
Collaborative Location and Activity Recommendations
with GPS History Data

Vincent W. Zheng†, Yu Zheng‡, Xing Xie‡, Qiang Yang†
† Hong Kong University of Science and Technology

‡ Microsoft Research Asia, 4F, Sigma Building, No.49 Zhichun Road, Haidian District, Beijing 100190, China
† {vincentz, qyang}@cse.ust.hk, ‡ {yuzheng, xingx}@microsoft.com

ABSTRACT
With the increasing popularity of location-based services, such as
tour guide and location-based social network, we now have
accumulated many location data on the Web. In this paper, we
show that, by using the location data based on GPS and users’
comments at various locations, we can discover interesting
locations and possible activities that can be performed there for
recommendations. Our research is highlighted in the following
location-related queries in our daily life: 1) if we want to do
something such as sightseeing or food-hunting in a large city such
as Beijing, where should we go? 2) If we have already visited
some places such as the Bird’s Nest building in Beijing’s Olympic
park, what else can we do there? By using our system, for the first
question, we can recommend her to visit a list of interesting
locations such as Tiananmen Square, Bird’s Nest, etc. For the
second question, if the user visits Bird’s Nest, we can recommend
her to not only do sightseeing but also to experience its outdoor
exercise facilities or try some nice food nearby. To achieve this
goal, we first model the users’ location and activity histories that
we take as input. We then mine knowledge, such as the location
features and activity-activity correlations from the geographical
databases and the Web, to gather additional inputs. Finally, we
apply a collective matrix factorization method to mine interesting
locations and activities, and use them to recommend to the users
where they can visit if they want to perform some specific
activities and what they can do if they visit some specific places.
We empirically evaluated our system using a large GPS dataset
collected by 162 users over a period of 2.5 years in the real-world.
We extensively evaluated our system and showed that our system
can outperform several state-of-the-art baselines.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – data
mining. H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval – clustering, information filtering. H.5.2
[Information Interface and Presentation]: User Interface.

General Terms
Algorithms, Design, Experimentation

Keywords
Location and Activity Recommendations, Collaborative Filtering

1. INTRODUCTION
As the mobile devices with positioning function, such as GPS-
phones, become more and more popular, people now are able to
know their locations easily. Based on these location data, various
location-based services are provided on the Web and shown to be

quite attractive to the users. For example, a bunch of outdoor
sports forums have emerged to provide various geo-related Web
services [1][2][20]. By using these services, the forum users can
upload and share their outdoor sports (such as bicycle riding)
trajectories with other users. In this way, they can conveniently
manage their own outdoor sports trajectories and also share them
with other outdoor sports fans. In addition, thanks to some Web-
based location data management services [7], the users can now
share on Web not only their raw GPS trajectories with coordinates
and time stamps, but also comments denoting what the user did,
what she saw and/or how she felt on some locations. Figure 1
gives an example of such a GPS data management system: a user
uploaded a GPS trajectory to Forbidden City area in Beijing, and
he also attached some comments (depicted as small pink boxes,
each unfolded as a text box) about how he felt about the places.
Such comments bring more semantics to the GPS trajectories, and
make it easier for GPS users to share their travel experiences.
Beyond directly sharing the GPS trajectories, we can also better
understand the location trajectories by mining knowledge from the
users’ location trajectories. In this way, we are capable to provide
more interesting location-based services, including transportation
routine prediction [3][4], location-based activity recognition [5]
and location-based social network [6,22].

Figure 1. GPS data management services

In this paper, we aim to mine more knowledge from the GPS
location data, so that we can answer two typical questions that we
often ask in our daily: 1) if we want to do something such as
sightseeing or food-hunting in a large city such as Beijing, where
should we go? 2) If we have already visited some places such as
the Bird’s Nest building in Beijing’s Olympic park, what else can
we do there? In general, the first question corresponds to location
recommendation given some activity query (where “activity” can
refer to various human behaviors such as food-hunting, shopping,
watching movies/shows, enjoying sports/exercises, tourism, etc.),
and the second question corresponds to activity recommendation

A GPS trajectory

A comment

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

given some location query. By answering these two typical
questions, we can satisfy many information needs for the users in
both their daily routines and trip planning. We show to put both
location recommendation and activity recommendation together in
our knowledge mining, since locations and activities are closely
related in nature. Specifically, to model the relationship between
the locations and the activities, we can construct a location-
activity matrix (details are given in Section 3.2), whose rows
denote the locations and columns denote the activities. Each entry
in this location-activity matrix is a rating showing how often an
activity is performed in a location. Therefore, as shown in Figure
2, we can see location recommendation given some activity query
as ranking over the rows given some column, and activity
recommendation as ranking over the columns given some row.

Figure 2. Illustration for location & activity recommendations
However, it is not easy to obtain such a complete location-activity
matrix for location and activity recommendations from the raw
GPS data due to the following reasons: 1) the ratings in such a
location-activity matrix are not easy to get from the raw GPS data
with merely location coordinates and timestamps. Recall that a
rating in the matrix denotes how often an activity is performed in
a location, so we may need to know what each user did on that
location to get a rating. But the raw GPS data may not convey
such information, and we have to find another way. We propose
to use the possibly available comments provided by the users,
which indicate what the user did on some locations, as shown in
Figure 1. But unfortunately, in practice the users usually do not
provide many comments. For example, in our dataset which is
collected from a Web-based GPS data management service for
over 2.5 years, we have 12,765 GPS trajectories, but only 530
comments and many of them were attached to some same popular
locations. It means, many locations do not have any comments
attached to them, so when we try to get the ratings from these
comments, we may have many missing entries in the matrix. 2)
Based on the previous reason, we can only get a very sparse
location-activity matrix (e.g. in our dataset, we have less than
0.6% entries with non-missing values), so it is difficult to do
recommendations with such limited information. We suggest
exploiting other additional information on the locations and
activities, and use it to alleviate the data sparsity. However, what
kind of information we should extract? How we can incorporate it
with the location-activity matrix to do recommendations? These
are non-trivial questions.

In this paper, based on the GPS history data, including location
information (i.e. coordinates and timestamps) and some available
user comments, we develop a system to provide both location and
activity recommendations. We achieve this goal by exploiting
various useful information sources, i.e. meaningful location
features and activity-activity correlations, and using them by
collaborative filtering with the sparse location-activity matrix to
do recommendations. Our collaborative location and activity
recommendation (CLAR) model is based on collective matrix
factorization to propagate information among the two additional
information sources and the sparse location-activity matrix, so

that we can collaboratively predict the missing entries in the
location-activity matrix for recommendations. Our work is a step
towards associating the locations and the activities to boost the
location-based services on the Web by using mobile data. The
contributions of this paper lie in three aspects:

• We put forward a new problem for collaborative location
and activity recommendations based on the GPS history
data, so that we can provide more specific recommendations
with location or activity constraints.

• We propose to exploit location features and activity-activity
correlations for collaborative filtering, so as to address the
data sparsity problem of the GPS histories. We also show
how to well incorporate this additional information with the
incomplete location-activity matrix in a collective matrix
factorization model for final recommendations.

• We evaluate our system using a large GPS dataset, which
was collected by 162 users over a period of 2.5 year in the
real world. The number of GPS points is around 4 million
and its total distance was over 139,310 kilometers.

