardvark computes the distribution p(t|ui) of
topics known by user ui from the following sources of infor-
mation:

• Users are prompted to provide at least three topics
which they believe they have expertise about.

• Friends of a user (and the person who invited a user)
are encouraged to provide a few topics that they trust
the user’s opinion about.

• Aardvark parses out topics from users’ existing online
profiles (e.g., Facebook profile pages, if provided). For
such pages with a known structure, a simple Topic
Parsing algorithm uses regular expressions which were
manually devised for specific fields in the pages, based
upon their performance on test data.

• Aardvark automatically extracts topics from unstruc-
tured text on users’ existing online homepages or blogs
if provided. For unstructured text, a linear SVM iden-
tifies the general subject area of the text, while an
ad-hoc named entity extractor is run to extract more
specific topics, scaled by a variant tf-idf score.

• Aardvark automatically extracts topics from users’ sta-
tus message updates (e.g., Twitter messages, Facebook
news feed items, IM status messages, etc.) and from
the messages they send to other users on Aardvark.

The motivation for using these latter sources of profile
topic information is a simple one: if you want to be able
to predict what kind of content a user will generate (i.e.,
p(t|ui)), first examine the content they have generated in
the past. In this spirit, Aardvark uses web content not as a
source of existing answers about a topic, but rather, as an
indicator of the topics about which a user is likely able to
give new answers on demand.

In essence, this involves modeling a user as a content-
generator, with probabilities indicating the likelihood she
will likely respond to questions about given topics. Each
topic in a user profile has an associated score, depending
upon the confidence appropriate to the source of the topic.
In addition, Aardvark learns over time which topics not to
send a user questions about by keeping track of cases when
the user: (1) explicitly “mutes” a topic; (2) declines to an-
swer questions about a topic when given the opportunity;
(3) receives negative feedback on his answer about the topic
from another user.

Periodically, Aardvark will run a topic strengthening algo-
rithm, the essential idea of which is: if a user has expertise
in a topic and most of his friends also have some exper-
tise in that topic, we have more confidence in that user’s



level of expertise than if he were alone in his group with
knowledge in that area. Mathematically, for some user ui,
his group of friends U , and some topic t, if p(t|ui) 6= 0,
then s(t|ui) = p(t|ui) + γ

P
u∈U p(t|u), where γ is a small

constant. The s values are then renormalized to form prob-
abilities.

Aardvark then runs two smoothing algorithms the pur-
pose of which are to record the possibility that the user may
be able to answer questions about additional topics not ex-
plicitly recorded in her profile. The first uses basic collabo-
rative filtering techniques on topics (i.e., based on users with
similar topics), the second uses semantic similarity2.

Once all of these bootstrap, extraction, and smoothing
methods are applied, we have a list of topics and scores
for a given user. Normalizing these topic scores so thatP

t∈T p(t|ui) = 1, we have a probability distribution for
topics known by user ui. Using Bayes’ Law, we compute for
each topic and user:

p(ui|t) =
p(t|ui)p(ui)

p(t)
, (3)

using a uniform distribution for p(ui) and observed topic
frequencies for p(t). Aardvark collects these probabilities
p(ui|t) indexed by topic into the Inverted Index, which al-
lows for easy lookup when a question comes in.

Connections. Aardvark computes the connectedness be-
tween users p(ui|uj) in a number of ways. While social
proximity is very important here, we also take into account
similarities in demographics and behavior. The factors con-
sidered here include:

• Social connection (common friends and affiliations)

• Demographic similarity

• Profile similarity (e.g., common favorite movies)

• Vocabulary match (e.g., IM shortcuts)

• Chattiness match (frequency of follow-up messages)

• Verbosity match (the average length of messages)

• Politeness match (e.g., use of “Thanks!”)

• Speed match (responsiveness to other users)

Connection strengths between people are computed using a
weighted cosine similarity over this feature set, normalized
so that

P
ui∈U p(ui|uj) = 1, and stored in the Social Graph

for quick access at query time.
Both the distributions p(ui|uj) in the Social Graph and

p(t|ui) in the Inverted Index are continuously updated as
users interact with one another on Aardvark.

3.4 Analyzing Questions
The purpose of the Question Analyzer is to determine a

scored list of topics p(t|q) for each question q representing
the semantic subject matter of the question. This is the only
probability distribution in equation 2 that is computed at
query time.

