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ABSTRACT 
With the increasing popularity of location-based services, such as 
tour guide and location-based social network, we now have 
accumulated many location data on the Web. In this paper, we 
show that, by using the location data based on GPS and users’ 
comments at various locations, we can discover interesting 
locations and possible activities that can be performed there for 
recommendations. Our research is highlighted in the following 
location-related queries in our daily life: 1) if we want to do 
something such as sightseeing or food-hunting in a large city such 
as Beijing, where should we go? 2) If we have already visited 
some places such as the Bird’s Nest building in Beijing’s Olympic 
park, what else can we do there? By using our system, for the first 
question, we can recommend her to visit a list of interesting 
locations such as Tiananmen Square, Bird’s Nest, etc. For the 
second question, if the user visits Bird’s Nest, we can recommend 
her to not only do sightseeing but also to experience its outdoor 
exercise facilities or try some nice food nearby. To achieve this 
goal, we first model the users’ location and activity histories that 
we take as input. We then mine knowledge, such as the location 
features and activity-activity correlations from the geographical 
databases and the Web, to gather additional inputs. Finally, we 
apply a collective matrix factorization method to mine interesting 
locations and activities, and use them to recommend to the users 
where they can visit if they want to perform some specific 
activities and what they can do if they visit some specific places. 
We empirically evaluated our system using a large GPS dataset 
collected by 162 users over a period of 2.5 years in the real-world. 
We extensively evaluated our system and showed that our system 
can outperform several state-of-the-art baselines. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – data 
mining. H.3.3 [Information Storage and Retrieval]: Information 
Search and Retrieval – clustering, information filtering. H.5.2 
[Information Interface and Presentation]: User Interface.  

General Terms 
Algorithms, Design, Experimentation 

Keywords 
Location and Activity Recommendations, Collaborative Filtering 

1. INTRODUCTION 
As the mobile devices with positioning function, such as GPS-
phones, become more and more popular, people now are able to 
know their locations easily. Based on these location data, various 
location-based services are provided on the Web and shown to be 

quite attractive to the users. For example, a bunch of outdoor 
sports forums have emerged to provide various geo-related Web 
services [1][2][20]. By using these services, the forum users can 
upload and share their outdoor sports (such as bicycle riding) 
trajectories with other users. In this way, they can conveniently 
manage their own outdoor sports trajectories and also share them 
with other outdoor sports fans. In addition, thanks to some Web-
based location data management services [7], the users can now 
share on Web not only their raw GPS trajectories with coordinates 
and time stamps, but also comments denoting what the user did, 
what she saw and/or how she felt on some locations. Figure 1 
gives an example of such a GPS data management system: a user 
uploaded a GPS trajectory to Forbidden City area in Beijing, and 
he also attached some comments (depicted as small pink boxes, 
each unfolded as a text box) about how he felt about the places. 
Such comments bring more semantics to the GPS trajectories, and 
make it easier for GPS users to share their travel experiences. 
Beyond directly sharing the GPS trajectories, we can also better 
understand the location trajectories by mining knowledge from the 
users’ location trajectories. In this way, we are capable to provide 
more interesting location-based services, including transportation 
routine prediction [3][4], location-based activity recognition [5] 
and location-based social network [6,22]. 

 
Figure 1. GPS data management services 

In this paper, we aim to mine more knowledge from the GPS 
location data, so that we can answer two typical questions that we 
often ask in our daily: 1) if we want to do something such as 
sightseeing or food-hunting in a large city such as Beijing, where 
should we go? 2) If we have already visited some places such as 
the Bird’s Nest building in Beijing’s Olympic park, what else can 
we do there? In general, the first question corresponds to location 
recommendation given some activity query (where “activity” can 
refer to various human behaviors such as food-hunting, shopping, 
watching movies/shows, enjoying sports/exercises, tourism, etc.), 
and the second question corresponds to activity recommendation 
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given some location query. By answering these two typical 
questions, we can satisfy many information needs for the users in 
both their daily routines and trip planning. We show to put both 
location recommendation and activity recommendation together in 
our knowledge mining, since locations and activities are closely 
related in nature. Specifically, to model the relationship between 
the locations and the activities, we can construct a location-
activity matrix (details are given in Section 3.2), whose rows 
denote the locations and columns denote the activities. Each entry 
in this location-activity matrix is a rating showing how often an 
activity is performed in a location. Therefore, as shown in Figure 
2, we can see location recommendation given some activity query 
as ranking over the rows given some column, and activity 
recommendation as ranking over the columns given some row.  