The remainder of this paper is organized as follows. Section 2
gives an overview of our system. Section 3 introduces the data
modeling for location-activity matrix generation, location feature
and activity-activity correlation extraction. Section 4 details our
collaborative filtering model which takes the previous three pieces
of information as inputs. In Section 5, we report the experimental
results and offer some discussions. In Section 6, we survey the
related works. In Section 7, we draw our conclusions and present
the future work.

2. OVERVIEW OF OUR SYSTEM
In this section, we first clarify some terms used in this paper.
Then, we briefly introduce the architecture of our system and
demonstrate the application scenarios of our system.

2.1 Preliminary
First, we will clarify some terms, including GPS trajectory (Traj),
stay point (s) and stay region (r).
Definition 1. GPS trajectory: A user’s trajectory Traj is a
sequence of time-stamped points: ݆ܶܽݎ = ,〉 ,ଵ … , 〉, where a
GPS point = ,ݔ) ,ݕ ,(ݐ ∀0 ≤ ݅ < ݇, with ݐ as a timestamp
ݐ) < ,ݔ) ାଵ), andݐ) as the two-dimension coordinates [4]. Inݕ
the right part of Figure 3, we show a trajectory consisted of 7 GPS
points.

Figure 3. GPS trajectory and stay point

Definition 2. Stay point: A stay point s stands for a geographical
region where a user stayed over a time threshold ܶ within a
distance threshold of ܦ . Denote ݐݏ݅ܦ൫, ൯ as the geospatial
distance between two points and , and ݐ݊ܫ൫, .൯= ห ݐ .− | as their time interval. In a user’s trajectory, s can be seen asݐ
a virtual location characterized by a set of consecutive GPS points ܲ = ,〉 ,ାଵ … , 〈 , where ∀݉ < ݅ ≤ ݊ ,)ݐݏ݅ܦ , (≤ ,)ݐݏ݅ܦ ,ܦ (ାଵ > ܦ and)ݐ݊ܫ, (≥ ܶ . Hence, a stay point ݏ = ,ݔ) ,ݕ ,ݐ .ݏ), whereݐ ݔ = ∑ . ୀݔ |ܲ|⁄ .ݏ , ݕ = ∑ . ୀݕ |ܲ|⁄ , (1)

Activities

L
oc

at
io

ns

Activities

L
oc

at
io

ns

Location recommendation Activity recommendation

respectively stands for the average x and y coordinates of the
collection ܲ; ݏ. ݐ = . ݐ is the user’s arriving time on s and ݏ. ݐ = . . represents the user’s leaving time [4]ݐ

Compared with raw GPS points, stay points are more meaningful
in representing the locations a user stays by capturing the time
duration and vicinity information, and they are commonly used as
the basic units in representing the GPS data [4][6]. However, in
practice, when we consider many GPS trajectories together, we
may find that some stay points refer to a same interested region.
This is because the users can stay in different parts (e.g. the west
and east wings) of an interested region (e.g. Bird’s Nest stadium).
In recommendation, we focus on a whole interested region such as
Bird’s Nest rather than its two wings, so we need to further extract
some geographical region by clustering the nearby stay points. We
call these regions as stay regions.
Definition 3. Stay region (location): Given all the stay points
extracted from the GPS data as ܵ = ,ଵݏ} ,ଶݏ … , {ேݏ and a
clustering algorithm Alg(S) taking S as input, we have a stay
region r as a geographic region which contains a set of stay points ܵᇱ = ,ᇱݏ} ,ᇱାଵݏ … , ′ݏ|ᇱݏ ∈ ܵ, ∀݉ ≤ ݅ ≤ ݊} belonging to some
same cluster. Hence, a stay region ݎ = ,ݔ) .ݎ where ,(ݕ ݔ = ∑ .ݏ ୀݔ |ܵ′|⁄ .ݎ , ݕ = ∑ .ݏ ୀݕ |ܵ′|⁄ , (2)
stand for the average x and y coordinates of the collection ܵ. In
this work, stay regions are used as the basic units for location
recommendation, i.e. when we recommend locations, in fact we
recommend stay regions.
We instantiate Alg as a grid-based clustering algorithm as shown
in Figure 6. Notice that we do not directly extract stay regions by
clustering on the raw GPS points from all the trajectories. This is
because we may lose the sequential information by mixing the
raw GPS points from different trajectories together, and thus it is
hard to detect the meaningful stays.

2.2 Application Scenarios
The work reported in this paper is an important component of our
GeoLife project [7], whose prototype has been internally
accessible within Microsoft since Oct. 2007. So far, we have had
162 individuals using this system.

Figure 4. User interface for our system

Figure 4 shows our system’s user interface. It’s organized as a
Website (similar to a search engine) so that both PCs and hand-
held devices can access it. To use our system, for example, in

activity recommendation, a user can input a location, such as
“Bird’s Nest”, as a location query; then, our system can show the
queried location on the map and suggest a ranking list of activities
(top 5 here). The user can provide some feedbacks about the
results by giving some ratings. For location recommendation, the
user can input an activity, such as “tourism and amusement”, as
an activity query; then our system can suggest a ranking list of
candidate locations (top 10 here) and display them on the map, so
that the user can zoom in on the map and get more details (e.g.
transportations). The user can also view the location candidates
ranked lower than 10 to get more recommendations. Similarly, the
user can also provide feedbacks on location recommendation.

2.3 Architecture
We demonstrate our system’s architecture in Figure 5. Our system
consists of 6 parts, including data inputs, stay region extraction,
location-activity information extraction, location feature
extraction, activity-activity correlation mining and collaborative
location and activity recommendations. In the first 5 parts, we
model the data and extract knowledge as inputs to train a
recommendation system. This process can be performed off-line.
In real-time (for part 6), the users can access the recommender
through internet using laptops/PCs or PDAs/smart-phones, and
submit the query (i.e. activity or location names). Our system will
then return a ranking list of locations or activities given the
activity or location query.

Figure 5. Architecture of our system

Data inputs: In addition to the users’ GPS trajectories with some
comments, our system also exploits various information sources,
including Point-of-Interest (POI) category database and World
Wide Web, to alleviate the data sparsity problem that occurs when
there are few comments to get reliable statistics of the location-
activity relations. We will give more details about using these two
information sources in Section 3.2 and Section 3.3.
Stay region extraction: As the stay points sometimes may refer to
some common locations, we extract stay regions by clustering the
stay points and use them for location recommendations. Notice
that in practice, the recommended locations are supposed to have
limited region sizes, so we take this constraint into consideration
and propose a grid-based clustering algorithm to extract the stay
regions. More details are in Section 3.1.
Location-activity information extraction: With the available user
comments to the GPS trajectories, we can get the statistics about
what kinds of activities the users performed on some location, and
how often they performed these activities. By organizing this
statistics’ data in a matrix form, we can have a location-activity

A recommended
location

Recommended
activity list

Recommended
location list

Location query

Activity query

GPS Log

Grid-based Clustering

Collaborative Location and Activity
Recommender

Laptops
and PCs

PDAs and
Smart-phones

1

2

3

54

1 Data Inputs

6

2 Stay Region Extration 3 Location-Activity Extraction 4 Location-Feature
5 Activity Correlation Mining 6 Collaborative Loc. & Act. Recommendations

POI Category
Database

World Wide
Web

Location Feature
Extraction

Activity Correlation
Mining

Location-based Activity
Statistics

Stay Regions Location-Feature
Matrix

Activity-Activity
Matrix

Location-Activity
Matrix

Extraction

matrix, with rows as locations and columns as activities. An entry
in the matrix denotes the frequency for the users to perform some
activity on some location. We will give the details in Section 3.2
to show how to get these entries. Note that, due to the limited
amount of comments, the obtained location-activity matrix is
quite sparse. Our ultimate objective is to appropriately fill all the
missing entries in that matrix, so that we can rank all the entries
for collaborative location and activity recommendation.