2In both the Person Indexing and the Question Analysis
components, “semantic similarity” is computed by using
an approximation of distributional similarity computed over
Wikipedia and other corpora; this serves as a proxy measure
of the topics’ semantic relatedness.

It is important to note that in a social search system, the
requirement for a Question Analyzer is only to be able to
understand the query sufficiently for routing it to a likely
answerer. This is a considerably simpler task than the chal-
lenge facing an ideal web search engine, which must attempt
to determine exactly what piece of information the user is
seeking (i.e., given that the searcher must translate her infor-
mation need into search keywords), and to evaluate whether
a given web page contains that piece of information. By
contrast, in a social search system, it is the human answerer
who has the responsibility for determining the relevance of
an answer to a quesion — and that is a function which hu-
man intelligence is extremely well-suited to perform! The
asker can express his information need in natural language,
and the human answerer can simply use her natural un-
derstanding of the language of the question, of its tone of
voice, sense of urgency, sophistication or formality, and so
forth, to determine what information is suitable to include
in a response. Thus, the role of the Question Analyzer in
a social search system is simply to learn enough about the
question that it may be sent to appropriately interested and
knowledgeable human answerers.

As a first step, the following classifiers are run on each
question: A NonQuestionClassifier determines if the input
is not actually a question (e.g., is it a misdirected message, a
sequence of keywords, etc.); if so, the user is asked to submit
a new question. An InappropriateQuestionClassifier deter-
mines if the input is obscene, commercial spam, or otherwise
inappropriate content for a public question-answering com-
munity; if so, the user is warned and asked to submit a new
question. A TrivialQuestionClassifier determines if the in-
put is a simple factual question which can be easily answered
by existing common services (e.g., “What time is it now?”,
“What is the weather?”, etc.); if so, the user is offered an
automatically generated answer resulting from traditional
web search. A LocationSensitiveClassifier determines if the
input is a question which requires knowledge of a particular
location, usually in addition to specific topical knowledge
(e.g., “What’s a great sushi restaurant in Austin, TX?”); if
so, the relevant location is determined and passed along to
the Routing Engine with the question.

Next, the list of topics relevant to a question is produced
by merging the output of several distinct TopicMapper algo-
rithms, each of which suggests its own scored list of topics:

• A KeywordMatchTopicMapper passes any terms in the
question which are string matches with user profile
topics through a classifier which is trained to deter-
mine whether a given match is likely to be semantically
significant or misleading.3

• A TaxonomyTopicMapper classifies the question text
into a taxonomy of roughly 3000 popular question top-
ics, using an SVM trained on an annotated corpus of
several millions questions.

• A SalientTermTopicMapper extracts salient phrases from
the question — using a noun-phrase chunker and a tf-

3For example, if the string “camel wrestling” occurs in a
question, it is likely to be semantically relevant to a user
who has “camel wrestling” as a profile topic; whereas the
string “running” is too ambiguous to use in this manner
without further validation, since it might errantly route a
question about “running a business” to a user who knows
about fitness.



idf–based measure of importance — and finds seman-
tically similar user topics.

• A UserTagTopicMapper takes any user “tags” provided
by the asker (or by any would-be answerers), and maps
these to semantically-similar user topics.4

At present, the output distributions of these classifiers
are combined by weighted linear combination. It would be
interesting future work to explore other means of combin-
ing heterogeneous classifiers, such as the maximum entropy
model in [16].

The Aardvark TopicMapper algorithms are continuously
evaluated by manual scoring on random samples of 1000
questions. The topics used for selecting candidate answerers,
as well as a much larger list of possibly relevant topics, are
assigned scores by two human judges, with a third judge
adjudicating disagreements. For the current algorithms on
the current sample of questions, this process yields overall
scores of 89% precision and 84% recall of relevant topics.
In other words, 9 out of 10 times, Aardvark will be able
to route a question to someone with relevant topics in her
profile; and Aardvark will identify 5 out of every 6 possibly
relevant answerers for each question based upon their topics.

3.5 The Aardvark Ranking Algorithm
Ranking in Aardvark is done by the Routing Engine, which

determines an ordered list of users (or “candidate answer-
ers”) who should be contacted to answer a question, given
the asker of the question and the information about the ques-
tion derived by the Question Analyzer. The core ranking
function is described by equation 2; essentially, the Routing
Engine can be seen as computing equation 2 for all candidate
answerers, sorting, and doing some postprocessing.