 
Figure 2. Illustration for location & activity recommendations 
However, it is not easy to obtain such a complete location-activity 
matrix for location and activity recommendations from the raw 
GPS data due to the following reasons: 1) the ratings in such a 
location-activity matrix are not easy to get from the raw GPS data 
with merely location coordinates and timestamps. Recall that a 
rating in the matrix denotes how often an activity is performed in 
a location, so we may need to know what each user did on that 
location to get a rating. But the raw GPS data may not convey 
such information, and we have to find another way. We propose 
to use the possibly available comments provided by the users, 
which indicate what the user did on some locations, as shown in 
Figure 1. But unfortunately, in practice the users usually do not 
provide many comments. For example, in our dataset which is 
collected from a Web-based GPS data management service for 
over 2.5 years, we have 12,765 GPS trajectories, but only 530 
comments and many of them were attached to some same popular 
locations. It means, many locations do not have any comments 
attached to them, so when we try to get the ratings from these 
comments, we may have many missing entries in the matrix. 2) 
Based on the previous reason, we can only get a very sparse 
location-activity matrix (e.g. in our dataset, we have less than 
0.6% entries with non-missing values), so it is difficult to do 
recommendations with such limited information. We suggest 
exploiting other additional information on the locations and 
activities, and use it to alleviate the data sparsity. However, what 
kind of information we should extract? How we can incorporate it 
with the location-activity matrix to do recommendations? These 
are non-trivial questions.  

In this paper, based on the GPS history data, including location 
information (i.e. coordinates and timestamps) and some available 
user comments, we develop a system to provide both location and 
activity recommendations. We achieve this goal by exploiting 
various useful information sources, i.e. meaningful location 
features and activity-activity correlations, and using them by 
collaborative filtering with the sparse location-activity matrix to 
do recommendations. Our collaborative location and activity 
recommendation (CLAR) model is based on collective matrix 
factorization to propagate information among the two additional 
information sources and the sparse location-activity matrix, so 

that we can collaboratively predict the missing entries in the 
location-activity matrix for recommendations. Our work is a step 
towards associating the locations and the activities to boost the 
location-based services on the Web by using mobile data. The 
contributions of this paper lie in three aspects: 

• We put forward a new problem for collaborative location 
and activity recommendations based on the GPS history 
data, so that we can provide more specific recommendations 
with location or activity constraints. 

• We propose to exploit location features and activity-activity 
correlations for collaborative filtering, so as to address the 
data sparsity problem of the GPS histories. We also show 
how to well incorporate this additional information with the 
incomplete location-activity matrix in a collective matrix 
factorization model for final recommendations. 

• We evaluate our system using a large GPS dataset, which 
was collected by 162 users over a period of 2.5 year in the 
real world. The number of GPS points is around 4 million 
and its total distance was over 139,310 kilometers. 

The remainder of this paper is organized as follows. Section 2 
gives an overview of our system. Section 3 introduces the data 
modeling for location-activity matrix generation, location feature 
and activity-activity correlation extraction. Section 4 details our 
collaborative filtering model which takes the previous three pieces 
of information as inputs. In Section 5, we report the experimental 
results and offer some discussions. In Section 6, we survey the 
related works. In Section 7, we draw our conclusions and present 
the future work.  

2. OVERVIEW OF OUR SYSTEM 
In this section, we first clarify some terms used in this paper. 
Then, we briefly introduce the architecture of our system and 
demonstrate the application scenarios of our system. 

2.1 Preliminary 
First, we will clarify some terms, including GPS trajectory (Traj), 
stay point (s) and stay region (r). 
Definition 1. GPS trajectory: A user’s trajectory Traj is a 
sequence of time-stamped points: ݆ܶܽݎ = ,〉 ,ଵ … ,  〉, where a
GPS point  = ,ݔ) ,ݕ ,(ݐ ∀0 ≤ ݅ < ݇, with ݐ  as a timestamp 
ݐ) < ,ݔ) ାଵ), andݐ  ) as the two-dimension coordinates [4]. Inݕ
the right part of Figure 3, we show a trajectory consisted of 7 GPS 
points. 