Location feature extraction: We exploit the location features with
the help of POI category database. The database is based on the
city yellow pages, and it can provide us the knowledge that what
kinds of POIs we have in an area. For example, by query the POI
category database with some location area, we can know how
many restaurants (and theaters, museums, etc.) exist in this area.
This helps us to get some sense of this location’s functionalities,
so that we can use them as features for better recommendations.
Similarly, by organizing the data in a matrix form, we can have a
location-feature matrix, with rows as locations and columns as
features. Each entry of the matrix denotes some feature value on
that location. We give more details in Section 3.3.

Activity-activity correlation mining: We exploit the World Wide
Web, to get the knowledge about the activity correlations. With
this knowledge, we may better infer that if a user performs some
activity on a location, then it is likely that she will also perform
another activity. For example, when the users go to see a movie in
some place, it is quite likely they will also have some foods/drinks
there. One possible way to get such activity-activity correlation
information is directly having some statistics over the activity
occurrence in the GPS data; however, as the amount of available
comments is few, we may not get reliable statistics. Therefore, we
refer to the World Wide Web, which is a huge knowledge source,
to get such statistics. By organizing the data in a matrix form, we
have an activity-activity matrix, with rows and columns both as
activities. Each entry of the matrix denotes the correlation
between a pair of activities. We give more details in Section 3.4.
Collaborative location and activity recommendations: Having the
knowledge of location-activity matrix, location-feature matrix and
activity-activity correlation matrix, we can train a recommender
system. We propose a collaborative filtering model under the
collective matrix factorization framework [11], and manage to fill
the missing entries in the location-activity matrix. Based on the
filled location-activity matrix, we will rank and retrieve the top k
locations/activities for recommendations to the users who access
our system by PCs/PDAs. More details are given in Section 4.

3. DATA MODELING
In this section, we will introduce how to model the data in order to
obtain the location-activity, location-feature and activity-activity
matrices as inputs for training the recommender.

3.1 Stay Region Extraction
In practice, the recommended locations should not be too large in
size; otherwise, the user may not easily find the true interesting
locations in a large area. As a result, when we consider clustering
the stay points to get stay regions, we need to take such a limit
into account. Previous clustering algorithms used in GPS data
processing, such as the classic k-means algorithm and the density-
based OPTICS clustering algorithm [19], do not constrain the
output cluster sizes. So we propose a new grid-based clustering
algorithm, as described in Figure 6.

The basic idea is as follows. First, let’s denote ܷ = ,݇ݑ} 1 ≤ ݇ ≤|ܷ|} as a set of users. For each user ݑ ∈ ܷ, we parse her GPS

trajectories (݆ܶܽݎ) and detect the stay points (ܵ) from each
trajectory by seeking some spatial regions where ݑ spent a period
over a certain threshold ௧ܶ௦ and the distance between any two
consecutive GPS points in it is less than ܦ௧௦. For more details,
please refer to our previous work [6]. After steps 1-3 in the
algorithm, we have a stay point set ܵܲ = {ܵ, 1 ≤ ݇ ≤ |ܷ|} where
each ܵ = ,ଵݏ} ,ଶݏ … , .ݑ ே} is the stay point set for userݏ

Algorithm ExtractStayRegion(ܦ௧௦, ௧ܶ௦, ݀)
Input: A collection of GPS trajectories ߮ = ,݆ܽݎܶ} 1 ≤ ݇ ≤ |ܷ|}.
Output: A set of stay regions ܴ = ,ݎ} 1 ≤ ݅ ≤ ݉}, where ݉ = |ܴ|.
1. Foreach ݑ ∈ ܷ do
2. ܵ= StayPointDetection(݆ܶܽݎ, ܦ௧௦, ௧ܶ௦);
3. SP.Add(ܵ); // the collection of stay points
4. G = GridDivision(d); // divide the map into grids
5. Foreach ݃ ∈ do ܩ
6. ݃ . ݏ = ݏ|ݏ} ∈ ܵܲ within the region of ݃};
7. For all ݏ ∈ ܵܲ, set ݏ. ܦܫ݊݅݃݁ݎ = −1; // initialization
8. While (exists ݏ ∈ ܵܲ with ݏ. ܦܫ݊݅݃݁ݎ = −1) do
9. Find ݃ with max | ݃ . .and unassigned to any stay region |ݏ
10. ݊݃ = GetNeighborGrids(݃, G); // ݊݃ is a set of grids
ݎ .11 = ݃ ∪ ݊݃; // assign ݃ and ݊݃ to a new stay region
.ݎ) .12 ,ݐ݈ܽ .ݎ ݈݊݃) = GetCentroidCoordinates(SP, r);
13. R.Add(r) ;
14. Foreach ݏ ∈ ݃. where ݃ ݏ ∈ do ݎ
.ݏ .15 ܦܫ݊݅݃݁ݎ = |ܴ|; // assign region ID
16. Return R;
Figure 6. Grid-based clustering for stay region extraction

Second, we divide the map into grids (step 4), in order to
constrain our output stay region to be limited in size. In particular,
we set each grid as a square with width of ݀ 3⁄ , where d is a
parameter to constrain our output stay region size as no larger
than ݀ × ݀ as shown later. After dividing the map into grids, we
project all the detected stay points in these grids (steps 5-6), so
that we have a set of grids ܩ = {݃, 1 ≤ ݅ ≤ with each ݃ {|ܩ| ∈ ܩ
has its stay point set ݃. .ݏ

Third, we employ a greedy strategy to cluster grids (containing
stay points). At each round (steps 8-15), we start with finding a
grid ݃ that is unassigned to any stay region yet and has the
maximal number of stay points |݃. Then, we will extract its 8 .|ݏ
neighboring grids (i.e. consider a square shape with 3 × 3 grids
and ݃ in the center). The unassigned grids among these 8
neighboring grids, denoted as ݊݃, are clustered with ݃ to form a
new stay region ݎ = ݃ ∪ ݊݃. Hence, all the stay points in ݃ and ݊݃ are clustered into the stay region ݎ. Note that at most there will
be 3 × 3 grids clustered to a stay region, so we can constrain the
extracted stay region size as ݀ × ݀ . Finally, we calculate the
centroids of all the stay points’ latitude and longitude coordinates
in ݎ as ݎ’s coordinates. At last, we output a set of stay regions R.