The main factors that determine this ranking of users are
Topic Expertise p(ui|q), Connectedness p(ui|uj), and Avail-
ability:

Topic Expertise: First, the Routing Engine finds the
subset of users who are semantic matches to the question:
those users whose profile topics indicate expertise relevant to
the topics which the question is about. Users whose profile
topics are closer matches to the question’s topics are given
higher rank. For questions which are location-sensitive (as
defined above), only users with matching locations in their
profiles are considered.

Connectedness: Second, the Routing Engine scores each
user according to the degree to which she herself — as a
person, independently of her topical expertise — is a good
“match” for the asker for this information query. The goal
of this scoring is to optimize the degree to which the asker
and the answerer feel kinship and trust, arising from their
sense of connection and similarity, and meet each other’s
expectations for conversational behavior in the interaction.

Availability: Third, the Routing Engine prioritizes can-
didate answerers in such a way so as to optimize the chances
that the present question will be answered, while also pre-
serving the available set of answerers (i.e., the quantity of
“answering resource” in the system) as much as possible by

4A general principle in the design of Aardvark is to use hu-
man intelligence wherever possible to improve the quality of
the system. For the present task of Question Analysis, this
involves giving both askers and answerers prompts and sim-
ple commands for telling Aardvark directly what the subject
matter of a question is.

spreading out the answering load across the user base. This
involves factors such as prioritizing users who are currently
online (e.g., via IM presence data, iPhone usage, etc.), who
are historically active at the present time-of-day, and who
have not been contacted recently with a request to answer
a question.

Given this ordered list of candidate answerers, the Rout-
ing Engine then filters out users who should not be con-
tacted, according to Aardvark’s guidelines for preserving a
high-quality user experience. These filters operate largely
as a set of rules: do not contact users who prefer to not be
contacted at the present time of day; do not contact users
who have recently been contacted as many times as their
contact frequency settings permit; etc.

Since this is all done at query time, and the set of candi-
date answerers can potentially be very large, it is useful to
note that this process is parallelizable. Each shard in the
Index computes its own ranking for the users in that shard,
and sends the top users to the Routing Engine. This is scal-
able as the user base grows, since as more users are added,
more shards can be added.

The list of candidate answerers who survive this filtering
process are returned to the Conversation Manager. The
Conversation Manager then proceeds with opening channels
to each of them, serially, inquiring whether they would like
to answer the present question; and iterating until an answer
is provided and returned to the asker.

3.6 User Interface
Since social search is modeled after the real-world process

of asking questions to friends, the various user interfaces for
Aardvark are built on top of the existing communication
channels that people use to ask questions to their friends:
IM, email, SMS, iPhone, Twitter, and Web-based messag-
ing. Experiments were also done using actual voice input
from phones, but this is not live in the current Aardvark
production system.

In its simplest form, the user interface for asking a ques-
tion on Aardvark is any kind of text input mechanism, along
with a mechanism for displaying textual messages returned
from Aardvark. (This kind of very lightweight interface is
important for making the search service available anywhere,
especially now that mobile device usage is ubiquitous across
most of the globe.)

However, Aardvark is most powerful when used through

Figure 2: Screenshot of Aardvark over IM



aardvark:  You there? I have a question about **tennis** that I think 
you might be able to answer.  (Type 'sure', 'pass'‚ or 'busy'.)

me:  sure

aardvark:  (From Michael B./29/M/NewYork,US)
Does anyone know which health clubs in Manhattan have tennis 
courts?  Or are all the good options in the other boroughs?
    (Type 'pass' to skip, or 'more' for extra options.)

me:  why

aardvark:  I thought of you for Michael's question because
    - Michael is a friend of your friend Sally Johnson.
    - You know a lot about **racquet sports** and **fitness**
    - You and he have similar interests in **sports**
    (Type 'more' or change settings at http://vark.com/a/XXXXX)

me:  Well there is always the Midtown Tennis Club on 8th ave @27th 
if you really want to stay in manhattan -- but the quality isn't great.  
You'd do just as well to use the public courts in Central Park.  Or 
another good option is to join NYHRC or NYSC in manhattan, and 
use their courts in other boroughs...

aardvark:  Great -- I've sent that to Michael. Thanks for the fast 
answer! (Type 'Michael:' followed by a message to add something, or 
'more' for options.)