 
Figure 3. GPS trajectory and stay point 

Definition 2. Stay point: A stay point s stands for a geographical 
region where a user stayed over a time threshold ܶ  within a 
distance threshold of ܦ . Denote ݐݏ݅ܦ൫, ൯  as the geospatial 
distance between two points  and , and  ݐ݊ܫ൫, .൯= ห ݐ .−  | as their time interval. In a user’s trajectory, s can be seen asݐ
a virtual location characterized by a set of consecutive GPS points ܲ = ,〉 ,ାଵ … , 〈 , where ∀݉ < ݅ ≤ ݊ ,)ݐݏ݅ܦ , ( ≤ ,)ݐݏ݅ܦ ,ܦ (ାଵ > ܦ  and )ݐ݊ܫ, ( ≥ ܶ . Hence, a stay point ݏ = ,ݔ) ,ݕ ,ݐ .ݏ ), whereݐ ݔ = ∑ . ୀݔ |ܲ|⁄ .ݏ  , ݕ = ∑ . ୀݕ |ܲ|⁄ ,              (1) 
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respectively stands for the average x and y coordinates of the 
collection ܲ; ݏ. ݐ = . ݐ  is the user’s arriving time on s and ݏ. ݐ = .  . represents the user’s leaving time [4]ݐ

Compared with raw GPS points, stay points are more meaningful 
in representing the locations a user stays by capturing the time 
duration and vicinity information, and they are commonly used as 
the basic units in representing the GPS data [4][6]. However, in 
practice, when we consider many GPS trajectories together, we 
may find that some stay points refer to a same interested region. 
This is because the users can stay in different parts (e.g. the west 
and east wings) of an interested region (e.g. Bird’s Nest stadium). 
In recommendation, we focus on a whole interested region such as 
Bird’s Nest rather than its two wings, so we need to further extract 
some geographical region by clustering the nearby stay points. We 
call these regions as stay regions. 
Definition 3. Stay region (location): Given all the stay points 
extracted from the GPS data as ܵ = ,ଵݏ} ,ଶݏ … , {ேݏ  and a 
clustering algorithm Alg(S) taking S as input, we have a stay 
region r as a geographic region which contains a set of stay points ܵᇱ = ,ᇱݏ} ,ᇱାଵݏ … , ′ݏ|ᇱݏ ∈ ܵ, ∀݉ ≤ ݅ ≤ ݊} belonging to some 
same cluster. Hence, a stay region ݎ = ,ݔ) .ݎ  where ,(ݕ ݔ = ∑ .ݏ ୀݔ |ܵ′|⁄ .ݎ  , ݕ = ∑ .ݏ ୀݕ |ܵ′|⁄ ,              (2) 
stand for the average x and y coordinates of the collection ܵ. In 
this work, stay regions are used as the basic units for location 
recommendation, i.e. when we recommend locations, in fact we 
recommend stay regions. 
We instantiate Alg as a grid-based clustering algorithm as shown 
in Figure 6. Notice that we do not directly extract stay regions by 
clustering on the raw GPS points from all the trajectories. This is 
because we may lose the sequential information by mixing the 
raw GPS points from different trajectories together, and thus it is 
hard to detect the meaningful stays. 

2.2 Application Scenarios 
The work reported in this paper is an important component of our 
GeoLife project [7], whose prototype has been internally 
accessible within Microsoft since Oct. 2007. So far, we have had 
162 individuals using this system.  

 
Figure 4. User interface for our system 

Figure 4 shows our system’s user interface. It’s organized as a 
Website (similar to a search engine) so that both PCs and hand-
held devices can access it. To use our system, for example, in 

activity recommendation, a user can input a location, such as 
“Bird’s Nest”, as a location query; then, our system can show the 
queried location on the map and suggest a ranking list of activities 
(top 5 here). The user can provide some feedbacks about the 
results by giving some ratings. For location recommendation, the 
user can input an activity, such as “tourism and amusement”, as 
an activity query; then our system can suggest a ranking list of 
candidate locations (top 10 here) and display them on the map, so 
that the user can zoom in on the map and get more details (e.g. 
transportations). The user can also view the location candidates 
ranked lower than 10 to get more recommendations. Similarly, the 
user can also provide feedbacks on location recommendation. 