3.2 Location-Activity Information Extraction
Based on stay region extraction, we can get a set of stay regions
from the stay points. For each stay region ݎ in the stay region set ܴ = ,ݎ} 1 ≤ ݅ ≤ ݉}, we can first extract the comments from the
GPS data that attached to this stay region. After that, we parse the
comments, which in general are texts, to get the activities. For
example, if a comment mentions “delicious” or “restaurant”, then
it implies that the user had some foods or drinks at this location.
Hence, we can have an activity of “food and drink” on this
location. By parsing all the comments, we can get the counts of
various activities on each stay region (location). Specifically, for a
location i, we can have an n-dimensional count vector ࢉ =[ܿଵ, ܿଶ, … , ܿ] for n activities, where each ܿ is the number of

times when activity j performed at location i according to the
comments. Denote the location-activity matrix as ܺ×; then we
can define its entries as:

ܺ = ܿ, ∀݅ = 1, … , ݉; ݆ = 1, … , ݊ (2)

Note that some locations may not have any comments, so their
count vectors are zero vectors and the corresponding entries in the
matrix X are zeros. However, when ܺ = 0, it doesn’t mean that
there is no possibility to perform activity j at location i. It is just
because there is no comment that records that activity. So we treat
all these entries equal to 0 as missing values for predictions.

3.3 Location-Feature Extraction
As discussed in the Section 2, we can use the POI category
database to get the statistics (counts) of different POIs in an
interested region. In particular, given a stay region ݎ ∈ ܴ, 1 ≤ ݅ ≤݉, we will count the number of different POIs in an enclosing
rectangle of the stay points in ݎ, with the coordinates as [ri.lat -
d/2, ri.lat + d/2] × [ri.lng – d/2, ri.lng + d/2]. Here, d is the size
parameter as introduced in Section 3.1. Therefore, the size of the
enclosing rectangle is ݀ × ݀ . Denote the count vector for a
location i as qi = [qi1, qi2, …, qil] for l types of POIs. Consider that
some types of POIs (e.g. restaurants) are more popular than others
(e.g. movie theaters), we follow information retrieval to further
normalize these counts in the form of term-frequency inversed-
document-frequency (TF-IDF) [8] to obtain a location-feature
matrix ܻ×. Specifically, we have each entry of Y as

ܻ = ೕ∑ ೕೕసభ ∙ ݈݃ |: ೕவൟ൛||{}| , ∀݅ = 1, … , ݉; ݆ = 1, … , ݈, (3)

where |{qi}| is the number of all the count vectors (i.e. number of
locations), and |{qi: qij > 0}| is the number of count vectors (i.e.
locations) having non-zero j-th type POIs. In this way, we
reasonably increase the weights for those important POIs that are
fewer but unique (e.g. movie theaters), and decrease the weights
for those extensively distributed POIs (e.g. restaurants).

3.4 Activity-Activity Correlation Extraction
Knowing the correlations between the activities can help us to
better infer what the users may do in some location based on the
observation of the activities performed before. One possible way
to get such correlations is to calculate them directly from the GPS
data; but due to the limited number of comments, we may not get
reliable results. Fortunately, such activity correlations are usually
common senses and possibly reflected on the World Wide Web.
To facilitate such common sense knowledge mining, we turn to
Web search for help. In particular, for each pair of activities ܽ
and ܽ, we put their names together as a query and submit it to
some commercial search engine to get the Webpage hit counts.
For example, for activities “food and drink” and “shopping”, we
generate a query “food and drink, shopping” and send it to Bing.
Bing will then return a list of Webpages that describe these two
activities together, and as expected, the number of such returned
Webpages implies the correlation between them. In general, we
find the hit count for “food and drink, shopping” (30.3 million hits
from Bing) is higher than that for “food and drink, sports and
exercises” (7.56 million hits), showing that the correlations of
“food and drink” with “shopping” is higher than that with “sports
and exercise”, coinciding with the common sense.

Based on such a method, we can then have an activity-activity
matrix ܼ×, with each entry defined as ܼ = ℎ ℎ∗⁄ , ∀݅ = 1, … , ݊; ݆ = 1, … , ݊, (4)

where ℎis the hit count for activity i and activity j based on some
search engine. ℎ∗ = ,ℎ ݔܽ݉݃ݎܽ ∀݅, ݆ is the maximal hit count
among all the hit counts for each pair of activities.

4. COLLABORATIVE LOCATION AND
ACTIVITY RECOMMENDATIONS
After the data modeling, we have the location-activity, location-
feature and activity-activity matrices. As the location-activity
matrix is incomplete with many missing entries, our objective is
to fill those missing entries so as to get a full location-activity
matrix for location and activity recommendations. Since the
location-activity matrix is very sparse, we try to borrow some
more information from location-feature and activity-activity
matrices for prediction based on collaborative filtering.

Figure 7. Demonstration of our model

Figure 7 demonstrates the main idea of our model based on
collective matrix factorization. Given the location-activity matrix ܺ×, we decompose it by low-rank approximation as a product
of two matrices ܷ× and ܸ× (the superscript “T” for ܸ×்
denotes the matrix transpose), where ݇ < ݊. It shares the location
information through sharing matrix ܷ× with the location-
feature matrix ܻ× , which is decomposed as a product of
matrices ܷ× and ܹ× . Similarly, the location-activity matrix
shares the activity information through sharing matrix ܸ× with
the activity-activity matrix ܼ×, which is decomposed as a self
product of ܸ× . Hence, we put forward a collective matrix
factorization model and formulate our objective function as: ܮ(ܷ, ܸ, ܹ) = 12 ∥ ܫ ∘ (ܺ − ்ܷܸ) ∥ிଶ + ଵ2ߣ ∥ ܻ − ்ܷܹ ∥ிଶ + ఒమଶ ∥ ܼ − ்ܸܸ ∥ிଶ + ఒయଶ (∥ ܷ ∥ிଶ +∥ ܸ ∥ிଶ +∥ ܹ ∥ிଶ), (5)

where ∥∙∥ிdenotes the Frobenius norm. I is an indicator matrix
with its entry ܫ = 0 if ܺ is missing, ܫ = 1 otherwise. The
operator “∘” denotes the entry-wise product. As shown in the
Figure 7 and the objective function, we aim to propagate the
information among ܺ× , ܻ× and ܼ× , by requiring them to
share some low-rank matrices ܷ× and ܸ× . The first three
terms in the objective function (5) control the loss in matrix
factorization, and the last term controls the regularization over the
factorized matrices so as to prevent overfitting.

In general, this objective function is not jointly convex to all the
variables ܷ× , ܸ× and ܹ× , and we cannot get closed-form
solutions for minimizing the objective function. Therefore, we
will turn to some numerical method such as gradient descent to
get the local optimal solutions. Specifically, we have the gradients
(denoted as ∇) for each variable as ∇ܮ = ܫ] ∘ (்ܷܸ − ܺ)]ܸ + ்ܹܷ)ଵߣ − ܻ)ܹ + ,ଷܷߣ

 ∇ܮ = ܫ] ∘ (்ܷܸ − ܺ)]்ܷ + ்ܸܸ)ଶߣ2 − ܼ)ܸ + ܮଷܸ, (6) ∇ߣ = ்ܹܷ)ଵߣ − ܻ)்ܷ + .ଷܹߣ

After having the gradients, we can use gradient descent to
iteratively minimize the objective function. The details of the
algorithm are given in Figure 8.