Figure 3: Example of Aardvark interacting with an
answerer

a chat-like interface that enables ongoing conversational in-
teraction. A private 1-to-1 conversation creates an intimacy
which encourages both honesty and freedom within the con-
straints of real-world social norms. (By contrast, answering
forums where there is a public audience can both inhibit po-
tential answerers [17] or motivate public performance rather
than authentic answering behavior [22].) Further, in a real-
time conversation, it is possible for an answerer to request
clarifying information from the asker about her question, or
for the asker to follow-up with further reactions or inquiries
to the answerer.

There are two main interaction flows available in Aard-
vark for answering a question. The primary flow involves
Aardvark sending a user a message (over IM, email, etc.),
asking if she would like to answer a question: for example,
“You there? A friend from the Stanford group has a ques-
tion about *search engine optimization* that I think you
might be able to answer.”. If the user responds affirma-
tively, Aardvark relays the question as well as the name of
the questioner. The user may then simply type an answer
the question, type in a friend’s name or email address to
refer it to someone else who might answer, or simply “pass”
on this request.5

A key benefit of this interaction model is that the avail-
able set of potential answerers is not just whatever users
happen to be visiting a bulletin board at the time a question
is posted, but rather, the entire set of users that Aardvark
has contact information for. Because this kind of “reach-
ing out” to users has the potential to become an unwelcome
interruption if it happens too frequently, Aardvark sends
such requests for answers usually less than once a day to

5There is no shame in “passing” on a question, since nobody
else knows that the question was sent to you. Similarly,
there is no social cost to the user in asking a question, since
you are not directly imposing on a friend or requesting a
favor; rather, Aardvark plays the role of the intermediary
who bears this social cost.

Figure 4: Screenshot of Aardvark Answering Tab on
iPhone

a given user (and users can easily change their contact set-
tings, specifying prefered frequency and time-of-day for such
requests). Further, users can ask Aardvark “why” they were
selected for a particular question, and be given the option to
easily change their profile if they do not want such questions
in the future. This is very much like the real-world model
of social information sharing: the person asking a question,
or the intermediary in Aardvark’s role, is careful not to im-
pose too much upon a possible answerer. The ability to
reach out to an extended network beyond a user’s imme-
diate friendships, without imposing too frequently on that
network, provides a key differentiating experience from sim-
ply posting questions to one’s Twitter or Facebook status
message.

A secondary flow of answering questions is more similar to
traditional bulletin-board style interactions: a user sends a
message to Aardvark (e.g., “try”) or visits the “Answering”
tab of Aardvark website or iPhone application (Figure 4),
and Aardvark shows the user a recent question from her
network which has not yet been answered and is related to
her profile topics. This mode involves the user initiating
the exchange when she is in the mood to try to answer a
question; as such, it has the benefit of an eager potential
answerer – but as the only mode of answering it does not
effectively tap into the full diversity of the user base (since
most users do not initiate these episodes). This is an im-
portant point: while almost everyone is happy to answer
questions (see Section 5) to help their friends or people they
are connected to, not everyone goes out of their way to do so.
This willingness to be helpful persists because when users
do answer questions, they report that it is a very gratifying
experience: they have been selected by Aardvark because
of their expertise, they were able to help someone who had
a need in the moment, and they are frequently thanked for
their help by the asker.

In order to play the role of intermediary in an ongoing
conversation, Aardvark must have some basic conversational
intelligence in order to understand where to direct messages



"I want to give my friend something that 
lasts as a graduation present, but someone 
already gave her jewelry. What else could I 
give her?"

"What fun bars downtown have outdoor 
seating?"

"I have a job interview over lunch tomorrow. 
Is there any interview restaurant etiquette 
that I should know?"

"I'm making cookies but ran out of baking 
powder. Is there anything I can substitute?"

"I'm putting together a focus group to talk 
about my brand new website. Any tips on 
making it as effective as possible?"

"Is there any way to recover an unsaved 
Excel file that was closed manually on a 
Mac?"

"My friend's in town and wants to see live 
music. We both love bands like the 
Counting Crows. Any recommendations for 
shows (of any size) to check out?"

"I'm going to Berlin for two weeks and 
would like to take some day trips to places 
that aren't too touristy. Where should I go?"

"I'm just getting into photography. Any 
suggestions for a digital camera that would 
be easy enough for me to use as a 
beginner, but I'll want to keep using for a 
while?"