2.3 Architecture 
We demonstrate our system’s architecture in Figure 5. Our system 
consists of 6 parts, including data inputs, stay region extraction, 
location-activity information extraction, location feature 
extraction, activity-activity correlation mining and collaborative 
location and activity recommendations. In the first 5 parts, we 
model the data and extract knowledge as inputs to train a 
recommendation system. This process can be performed off-line. 
In real-time (for part 6), the users can access the recommender 
through internet using laptops/PCs or PDAs/smart-phones, and 
submit the query (i.e. activity or location names). Our system will 
then return a ranking list of locations or activities given the 
activity or location query. 

 
Figure 5. Architecture of our system 

Data inputs: In addition to the users’ GPS trajectories with some 
comments, our system also exploits various information sources, 
including Point-of-Interest (POI) category database and World 
Wide Web, to alleviate the data sparsity problem that occurs when 
there are few comments to get reliable statistics of the location-
activity relations. We will give more details about using these two 
information sources in Section 3.2 and Section 3.3.  
Stay region extraction: As the stay points sometimes may refer to 
some common locations, we extract stay regions by clustering the 
stay points and use them for location recommendations. Notice 
that in practice, the recommended locations are supposed to have 
limited region sizes, so we take this constraint into consideration 
and propose a grid-based clustering algorithm to extract the stay 
regions. More details are in Section 3.1. 
Location-activity information extraction: With the available user 
comments to the GPS trajectories, we can get the statistics about 
what kinds of activities the users performed on some location, and 
how often they performed these activities. By organizing this 
statistics’ data in a matrix form, we can have a location-activity 
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matrix, with rows as locations and columns as activities. An entry 
in the matrix denotes the frequency for the users to perform some 
activity on some location. We will give the details in Section 3.2 
to show how to get these entries. Note that, due to the limited 
amount of comments, the obtained location-activity matrix is 
quite sparse. Our ultimate objective is to appropriately fill all the 
missing entries in that matrix, so that we can rank all the entries 
for collaborative location and activity recommendation. 

Location feature extraction: We exploit the location features with 
the help of POI category database. The database is based on the 
city yellow pages, and it can provide us the knowledge that what 
kinds of POIs we have in an area. For example, by query the POI 
category database with some location area, we can know how 
many restaurants (and theaters, museums, etc.) exist in this area. 
This helps us to get some sense of this location’s functionalities, 
so that we can use them as features for better recommendations. 
Similarly, by organizing the data in a matrix form, we can have a 
location-feature matrix, with rows as locations and columns as 
features. Each entry of the matrix denotes some feature value on 
that location. We give more details in Section 3.3. 

Activity-activity correlation mining: We exploit the World Wide 
Web, to get the knowledge about the activity correlations. With 
this knowledge, we may better infer that if a user performs some 
activity on a location, then it is likely that she will also perform 
another activity. For example, when the users go to see a movie in 
some place, it is quite likely they will also have some foods/drinks 
there. One possible way to get such activity-activity correlation 
information is directly having some statistics over the activity 
occurrence in the GPS data; however, as the amount of available 
comments is few, we may not get reliable statistics. Therefore, we 
refer to the World Wide Web, which is a huge knowledge source, 
to get such statistics. By organizing the data in a matrix form, we 
have an activity-activity matrix, with rows and columns both as 
activities. Each entry of the matrix denotes the correlation 
between a pair of activities. We give more details in Section 3.4. 
Collaborative location and activity recommendations: Having the 
knowledge of location-activity matrix, location-feature matrix and 
activity-activity correlation matrix, we can train a recommender 
system. We propose a collaborative filtering model under the 
collective matrix factorization framework [11], and manage to fill 
the missing entries in the location-activity matrix. Based on the 
filled location-activity matrix, we will rank and retrieve the top k 
locations/activities for recommendations to the users who access 
our system by PCs/PDAs. More details are given in Section 4.  

3. DATA MODELING 
In this section, we will introduce how to model the data in order to 
obtain the location-activity, location-feature and activity-activity 
matrices as inputs for training the recommender.  