L
oc

at
io

ns

Features Activities

X = UVTY = UWT Z = VVT
U V

Activities

L
oc

at
io

ns

A
ct

iv
iti

es

Algorithm CLAR
Input: Incomplete location-activity matrix ܺ×, location-feature
matrix ܻ× and activity-activity matrix ܼ×.
Output: Complete location-activity matrix ܺ×.
ݐ .1 = 1;
2. While (ݐ < ܶ and ܮ௧ − ௧ାଵܮ > ߳) do // T is #(max iterations)
3. Get the gradients ∇, ∇ and ∇ௐby Eq.(6);
ߛ .4 = 1;
5. While (ܮ(௧ܷ − ,∇ߛ ௧ܸ − ,∇ߛ ௧ܹ − (௪∇ߛ ≥)ܮ ௧ܷ, ௧ܸ , ௧ܹ)) do
ߛ .6 = ߛ 2⁄ ; // search for the maximal step size
7. ௧ܷାଵ = ௧ܷ − , ௧ܸାଵ∇ߛ = ௧ܸ − and ௧ܹାଵ∇ߛ = ௧ܹ − ;ௐ∇ߛ
ݐ .8 = ݐ + 1;
9. Return X;

Figure 8. Algorithm description for our model
After having the complete location-activity matrix ܺ× , for a
user query of some location, we can look up the rows of ܺ×. If
this location exists in our system (i.e. the location coordinates fall
in some stay region), for example, the i-th row of ܺ×, we rank
the i-th row’s values in a descending order and return a list of
corresponding activities for activity commendation. For example,
we search “Bird’s Nest” in our system and find it matched with
10th row (i.e. 10th location) of ܺ×, then we will extract the 10th
row’s ratings, e.g. x=[2, 3, 4, 5, 1], where each entry denotes the
rating for an activity. Assume from left to right in x, the activities
are “Food”, “Shopping”, “Sports”, “Tourism” and “Movie”, then
we will recommend a ranking list of activities with “Tourism” >
“Sports” > “Shopping” > “Food” > “Movie”. Similarly, for
location recommendation, given a user query of some activity, we
look up the columns of ܺ×. If this activity is matched in our
system, for example, the j-th column of ܺ×, we rank the j-th
column’s values in a descending order and return a list of the top
N corresponding locations for location commendation.

5. EXPERIMENTS
In this section, we will first present the experimental settings.
Second, we will introduce the evaluation approaches. Third, we
will deliver some major results followed by some discussions.

5.1 Settings
5.1.1 GPS Users, Devices and Data
In total, we have 162 users (61 females and 101 males, and more
statistics is shown in Figure 9) carrying the GPS devices to record
their outdoor trajectories from April 2007 to Oct. 2009.

Figure 9. GPS user statistics

Figure 10(A) shows the GPS devices used to collect data. They
are comprised of stand-alone GPS receivers and GPS phones. In
general, the sampling rate for GPS devices is set as two seconds.
The GPS logs were collected in China, as well as a few cities in
the USA, South Korea, and Japan. As most parts of the logs were
generated in Beijing, and for easier evaluation of our system, we
extract the logs from Beijing for our experiments. After this data
preprocessing, we obtain a dataset having 12,765 GPS trajectories

with total GPS points number over 3,980,320 and total trajectory
length over 139,310 kilometers. We have totally 530 comments.
To make sure that we recommend useful locations and activities,
we also remove some GPS points for work and homes. The data
distribution in Beijing is shown in Figure 10(B). To protect the
users’ privacy, we use these data anonymously.

(A) GPS devices (B) Data distribution in Beijing

Figure 10. GPS devices and data distribution
We defined 5 activities to recommend from the GPS data. As
shown in Table 1, these 5 activities basically cover people’s daily
routines. Therefore, n=5 for the matrices X and Z in Eq.(5).

Table 1. Activities that we used in the experiments.
Activities Descriptions
Food and drink Dinning/drinking at restaurants/bars, etc.
Shopping Supermarkets, department stores, etc.
Movie and shows Movie/shows in theaters and exhibition in

museums, etc.
Sports and exercise Doing exercises at stadiums, parks, etc.
Tourism and amusement Tourism, amusement park, etc.

5.1.2 Parameter Selection
Data processing parameters. In this experiment, to obtain stay
points from raw GPS data, we follow our previous work [9] to set
Tthresh as 20 minutes and Dthresh as 200 meters for stay point
detection. To extract stay regions from stay points, we tentatively
set the stay region size as 300×300 square meters, i.e. d = 300,
and we will study its impact in Section 5.3.2.

Model parameters. Our model has 3 parameters: ߣଵ, ,ଷߣ ଶ andߣ
where ߣଵ and ߣଶ control the contributions of location features and
activity correlations respectively, and we will study their impacts
in Section 5.3.1. ߣଷ controls the regularization term, and we set it
as 10 through all our experiments. As our model is based on low-
rank matrix factorization, we set the rank k=3 for the matrices U,
V and W in Eq.(5).

5.2 Evaluation Methodology
To evaluate our recommendation system, we invited 5 subjects
who are familiar with Beijing, to individually use our system and
provide the feedbacks. For activity recommendation, we asked the
subjects to evaluate the top 5 recommended activities on the top
20 popular locations according to the GPS logs; and for location
recommendation, we asked them to evaluate top 10 recommended
locations. Our system’s user interface is shown in Figure 4, where
users can provide ratings to the recommended locations/activities.

Table 2. Rating criteria for locations and activities
Ratings Explanations
3 I’d like to visit this location / do this activity
2 I’d like to visit this location if passing by / do this activity

if time spared
1 I have no feeling to visit this location / do this activity
0 This location does not deserve to visit / this activity is not

suitable to do there.

8%

40%45%

7%

age<=22 22<age<=25
26<=age<29 age>=30

16%
16%

6%62%

Microsoft employees
Other companies' employees
Government staffs
College students

In Table 2, we list the rating criteria. To get the ground truths for
evaluation, we aggregate all the subjects’ feedbacks to get an ideal
ranking list. As our recommendations are based on ranking
results, we employ normalized discounted cumulative gain
(nDCG) [8] to measure our retrieved location/activity list. nDCG
is commonly used in information retrieval to measure the search
engine’s performance. A higher nDCG value to a list of search
results means that, the highly relevant items appearing earlier
(with higher ranks) in the result list. In particular, nDCG[p], or
referred as nDCG@p, measures the relevance of top p results: ݊[]ܩܥܦ = ீ[]ூீ[] , []ܩܥܦ = ଵ݈݁ݎ + ∑ ୪୭మ ୀଶ ,

where IDCG[p] is the DCG[p] value of ideal ranking list. reli is a
relevance value. nDCG ranges from 0 to 1. The higher nDCG is,
the better a ranking result list is. For example, given a ranking list
of 4 items with relevance as <1,3,0,2>, the nDCG@4 is

[4]ܩܥܦ݊ = ଵାଷ మଶ⁄ ାାଶ మସ⁄ଷାଶ మଶ⁄ ାଵ మଷ⁄ = 0.89.

5.3 Results and Discussions
In this section, we will first study our system’s performances
under different model parameters. Then, we will employ two
baselines for comparison under several settings. Finally, we will
give some more insights to our model.