"I've started running at least 4 days each 
week, but I'm starting to get some knee and 
ankle pain. Any ideas about how to address 
this short of running less?"

"I need a good prank to play on my 
supervisor. She has a good sense of 
humor, but is overly professional. Any 
ideas?"

"My girlfriend's ex bought her lots of 
expensive presents on anniversaries. I'm 
pretty broke, but want to show her that I 
care. Any ideas for things I could do that 
are not too cliche?"

"I always drive by men selling strawberries 
on Stanford Ave. How much do they charge 
per flat?"

"I need to analyze a Spanish poem for 
class. What are some interesting Spanish 
poems that aren't too difficult to translate?"

"Should I wear brown or black shoes with a 
light brown suit?"

"I just moved and have the perfect spot for 
a plant in my living room. It gets a lot of 
light from the north and south, but I know I 
won't be too reliable with watering. Any 
suggestions for plants that won't die?"

Figure 5: A random set of queries from Aardvark

from a user: is a given message a new question, a continu-
ation of a previous question, an answer to an earlier ques-
tion, or a command to Aardvark? The details of how the
Conversation Manager manages these complications and dis-
ambiguates user messages are not essential so they are not
elaborated here; but the basic approach is to use a state
machine to model the discourse context.

In all of the interfaces, wrappers around the messages from
another user include information about the user that can
facilitate trust: the user’s Real Name nametag, with their
name, age, gender, and location; the social connection be-
tween you and the user (e.g., “Your friend on Facebook”,
“A friend of your friend Marshall Smith”, “You are both in
the Stanford group”, etc.); a selection of topics the user has
expertise in; and summary statistics of the user’s activity
on Aardvark (e.g., number of questions recently asked or
answered).

Finally, it is important throughout all of the above in-
teractions that Aardvark maintains a tone of voice which
is friendly, polite, and appreciative. A social search engine
depends upon the goodwill and interest of its users, so it is
important to demonstrate the kind of (linguistic) behavior
that can encourage these sentiments, in order to set a good
example for users to adopt. Indeed, in user interviews, users
often express their desire to have examples of how to speak
or behave socially when using Aardvark; since it is a novel
paradigm, users do not immediately realize that they can
behave in the same ways they would in a comparable real-
world situation of asking for help and offering assistance.
All of the language that Aardvark uses is intended both to
be a communication mechanism between Aardvark and the
user and an example of how to interact with Aardvark.

Overall, a large body of research [8, 2, 7, 21] shows that
when you provide a 1-1 communication channel, use real
identities rather than pseudonyms, facilitate interactions be-
tween existing real-world relationships, and consistently pro-
vide examples of how to behave, users in an online commu-

EXAMPLE 1

(Reply from Nick to Mark)
you're very welcome. hope the days they're 
open for lunch work...

(+4 minutes -- Answer from Nick T./28/M/
SanFrancisco,CA -- a friend of your friend 
Fritz Schwartz)
fringale (fringalesf.com) in soma is a good 
bet; small, fancy, french (the french actually 
hang out there too). Lunch: Tuesday - 
Friday: 11:30am - 2:30pm

(Question from Mark C./M/LosAltos,CA)
I am looking for a restaurant in San 
Francisco that is open for lunch. Must be 
very high-end and fancy (this is for a small, 
formal, post-wedding gathering of about 8 
people).

(Reply from Mark to Nick)
Thanks Nick, you are the best PM ever!

EXAMPLE 2

(+1 hour -- Answer from Fred M./29/M/
Marina,SF)
Quince is a little fancy... La Mar is pretty 
fantastic for cevice - like the Slanted Door of 
peruvian food...

(+7 minutes -- Answer from Paul D./M/
SanFrancisco,CA -- A friend of your friend 
Sebastian V.)
For business dinner I enjoyed Kokkari 
Estiatorio at 200 Jackson. If you prefer a 
place in SOMA i recommend Ozumo (a great 
sushi restaurant).

(Question from James R./M/
TwinPeaksWest,SF)
What is the best new restaurant in San 
Francisco for a Monday business dinner? 
Fish & Farm? Gitane? Quince (a little older)?