3.1 Stay Region Extraction 
In practice, the recommended locations should not be too large in 
size; otherwise, the user may not easily find the true interesting 
locations in a large area. As a result, when we consider clustering 
the stay points to get stay regions, we need to take such a limit 
into account. Previous clustering algorithms used in GPS data 
processing, such as the classic k-means algorithm and the density-
based OPTICS clustering algorithm [19], do not constrain the 
output cluster sizes. So we propose a new grid-based clustering 
algorithm, as described in Figure 6.  

The basic idea is as follows. First, let’s denote ܷ = ,݇ݑ} 1 ≤ ݇ ≤|ܷ|} as a set of users. For each user ݑ ∈ ܷ, we parse her GPS 

trajectories (݆ܶܽݎ ) and detect the stay points (ܵ ) from each 
trajectory by seeking some spatial regions where ݑ spent a period 
over a certain threshold ௧ܶ௦ and the distance between any two 
consecutive GPS points in it is less than ܦ௧௦. For more details, 
please refer to our previous work [6]. After steps 1-3 in the 
algorithm, we have a stay point set ܵܲ = {ܵ, 1 ≤ ݇ ≤ |ܷ|} where 
each ܵ = ,ଵݏ} ,ଶݏ … ,  .ݑ ே} is the stay point set for userݏ

Algorithm ExtractStayRegion(ܦ௧௦, ௧ܶ௦, ݀) 
Input: A collection of GPS trajectories ߮ = ,݆ܽݎܶ} 1 ≤ ݇ ≤ |ܷ|}. 
Output: A set of stay regions ܴ = ,ݎ} 1 ≤ ݅ ≤ ݉}, where ݉ = |ܴ|. 
1.  Foreach ݑ ∈ ܷ do 
2.           ܵ= StayPointDetection( ݆ܶܽݎ, ܦ௧௦, ௧ܶ௦);  
3.          SP.Add( ܵ);                           // the collection of stay points 
4.   G = GridDivision( d );                    // divide the map into grids 
5.   Foreach ݃ ∈  do ܩ
6.           ݃ . ݏ = ݏ|ݏ} ∈ ܵܲ within the region of ݃}; 
7.   For all ݏ ∈ ܵܲ, set ݏ. ܦܫ݊݅݃݁ݎ = −1;         // initialization 
8.   While (exists ݏ ∈ ܵܲ with ݏ. ܦܫ݊݅݃݁ݎ = −1) do                 
9.           Find ݃ with max | ݃ .  .and unassigned to any stay region |ݏ
10.          ݊݃ = GetNeighborGrids( ݃, G );          // ݊݃ is a set of grids 
ݎ          .11 = ݃ ∪ ݊݃;             // assign ݃ and ݊݃ to a new stay region 
.ݎ)          .12 ,ݐ݈ܽ .ݎ ݈݊݃) = GetCentroidCoordinates( SP, r ); 
13.          R.Add( r ) ; 
14.         Foreach ݏ ∈ ݃. where ݃ ݏ ∈  do ݎ
.ݏ                  .15 ܦܫ݊݅݃݁ݎ = |ܴ|;              // assign region ID                 
16.  Return R;  
Figure 6. Grid-based clustering for stay region extraction  

Second, we divide the map into grids (step 4), in order to 
constrain our output stay region to be limited in size. In particular, 
we set each grid as a square with width of ݀ 3⁄ , where d is a 
parameter to constrain our output stay region size as no larger 
than ݀ × ݀ as shown later. After dividing the map into grids, we 
project all the detected stay points in these grids (steps 5-6), so 
that we have a set of grids ܩ = {݃, 1 ≤ ݅ ≤ with each ݃ {|ܩ| ∈  ܩ
has its stay point set ݃.  .ݏ

Third, we employ a greedy strategy to cluster grids (containing 
stay points). At each round (steps 8-15), we start with finding a 
grid ݃ that is unassigned to any stay region yet and has the 
maximal number of stay points |݃.  Then, we will extract its 8 .|ݏ
neighboring grids (i.e. consider a square shape with 3 × 3 grids 
and ݃  in the center). The unassigned grids among these 8 
neighboring grids, denoted as ݊݃, are clustered with ݃ to form a 
new stay region ݎ = ݃ ∪ ݊݃. Hence, all the stay points in ݃ and ݊݃ are clustered into the stay region ݎ. Note that at most there will 
be 3 × 3 grids clustered to a stay region, so we can constrain the 
extracted stay region size as ݀ × ݀ . Finally, we calculate the 
centroids of all the stay points’ latitude and longitude coordinates 
in ݎ as ݎ’s coordinates. At last, we output a set of stay regions R. 