5.3.1 System performance
5.3.1.1 Impact of the location feature information
The parameter ߣଵ controls the contribution of the location feature
information to the objective function (5). To study the impact of
this information, we vary the value of ߣଵ and plot our model’s
performances with the average nDCG values over all the subjects
in Figure 11. In this study, we fix ߣଶ =200, which is in the
magnitude of division of the location-feature matrix size by the
activity-activity matrix size. In this way, we make sure that both
location features and activity correlations can contribute to the
objective function. We use nDCG@5 to evaluate the results for
activity recommendation and nDCG@10 for location recommend-
ation in this paper if without specific references.

(A) activity recommendation (B) location recommendation.

Figure 11. Impact of the location features
As shown in Figure 11(A), the model’s performance first
increases and later decreases as ߣଵ increases. This is because
when ߣଵ is too small, the model cannot fully utilize the
information from the location features to understand the location
functionalities and the connections among the locations. When ߣଵ
is too large, the location feature information will dominate the
objective function (5), thus overwhelming the activity information
from the location-activity matrix X and activity-activity matrix Z.
It will cause some problem; for example, given two locations i
and j with similar location features, if location i has no rating for
“food and drink” but has ratings for “movie and shows”,
according to location similarity, we cannot recommend to users to

try “food and drink” at location j although usually there are some
nice restaurants near the movie theatres. In Figure 11(B), we
observe the similar pattern for location recommendation. When
the location-activity ratings are not well inferred with too small or
too largeߣଵ, the recommended location list also may miss some
interesting places. Note that, when ߣଵ=0, the model equals to only
exploiting one additional information source, i.e. the activity-
activity correlation, to help recommendation. As the performance
at ߣଵ=0 can be lower than the performance at ߣଵ>0 (e.g. ߣଵ=0.1),
we demonstrate the benefit of using both additional information.

5.3.1.2 Impact of the activity correlation information
We also study the impact of parameter ߣଶ , which controls the
contribution of the activity correlation information to the objective
function (5). We vary the value of ߣଶ and plot our model’s
performances in Figure 12. In this study, we fix ߣଵ=0.1 according
to the previous study in Figure 11.

(A) activity recommendation (B) location recommendation

Figure 12. Impact of the activity correlations
As shown in Figure 12(A), similarly we observe the model’s
performance first increasing and later decreasing as ߣଶ increases.
When ߣଶ is too small, the activity correlation information cannot
contribute much to the objective function. When ߣଶ is too large,
the activity correlations will dominate the objective function, so
that for a location it will recommend the activities mostly based
the correlation values while not fully considering whether such a
location is suitable for some activity. For example, if a location
has some ratings for “food and drink”, then with too large ߣଶ, the
model will also recommend the user to see “movie and shows”
without carefully considering whether this location has theatre or
not. In Figure 12(B), we can observe the similar pattern for
location recommendation. Note that, when ߣଶ=0, the model equals
to only exploiting one additional information source for location
features. Again, as the performance at ߣଶ=0 can be lower than the
performance at ߣଶ>0 (e.g. ߣଶ=200), we demonstrate the benefit of
exploiting both additional information sources.

5.3.2 Investigation into Our System
5.3.2.1 Comparison with baselines
We employ two baselines: single collaborative filtering (SCF) and
unifying collaborative filtering (UCF). In SCF, we only use the
incomplete location-activity matrix as input for collaborative
filtering. We employ the popular low-rank matrix factorization
approach to accomplish such a collaborative filtering task [18]. In
particular, SCF aims to solve an singular value decomposition
problem by min ,ܷ)ܬ ܸ) =∥ ܫ ∘ (ܺ − ்ܷܸ) ∥ிଶ , where X denotes
the incomplete location-activity matrix, U and V are the low-rank
matrices, I is the indicator matrix same with Eq.(5). It can be seen
that this optimization problem equals to the case when our
objective function (5) has both ߣଵ and ߣଶ as zeros. We employ this
baseline to show that with limited number of comments (and thus
sparse in location-activity matrix), the recommendation results

0.76

0.79

0.82

0.85

0.88

0.91

0 0.01 0.1 1 10

nD
C

G
@

5

λ1

0.68

0.69

0.7

0.71

0.72

0.73

0 0.01 0.1 1 10

nD
C

G
@

10

λ1

0.7

0.75

0.8

0.85

0.9

0.95

0 1 10 200 500

nD
C

G
@

5
λ2

0.72

0.73

0.74

0.75

0.76

0 1 10 200 500

nD
C

G
@

10

λ2

may not be satisfying. So we can validate our motivation to use
additional information sources to help improve recommendation.
We also follow [10] to provide a solution, UCF, which can use the
additional information sources for unifying collaborative filtering.
In UCF, for each missing entry in the location-activity matrix, it
will extract a set of top N similar locations and top N similar
activities, and then use the ratings for these users over these items
in a probabilistic way to calculate a value for the missing entry.
After all the missing entries are filled in the location-activity
matrix, similar ranking strategy with our system can be used to
output the location and activity ranking list for recommendations.
We use this baseline to testify the effectiveness of our model over
other collaborative filtering methods given the same inputs.

Table 3. Comparisons under different p-values for nDCG@p

 Activity Recommend. Location Recommend.
p=3 p=5 p=5 p=8 p=10

CLAR 0.83±0.04 0.91±0.03 0.84±0.06 0.84±0.04 0.86±0.04
UCF 0.72±0.06 0.87±0.03 0.76±0.03 0.74±0.03 0.75±0.03
SCF 0.70±0.07 0.84±0.05 0.63±0.08 0.62±0.07 0.63±0.06

In Table 3, we report the performances of our model and other
two baselines for both activity and location recommendations. We
vary the p-values for nDCG@p to extensively evaluate the
systems’ performances. The entry value in Table 3 denotes the
mean and standard deviation of the nDCG values. As shown in the
table, our model CLAR consistently outperforms the two
baselines under different measurements. We also conduct the t-
test over the results and find our results are significantly better
than the baselines’ results (one-tailed test p1<0.01, two-tailed test
p2<0.01) in both location and activity recommendations. Both our
CLAR and UCF can outperform SCF due to using more
information. Besides, our CLAR can outperform UCF because in
UCF, the information flow is in a single direction from location
features and activity correlations while our CLAR enables the
information flow in both directions. In other words, in UCF, the
location similarities and activity similarities are learned from the
location features and activity correlations; then they are passed to
the location-activity matrix for collaborative filtering. This
collaborative filtering does not have further feedback to the
location-features and activity correlations. So, if the similarities
learned from this additional information are not accurate, there is
no second chance to refine. In contrast, in our CLAR, we put the
location-activity matrix and the two pieces of additional
information together in an objective function for optimization, so
that we can have the feedback from the matrix factorization in
location-activity matrix to the location-feature matrix and activity-
activity correlation matrix. In this way, our CLAR can have bi-
directional information flows and thus outperform UCF.

5.3.2.2 Impact of the stay region size
We also study the impact of stay region size in recommendation.
As discussed above, in recommendations, we may prefer smaller
stay region size so that the users can easily find what she wants in
the recommended location. Therefore, we vary the stay region
size by varying the region width d from 200 to at most 500
(d=500 means that the stay region size is 500×500 square meters).