(Reply from James to Paul) 
thx I like them both a lot but I am ready to try 
something new

EXAMPLE 3

(+10 minutes -- Answer from Bob F./M/Mission,SF -- you are connected through Mathias' friend 
Samantha S.) Cool question. Spork is usually my top choice for a first date, because in addition 
to having great food and good really friendly service, it has an atmosphere that's perfectly in 
between casual and romantic. It's a quirky place, interesting funny menu, but not exactly non-
traditional in the sense that you're not eating while suspended from the ceiling or anything

(Reply from Brian to Anthony) Tommy as in the Who's rock opera? COOL!

(+6 minutes -- Answer from Anthony D./M/Sunnyvale,CA -- you are both in the Google group) 
Take her to the ROTL production of Tommy, in the Mission. Best show i've seen all year!

(+4 minutes -- Answer from Dan G./M/SanFrancisco,CA)
Start with drinks at NocNoc (cheap, beer/wine only) and then dinner at RNM (expensive, 
across the street).

(Question from Brian T./22/M/Castro,SF) What is a good place to take a spunky, off-the-cuff, 
social, and pretty girl for a nontraditional, fun, memorable dinner date in San Francisco?

(Reply from Brian to Dan)  Thanks!

Figure 6: Three complete Aardvark interactions

nity will behave in a manner that is far more authentic and
helpful than pseudonymous multicasting environments with
no moderators. The design of the Aardvark’s UI has been
carefully crafted around these principles.

4. EXAMPLES
In this section we take a qualitative look at user behavior

on Aardvark. Figure 5 shows a random sample of questions
asked on Aardvark in this period. Figure 6 takes a closer
look at three questions sent to Aardvark during this period,
all three of which were categorized by the Question Analyzer
under the primary topic “restaurants in San Francisco”.6

In Example 1, Aardvark opened 3 channels with candidate
answerers, which yielded 1 answer. An interesting (and not
uncommon) aspect of this example is that the asker and the
answerer in fact were already acquaintances, though only
listed as “friends-of-friends” in their online social graphs;
and they had a quick back-and-forth chat through Aardvark.

In Example 2, Aardvark opened 4 channels with candi-
date answerers, which yielded two answers. For this ques-
tion, the “referral” feature was useful: one of the candidate
answerers was unable to answer, but referred the question
along to a friend to answer; this enables Aardvark to tap
into the knowledge of not just its current user base, but also
the knowledge of everyone that the current users know. The
asker wanted more choices after the first answer, and resub-
mitted the question to get another recommendation, which
came from a user whose profile topics related to business
and finance (in addition to dining).

In Example 3, Aardvark opened 10 channels with candi-
date answerers, yielding 3 answers. The first answer came
from someone with only a distant social connection to the

6Names and affiliations have been changed to protect pri-
vacy.
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asker; the second answer came from a coworker; and the
third answer came from a friend-of-friend-of-friend. The
third answer, which is the most detailed, came from a user
who has topics in his profile related to both “restaurants”
and “dating”.

One of the most interesting features of Aardvark is that
it allows askers to get answers that are hypercustomized to
their information need. Very different restaurant recommen-
dations are appropriate for a date with a spunky and spon-
taneous young woman, a post-wedding small formal family
gathering, and a Monday evening business meeting — and
human answerers are able to recognize these constraints. It
is also interesting to note that in most of these examples (as
in the majority of Aardvark questions), the asker took the
time to thank the answerer for helping out.

5. ANALYSIS
The following statistics give a picture of the current usage

and performance of Aardvark.
Aardvark was first made available semi-publicly in a beta

release in March of 2009. From March 1, 2009 to October
20, 2009, the number of users grew to 90,361, having asked
a total of 225,047 questions and given 386,702 answers. All
of the statistics below are taken from the last month of this
period (9/20/2009-10/20/2009).

Aardvark is actively used As of October, 2009, 90,361
users have created accounts on Aardvark, growing or-
ganically from 2,272 users since March 2009. In this
period, 50,526 users (55.9% of the user base) generated
content on Aardvark (i.e., asked or answered a ques-
tion), while 66,658 users (73.8% of the user base) pas-
sively engaged (i.e., either referred or tagged other peo-
ples questions). The average query volume was 3,167.2
questions per day in this period, and the median active
user issued 3.1 queries per month. Figure 7 shows the
number of users per month from early testing through
October 2009.