3.2 Location-Activity Information Extraction 
Based on stay region extraction, we can get a set of stay regions 
from the stay points. For each stay region ݎ in the stay region set ܴ = ,ݎ} 1 ≤ ݅ ≤ ݉}, we can first extract the comments from the 
GPS data that attached to this stay region. After that, we parse the 
comments, which in general are texts, to get the activities. For 
example, if a comment mentions “delicious” or “restaurant”, then 
it implies that the user had some foods or drinks at this location. 
Hence, we can have an activity of “food and drink” on this 
location. By parsing all the comments, we can get the counts of 
various activities on each stay region (location). Specifically, for a 
location i, we can have an n-dimensional count vector ࢉ =[ܿଵ, ܿଶ, … , ܿ] for n activities, where each ܿ  is the number of 



times when activity j performed at location i according to the 
comments. Denote the location-activity matrix as ܺ×; then we 
can define its entries as: 

ܺ = ܿ, ∀݅ = 1, … , ݉;  ݆ = 1, … , ݊  (2) 

Note that some locations may not have any comments, so their 
count vectors are zero vectors and the corresponding entries in the 
matrix X are zeros. However, when ܺ = 0, it doesn’t mean that 
there is no possibility to perform activity j at location i. It is just 
because there is no comment that records that activity. So we treat 
all these entries equal to 0 as missing values for predictions.  

3.3 Location-Feature Extraction 
As discussed in the Section 2, we can use the POI category 
database to get the statistics (counts) of different POIs in an 
interested region. In particular, given a stay region ݎ ∈ ܴ, 1 ≤ ݅ ≤݉, we will count the number of different POIs in an enclosing 
rectangle of the stay points in ݎ, with the coordinates as [ri.lat - 
d/2, ri.lat + d/2] × [ri.lng – d/2, ri.lng + d/2]. Here, d is the size 
parameter as introduced in Section 3.1. Therefore, the size of the 
enclosing rectangle is ݀ × ݀ . Denote the count vector for a 
location i as qi = [qi1, qi2, …, qil] for l types of POIs. Consider that 
some types of POIs (e.g. restaurants) are more popular than others 
(e.g. movie theaters), we follow information retrieval to further 
normalize these counts in the form of term-frequency inversed-
document-frequency (TF-IDF) [8] to obtain a location-feature 
matrix ܻ×. Specifically, we have each entry of Y as 

ܻ = ೕ∑ ೕೕసభ ∙ ݈݃ |: ೕவൟ൛||{}| , ∀݅ = 1, … , ݉;  ݆ = 1, … , ݈, (3) 

where |{qi}| is the number of all the count vectors (i.e. number of 
locations), and |{qi: qij > 0}| is the number of count vectors (i.e. 
locations) having non-zero j-th type POIs. In this way, we 
reasonably increase the weights for those important POIs that are 
fewer but unique (e.g. movie theaters), and decrease the weights 
for those extensively distributed POIs (e.g. restaurants).  

3.4 Activity-Activity Correlation Extraction 
Knowing the correlations between the activities can help us to 
better infer what the users may do in some location based on the 
observation of the activities performed before. One possible way 
to get such correlations is to calculate them directly from the GPS 
data; but due to the limited number of comments, we may not get 
reliable results. Fortunately, such activity correlations are usually 
common senses and possibly reflected on the World Wide Web. 
To facilitate such common sense knowledge mining, we turn to 
Web search for help. In particular, for each pair of activities ܽ 
and ܽ, we put their names together as a query and submit it to 
some commercial search engine to get the Webpage hit counts. 
For example, for activities “food and drink” and “shopping”, we 
generate a query “food and drink, shopping” and send it to Bing. 
Bing will then return a list of Webpages that describe these two 
activities together, and as expected, the number of such returned 
Webpages implies the correlation between them. In general, we 
find the hit count for “food and drink, shopping” (30.3 million hits 
from Bing) is higher than that for “food and drink, sports and 
exercises” (7.56 million hits), showing that the correlations of 
“food and drink” with “shopping” is higher than that with “sports 
and exercise”, coinciding with the common sense.  