As shown in Table 4, as the stay region size increases, the number
of stay regions extracted by grid-based clustering (shown in
Figure 6) decreases. Our CLAR model consistently outperforms
the two baselines UCF and SCF. We also conduct the t-test and
find our results are better than the baselines’ results (one-tailed
test p1<0.05, two-tailed test p2<0.05) in both location and activity

recommendations. When d=300, our CLAR works the best,
showing that too small region size may make the extracted stay
regions’ location features insufficient to represent the location
functionalities and too large region size may lead to difficulty in
finding interested points of interests from a big area.

Table 4. Impact of stay region size

 #(stay
region)

Activity Recommend. Location Recommend.
CLAR UCF SCF CLAR UCF SCF

d=200 3329 0.86
±0.02

0.85
±0.02

0.83
±0.02

0.82
±0.03

0.72
±0.03

0.58
±0.05

d=300 2503 0.91
±0.03

0.87
±0.03

0.84
±0.05

0.86
±0.04

0.75
±0.03

0.63
±0.06

d=500 1696 0.86
±0.01

0.81
±0.03

0.83
±0.02

0.86
±0.03

0.74
±0.03

0.67
±0.02

5.3.2.3 Impact of the user number
As the GPS devices become popular, we will have more and more
users and accumulate such GPS data on the Web as time goes by.
We study the impact of user numbers so as to see whether our
system can handle the data well.

Table 5. Impact of user number
 #(stay

point)
Running
Time (ms)

Activity
Recommend.

Location
Recommend.

#user=50 3895 5780.15 0.84±0.04 0.75±0.03
#user=100 8039 10828.45 0.88±0.03 0.89±0.02
#user=162 12656 15053.6 0.90±0.03 0.91±0.03

As the user number increases, the GPS data size increases and
thus the number of stay points also increases (though it might not
be the case when the user number is sufficiently large). As shown
in Table 5, the running time for our CLAR model is almost linear
to the number of stay points. This is because the computational
complexity of our CLAR model is linear to the number of stay
points. Consider the algorithm for our CLAR model in Figure 8.
Given the input matrices ܺ× , ܻ× , ܼ× and their low-rank
factorized matrices ܷ×, ܸ×, ܹ×, we have the computational
complexity of evaluating the objective function (5) is: ݉ × ݇ ×݊ + ݉ × ݇ × ݈ + ݊ × ݇ × ݊ + (݉ × ݊ + ݊ × ݇ + ݈ × ݇), which is ܱ(݉) since n, l and k are much smaller than m (e.g. in our case
with 162 users, m=12656, n=5, l=13, k=3). Similarly, we can have
the computational complexity for the gradients as ܱ(݉). As our
algorithm has an iteration limit and in practice it converges fast
(in less than 300 iterations), the whole computational complexity
for our model is linear to the number of stay points ܱ(݉). Hence,
our model can be quite efficient. From Table 5, we also observe
that as the user number increases, there are more GPS data and
thus we can keep improving the system’s performance.

5.3.3 Discussions
5.3.3.1 Impact of the location types to activity
recommendation
Is our system doing equally well on activity recommendation for
different types of locations? We summarize the experimental
results for the setting with d=300 and #user=162 to answer this
question in Figure 13. As can be seen from the figure, for the 20
most popular locations, our system works the best on the locations
that are in the type of “food and sports area”, and the worst on the
locations that are in the type of “shopping and movie area” (here
we aggregate the user evaluations and pick the top 2 activities as
the location types). This is because the activity “food and drink”
happens more often in our daily life; and it’s also more likely to

have many restaurant POIs in the location feature for predicting
this activity. For “sports” areas, the location features can capture
the location functionality by detecting the parks and stadiums. For
“tourism” areas, there are more comments from the GPS users, so
that the prediction on such areas can be comparatively accurate.
For the “shopping & movie” area, the activity recommendation
results are not as good as the other areas, because there are fewer
comments from the GPS users on these activities and thus fewer
ratings in collaborative filtering. Besides, such areas are usually
also suitable for food hunting and sometimes tourism, so that they
are overwhelmed by the recommendations to food and tourism.

Figure 13. Impact of location types to activity recommend.

5.3.3.2 Impact of the activity types to location
recommendation
We also ask the question whether our system does equally well on
location recommendation for different activity types? Based on
the same setting with previous section, we summarize the location
recommendation results on each activity type in Figure 14.

Figure 14. Impact of activity types to location recommend.

As expected, for activity “food and drinks” which more often
happens, and activity “tourism and amusement” which has more
user comments, the recommendation results are quite satisfying.
For “movie and shows”, the results are still good. For “shopping”,
the performance is worse due to less user comments in modeling
the location-activity matrix for collaborative filtering. For “sports
and exercises”, the performance is also worse than other activities;
and an interesting observation is that, in Figure 13, our system
usually performs well on the “sports” areas. Is there something
wrong? By analyzing the data, we find that this is reasonable;
because in our system the locations with more comments are more
likely to be recommended (i.e. the higher ratings on other
activities can propagate to the activity “sports”), but most of these
locations are related to food hunting and tourism which are
loosely connected with “sports”. As a result, the location
recommendation for the activity “sports” is worse than the others.

5.3.3.3 Prediction for new locations and activities
Our system is based on some GPS data which is limited in size.
Therefore, there could be some locations that we do not see in the
existing GPS dataset. Similarly, we also only define 5 main

activities, what if the user wants to get recommendations for some
more-detailed activities, such as “Thai food” instead of general
“food”? One possible solution could be relying on the data
accumulation on the Web. As the GPS devices become popular,
there can be more and more GPS data related to more detailed
activities in people’s daily life. Once we have these data, we can
keep updating our system. Since our model’s computational
complexity is linear to the number of GPS stay points (i.e. the data
size), such updates could be easy. Another possible solution is to
get such location-activity information from the Web. As there are
blogs describing such information (e.g. travel logs), we may mine
such knowledge from the Web to enhance our system. However,
considering that the blog contents can be quite noisy, it’s not clear
how much it helps. We may leave it as our future study.

6. RELATED WORK

6.1 Location Recommendation
Location recommendation has been an important topic in geo-
related services. Some systems, based on an individual user’s
current location, retrieve important surrounding locations and
their contexts for recommendations. For example, in [12], a
mobile application framework, which enables a mobile phone user
to query the geo-coded Wikipedia articles for landmarks in
vicinity, is presented. In [13], a Cyberguide system is developed
to provide the librarian information which describes the nearby
buildings and related people identities. Comparatively, our system
exploits the user location histories and recommends the interesting
locations all round the city instead of only nearby locations.
There are some systems focusing on recommending some specific
types of locations. For example, in [14], a CityVoyager system is
developed to recommend shops. It collects the users’ shop visiting
histories based on GPS logs, and uses an item-based collaborative
filtering method to recommend to a user some shops that are
similar to his/her previously visited shops. In [15], a system
considering both users’ preferences and location contexts is
shown to recommend restaurants. It uses Bayesian learning to
calculate some recommendation values for restaurants so as to
provide a ranking list for recommendation. Similarly, in [16], a
Geowhiz system, which uses a user-based collaborative filtering
algorithm to recommend restaurants, is proposed. In [9], the
recommended locations are hot spots for tourism. A HITS-based
model is proposed to take into account a user’s travel experience
and the interest of a location in recommendation, so that only the
locations that are really popular and also recommended by
experienced users can be recommended. In contrast to those
systems limited in modeling only one type of location for
recommendations, our system is capable to handle various types
of locations. That is, we can recommend locations not only for
foods and drinks but also for shopping, etc.