Mobile users are particularly active Mobile users had
an average of 3.6322 sessions per month, which is sur-
prising on two levels. First, mobile users of Aardvark
are more active than desktop users. (As a point of
comparison, on Google, desktop users are almost 3
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Figure 8: Categories of questions sent to Aardvark
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Figure 9: Distribution of questions and answering
times.

times as active as mobile users [14].) Second, mo-
bile users of Aardvark are almost as active in absolute
terms as mobile users of Google (who have on average
5.68 mobile sessions per month [14]). This is quite sur-
prising for a service that has only been available for 6
months.

We believe this is for two reasons. First, browsing
through traditional web search results on a phone is
unwieldy. On a phone, it’s more useful to get a sin-
gle short answer that’s crafted exactly to your query.
Second, people are used to using natural language with
phones, and so Aardvark’s query model feels natural in
that context. These considerations (and early exper-
iments) also suggest that Aardvark mobile users will
be similarly active with voice-based search.

Questions are highly contextualized As compared to web
search, where the average query length is between 2.2
– 2.9 words [14, 19], with Aardvark, the average query
length is 18.6 words (median=13). While some of this
increased length is due to the increased usage of func-
tion words, 45.3% of these words are content words
that give context to the query. In other words, as
compared to traditional web search, Aardvark ques-
tions have 3–4 times as much context.

The addition of context results in a greater diversity of
queries. While in Web search, between 57 and 63% of
queries are unique [19, 20], in Aardvark 98.1% of ques-
tions are unique (and 98.2% of answers are unique).

Questions often have a subjective element A manual
tally of 1000 random questions between March and Oc-
tober of 2009 shows that 64.7% of queries have a sub-
jective element to them (for example, “Do you know of
any great delis in Baltimore, MD?” or “What are the
things/crafts/toys your children have made that made
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Figure 10: Distribution of questions and number of
answers received.

them really proud of themselves?”). In particular,
advice or recommendations queries regarding travel,
restaurants, and products are very popular. A large
number of queries are locally oriented. About 10%
of questions related to local services, and 13% dealt
with restaurants and bars. Figure 8 shows the top
categories of questions sent to Aardvark. The distri-
bution is not dissimilar to that found with traditional
web search engines [3], but with a much smaller pro-
portion of reference, factual, and navigational queries,
and a much greater proportion of experience-oriented,
recommendation, local, and advice queries.

Questions get answered quickly 87.7% of questions sub-
mitted to Aardvark received at least 1 answer, and
57.2% received their first answer in less than 10 min-
utes. On average, a question received 2.08 answers
(Figure 10), 7 and the median answering time was 6
minutes and 37 seconds (Figure 9). By contrast, on
public question and answer forums such as Yahoo! An-
swers [11] most questions are not answered within the
first 10 minutes, and for questions asked on Facebook,
only 15.7% of questions are answered within 15 min-
utes [17]. (Of course, corpus-based search engines such
as Google return results in milliseconds, but many of
the types of questions that are asked from Aardvark
require extensive browsing and query refinement when
asked on corpus-based search engines.)

Answers are high quality Aardvark answers are both com-
prehensive and concise. The median answer length
was 22.2 words; 22.9% of answers were over 50 words
(the length of a paragraph); and 9.1% of answers in-
cluded hypertext links in them. 70.4% of inline feed-
back which askers provided on the answers they re-
ceived rated the answers as ‘good’, 14.1% rated the
answers as ‘OK’, and 15.5% rated the answers as ‘bad’.

There are a broad range of answerers 78,343 users (86.7%
of users) have been contacted by Aardvark with a re-
quest to answer a question, and of those, 70% have

7A question may receive more than one answer when the
Routing Policy allows Aardvark to contact more than one
candidate answerer in parallel for a given question, or when
the asker resubmits their question to request a second opin-
ion.
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Figure 11: Distribution of percentage of users and
number of topics

asked to look at the question, and 38.0% have been
able to answer. Additionally, 15,301 users (16.9% of
all users) have contacted Aardvark of their own initia-
tive to try answering a question (see Section 3.6 for
an explanation of these two modes of answering ques-
tions). Altogether, 45,160 users (50.0% of the total
user base) have answered a question; this is 75% of all
users who interacted with Aardvark at all in the pe-
riod (66,658 users). As a comparison, only 27% of Ya-
hoo! Answers users have ever answered a question [11].
While a smaller portion of the Aardvark user base is
much more active in answering questions – approxi-
mately 20% of the user base is responsible for 85% of
the total number of answers delivered to date – the dis-
tribution of answers across the user base is far broader
than on a typical user-generated-content site [11].