Based on such a method, we can then have an activity-activity 
matrix ܼ×, with each entry defined as ܼ = ℎ ℎ∗⁄ , ∀݅ = 1, … , ݊;  ݆ = 1, … , ݊,  (4) 

where ℎis the hit count for activity i and activity j based on some 
search engine. ℎ∗ = ,ℎ ݔܽ݉݃ݎܽ ∀݅, ݆ is the maximal hit count 
among all the hit counts for each pair of activities.  

4. COLLABORATIVE LOCATION AND 
ACTIVITY RECOMMENDATIONS 
After the data modeling, we have the location-activity, location-
feature and activity-activity matrices. As the location-activity 
matrix is incomplete with many missing entries, our objective is 
to fill those missing entries so as to get a full location-activity 
matrix for location and activity recommendations. Since the 
location-activity matrix is very sparse, we try to borrow some 
more information from location-feature and activity-activity 
matrices for prediction based on collaborative filtering.  

 
Figure 7. Demonstration of our model 

Figure 7 demonstrates the main idea of our model based on 
collective matrix factorization. Given the location-activity matrix ܺ×, we decompose it by low-rank approximation as a product 
of two matrices ܷ×  and ܸ×  (the superscript “T” for ܸ×்  
denotes the matrix transpose), where ݇ < ݊. It shares the location 
information through sharing matrix ܷ×  with the location-
feature matrix ܻ× , which is decomposed as a product of 
matrices ܷ×  and ܹ× . Similarly, the location-activity matrix 
shares the activity information through sharing matrix ܸ× with 
the activity-activity matrix ܼ×, which is decomposed as a self 
product of ܸ× . Hence, we put forward a collective matrix 
factorization model and formulate our objective function as: ܮ(ܷ, ܸ, ܹ) = 12 ∥ ܫ ∘ (ܺ − ்ܷܸ) ∥ிଶ + ଵ2ߣ ∥ ܻ − ்ܷܹ ∥ிଶ +    ఒమଶ ∥ ܼ − ்ܸܸ ∥ிଶ + ఒయଶ (∥ ܷ ∥ிଶ +∥ ܸ ∥ிଶ +∥ ܹ ∥ிଶ ), (5) 

where ∥∙∥ிdenotes the Frobenius norm. I is an indicator matrix 
with its entry ܫ = 0  if ܺ  is missing, ܫ = 1  otherwise. The 
operator “∘” denotes the entry-wise product. As shown in the 
Figure 7 and the objective function, we aim to propagate the 
information among ܺ× , ܻ×  and ܼ× , by requiring them to 
share some low-rank matrices ܷ×  and ܸ× . The first three 
terms in the objective function (5) control the loss in matrix 
factorization, and the last term controls the regularization over the 
factorized matrices so as to prevent overfitting.  

In general, this objective function is not jointly convex to all the 
variables ܷ× , ܸ×  and ܹ× , and we cannot get closed-form 
solutions for minimizing the objective function. Therefore, we 
will turn to some numerical method such as gradient descent to 
get the local optimal solutions. Specifically, we have the gradients 
(denoted as ∇) for each variable as ∇ܮ = ܫ] ∘ (்ܷܸ − ܺ)]ܸ + ்ܹܷ)ଵߣ − ܻ)ܹ +  ,ଷܷߣ