6.2 Activity Recommendation
Activity recommendation is a pretty new research issue with little
research on it so far. Yet it is a quite common question in our
daily life to ask what we can do if we want to visit some place.
Most of the previous work related to activity study focuses on
how to recognize an activity from sensor data by ubiquitous
computing [21]. For example, in [5], based on GPS data, a
hierarchical conditional random field model is used to recognize
whether a user is at work, or sleeping at home, or taking leisure,
or visiting friend, etc. In [17], activities of daily living such as
brushing teeth or making a snack in indoor environment are
recognized by using RFID sensors. Some object use common
sense knowledge is extracted from Web to help training a

0.8 0.85 0.9 0.95 1

nDCG@5

food & sports area

sports & tourism area

shopping & movie area

0.7 0.75 0.8 0.85 0.9 0.95 1

nDCG@10

tourism & amusement

sports & exercises

food & drinks

movie & shows

shopping

recognition model in an unsupervised way. In contrast, rather than
recognize the activity for an individual user in real time, we aim
to do mining over the users’ activity histories (i.e. GPS logs) and
recommend what a user can do on some location.

7. CONCLUSION
In this paper, we studied how to mine knowledge from the real-
world GPS data to answer two common questions in our daily life.
The first question is, if we want to do something, where shall we
go? This question corresponds to location recommendation. The
second question is, if we visit some place, what can we do? This
question corresponds to activity recommendation. We show that
these two questions are inherently related, as they can be seen as a
ranking problem over a location-activity rating matrix. Because
the location-activity matrix is very sparse in practice, we proposed
to exploit other information, including the location features and
the activity-activity correlations from various information sources,
to enhance the performance. We provided a collaborative filtering
approach based on collective matrix factorization to take these
information sources as inputs and train a location and activity
recommender. Both PC and hand-held device users can access our
recommender through the Web to get recommendations for better
trip planning, etc. We evaluated our system on a large GPS
dataset, and showed 7% improvement on activity recommendation
and over 20% improvement on location recommendation over the
simple baseline without exploiting any additional information.

In the future, we will consider more information, such as user
features, to further enhance the performance. Our current system
is for general recommendations; if we have the user features, we
may be able to personalize our recommendation system so as to
better satisfy the user’s information needs. Besides, we may also
use the user features to establish a social network among the users
so that the experiences from friend (similar) users can contribute
more in retrieving recommendation results.

8. ACKNOWLEDGEMENTS
This research was supported by grants from Microsoft Research
Asia MRA08/09.EG03 and Hong Kong-CERG/China-NSFC
N_HKUST624/09. The authors would like to thank Yukun Chen
for his great help in data processing. The authors would also thank
the reviewers for their helpful comments and suggestions.

9. REFERENCES
[1] Bikely: http://www.bikely.com/.

[2] GPS route exchange forum: http://www.gpsxchange.com/.

[3] Liao L., Fox D. and Kautz H. Learning and inferring
transportation routines. In Artificial Intelligence 171(5-6):
311-331 (2007).

[4] Zheng Y., Liu L., Wang L. and Xie X. Learning transport-
ation modes from raw GPS data for geographic applications
on the Web. In Proc. of the 17th Intl. Conf. on World Wide
Web (Beijing, China, 2008), ACM Press: 247-256.

[5] Liao L., Fox D. and Kautz H. Location-based activity
recognition. In Proc. of Advances in Neural information
Processing Systems (Vancouver, Canada, 2005).

[6] Li Q., Zheng Y., Xie X., Chen Y., Liu W. and Ma W.
Mining user similarity based on location history. In Proc. of
the 16th Intl. Conf. on Advances in geographic info. system
(Santa Ana, USA, 2008), ACM Press: 1-10.

[7] Microsoft GeoLife Project:
http://research.microsoft.com/en-us/projects/geolife/

[8] Manning D., Raghavan P. and Schütze H. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[9] Zheng Y., Zhang L., Xie X. and Ma W. Mining interesting
locations and travel sequences from GPS trajectories. In
Proc. of the 18th Intl. Conf. on World Wide Web (Madrid
Spain, 2009), ACM Press: 791-800.

[10] Wang J., de Vries A.P. and Reinders M.J.T. Unifying User-
based and Item-based Collaborative Filtering Approaches
by Similarity Fusion. In Proc. of the 29th ACM SIGIR
conference on Research and development in information
retrieval (Seattle USA, 2006), ACM Press: 501-508.

[11] Singh A.P. and Gordon G.J. Relational learning via
collective matrix factorization. In Proc. of the 14th SIGKDD
Intl. Conf. on Knowledge discovery and data mining (Las
Vegas USA, 2008), ACM Press: 650-658.

[12] Simon R. and Frőhlich P. A mobile application framework
for the geospatial Web. In Proc. of the 16th Intl. Conf. on
World Wide Web (Canada, 2007). ACM Press: 381-390.

[13] Abowd G.D., Atkeson C.G., Hong J., Long S., Kooper R.
and Pinkerton M. Cyberguide: a mobile context-aware tour
guide. In Wireless Network, 3(1997), 421-433.

[14] Takeuchi Y. and Sugimoto M. CityVoyager: an outdoor
recommendation system based on user location history. In
Proc. of Ubiquitous Intelligence and Computing (Berlin
Germany, 2006), Springer Press: 625-636.

[15] Park H., Hong H. and Cho B. Location-based recommend-
ation system using Bayesian user’s preference model in
mobile devices. In Proc. of Ubiquitous Intelligence and
Computing (Hong Kong, 2007). Springer Press: 1130-1139.

[16] Horozov T., Narasimhan N. and Vasudevan V. Using
Location for Personalized POI Recommendations in Mobile
Environments. In Proc. of the Intl. Symposium on App. on
Internet (Phoenix, USA, 2006), IEEE Press: 124-129.

[17] Wyatt D., Philipose M. and Choudhury T. Unsupervised
activity recognition using automatically mined common
sense. In Proc. of the 20th national conference on Artificial
intelligence (Pittsburgh, USA, 2005), AAAI Press: 21-27.

[18] Srebro N. and Jaakkola T. Weighted low-rank approxim-
ations. In Proc. of the 21st Intl. Conf. on Machine Learning
(Washington DC, USA, 2003), AAAI Press 720-727.

[19] Ankerst M., Breunig M., Kriegel P. and Sander J. OPTICS:
ordering points to identify the clustering structure. In Proc.
of SIGMOD (New York, USA, 1999), ACM Press: 49-60.

[20] Chen Y., Fabbrizio D., Gibbon D., Jana R., Jora S., Renger
B. and Wei B. GeoTV: navigating geocoded rss to create an
iptv experience. In Proc. of the 16th intl. conf. on World
Wide Web (Banff Canada, 2007). ACM Press: 1323-1324.

[21] Zheng V., Hu D. and Yang Q. Cross-domain activity
recognition. In Proc. of the 11th Intl. Conf. on Ubiquitous
Computing (Orlando, USA, 2009). ACM Press: 61-70.

[22] Zheng Y., Zhang L. and Xie X. Recommending friends and
locations based on individual location history. In ACM
Transaction on the Web (2010).