Social Proximity Matters Of questions that were routed
to somebody in the asker’s social network (most com-
monly a friend of a friend), 76% of the inline feedback
rated the answer as ‘good’, whereas for those answers
that came from outside the asker’s social network, 68%
of them were rated as ‘good’.

People are indexable 97.7% of the user base has at least
3 topics in their profiles, and the median user has 9
topics in her profile. In sum, Aardvark users added
1,199,323 topics to their profiles; not counting over-
lapping topics, this yields a total of 174,605 distinct
topics which the current Aardvark user base has ex-
pertise in. The currently most popular topics in user
profiles in Aardvark are “music”, “movies”, “technol-
ogy”, and “cooking”, but in general most topics are
as specific as “logo design” and “San Francisco pickup
soccer”.

6. EVALUATION
To evaluate social search compared to web search, we ran

a side-by-side experiment with Google on a random sample
of Aardvark queries. We inserted a “Tip” into a random
sample of active questions on Aardvark that read: ”Do you
want to help Aardvark run an experiment?” with a link to
an instruction page that asked the user to reformulate their
question as a keyword query and search on Google. We
asked the users to time how long it took to find a satisfac-
tory answer on both Aardvark and Google, and to rate the
answers from both on a 1-5 scale. If it took longer than 10
minutes to find a satisfactory answer, we instructed the user
to give up. Of the 200 responders in the experiment set, we



found that 71.5% of the queries were answered successfully
on Aardvark, with a mean rating of 3.93 (σ = 1.23), while
70.5% of the queries were answered successfully on Google,
with a mean rating of 3.07 (σ = 1.46). The median time-to-
satisfactory-response for Aardvark was 5 minutes (of passive
waiting), while the median time-to-satisfactory-response for
Google was 2 minutes (of active searching).

Of course, since this evaluation involves reviewing ques-
tions which users actually sent to Aardvark, we should ex-
pect that Aardvark would perform well — after all, users
chose these particular questions to send to Aardvark be-
cause of their belief that it would be helpful in these cases.8

Thus we cannot conclude from this evaluation that social
search will be equally successful for all kinds of questions.
Further, we would assume that if the experiment were re-
versed, and we used as our test set a random sample from
Google’s query stream, the results of the experiment would
be quite different. Indeed, for questions such as “What is
the train schedule from Middletown, NJ?”, traditional web
search is a preferable option.

However, the questions asked of Aardvark do represent
a large and important class of information need: they are
typical of the kind of subjective questions for which it is
difficult for traditional web search engines to provide satis-
fying results. The questions include background details and
elements of context that specify exactly what the asker is
looking for, and it is not obvious how to translate these in-
formation needs into keyword searches. Further, there are
not always existing web pages that contain exactly the con-
tent that is being sought; and in any event, it is difficult
for the asker to assess whether any content that is returned
is trustworthy or right for them. In these cases, askers are
looking for personal opinions, recommendations, or advice,
from someone they feel a connection with and trust. The
desire to have a fellow human being understand what you
are looking for and respond in a personalized manner in real
time is one of the main reasons why social search is an ap-
pealing mechanism for information retrieval.

7. RELATED WORK
There is an extensive literature on query routing algo-

rithms, particularly in P2P Networks. In [5], queries are
routed via a relationship-based overlay network. In [15], an-
swerers of a multicast query are ranked via a decentralized
authority score. In [6], queries are routed through a supern-
ode that routes to answerers based on authority, responsive-
ness, and expertise, and in [10], supernodes maintain exper-
tise tables for routing. Banerjee and Basu [1] introduce a
routing model for decentralized search that has PageRank
as a special case. Aspect models have been used to match
queries to documents based on topic similarity in [12], and
queries to users in P2P and social networks based on ex-
pertise in [6]. Evans and Chi [9] describe a social model of
user activities before, during, and after search, and Morris
et al. [17] present an analysis of questions asked on social
networks that mirrors some of our findings on Aardvark.

8In many cases, users in the experiment noted that they sent
their question to Aardvark specifically because a previous
Google search was difficult to formulate or did not give a
satisfactory result. For example: “Which golf courses in the
San Francisco Bay Area have the best drainage / are the
most playable during the winter (especially with all of the
rain we’ve been getting)?”
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