         ∇ܮ = ܫ] ∘ (்ܷܸ − ܺ)]்ܷ + ்ܸܸ)ଶߣ2 − ܼ)ܸ + ܮଷܸ,   (6) ∇ߣ = ்ܹܷ)ଵߣ − ܻ)்ܷ +  .ଷܹߣ

After having the gradients, we can use gradient descent to 
iteratively minimize the objective function. The details of the 
algorithm are given in Figure 8. 
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Algorithm CLAR 
Input: Incomplete location-activity matrix ܺ×, location-feature 
matrix ܻ× and activity-activity matrix ܼ×.  
Output: Complete location-activity matrix ܺ×. 
ݐ  .1 = 1; 
2.  While (ݐ < ܶ and ܮ௧ − ௧ାଵܮ > ߳) do          // T is #(max iterations) 
3.        Get the gradients ∇, ∇ and ∇ௐby Eq.(6); 
ߛ         .4 = 1; 
5.        While (ܮ( ௧ܷ − ,∇ߛ ௧ܸ − ,∇ߛ ௧ܹ − (௪∇ߛ ≥ )ܮ ௧ܷ, ௧ܸ , ௧ܹ)) do 
ߛ                 .6 = ߛ 2⁄ ;        // search for the maximal step size 
7.        ௧ܷାଵ = ௧ܷ − , ௧ܸାଵ∇ߛ = ௧ܸ −  and ௧ܹାଵ∇ߛ = ௧ܹ −  ;ௐ∇ߛ
ݐ        .8 = ݐ + 1; 
9.   Return X; 

Figure 8. Algorithm description for our model 
After having the complete location-activity matrix ܺ× , for a 
user query of some location, we can look up the rows of  ܺ×. If 
this location exists in our system (i.e. the location coordinates fall 
in some stay region), for example, the i-th row of ܺ×, we rank 
the i-th row’s values in a descending order and return a list of 
corresponding activities for activity commendation. For example, 
we search “Bird’s Nest” in our system and find it matched with 
10th row (i.e. 10th location) of ܺ×, then we will extract the 10th 
row’s ratings, e.g. x=[2, 3, 4, 5, 1], where each entry denotes the 
rating for an activity. Assume from left to right in x, the activities 
are “Food”, “Shopping”, “Sports”, “Tourism” and “Movie”, then 
we will recommend a ranking list of activities with “Tourism” > 
“Sports” > “Shopping” > “Food” > “Movie”. Similarly, for 
location recommendation, given a user query of some activity, we 
look up the columns of ܺ×. If this activity is matched in our 
system, for example, the j-th column of ܺ×, we rank the j-th 
column’s values in a descending order and return a list of the top 
N corresponding locations for location commendation. 

5. EXPERIMENTS 
In this section, we will first present the experimental settings. 
Second, we will introduce the evaluation approaches. Third, we 
will deliver some major results followed by some discussions. 

5.1 Settings 
5.1.1 GPS Users, Devices and Data 
In total, we have 162 users (61 females and 101 males, and more 
statistics is shown in Figure 9) carrying the GPS devices to record 
their outdoor trajectories from April 2007 to Oct. 2009.  

 
Figure 9. GPS user statistics 

Figure 10(A) shows the GPS devices used to collect data. They 
are comprised of stand-alone GPS receivers and GPS phones. In 
general, the sampling rate for GPS devices is set as two seconds. 
The GPS logs were collected in China, as well as a few cities in 
the USA, South Korea, and Japan. As most parts of the logs were 
generated in Beijing, and for easier evaluation of our system, we 
extract the logs from Beijing for our experiments. After this data 
preprocessing, we obtain a dataset having 12,765 GPS trajectories 

with total GPS points number over 3,980,320 and total trajectory 
length over 139,310 kilometers. We have totally 530 comments. 
To make sure that we recommend useful locations and activities, 
we also remove some GPS points for work and homes. The data 
distribution in Beijing is shown in Figure 10(B). To protect the 
users’ privacy, we use these data anonymously. 

 
(A) GPS devices                     (B) Data distribution in Beijing 

Figure 10. GPS devices and data distribution 
We defined 5 activities to recommend from the GPS data. As 
shown in Table 1, these 5 activities basically cover people’s daily 
routines. Therefore, n=5 for the matrices X and Z in Eq.(5). 

Table 1. Activities that we used in the experiments. 
Activities Descriptions 
Food and drink Dinning/drinking at restaurants/bars, etc. 
Shopping Supermarkets, department stores, etc. 
Movie and shows Movie/shows in theaters and exhibition in 

museums, etc. 
Sports and exercise Doing exercises at stadiums, parks, etc. 
Tourism and amusement Tourism, amusement park, etc. 

5.1.2 Parameter Selection 
Data processing parameters. In this experiment, to obtain stay 
points from raw GPS data, we follow our previous work [9] to set 
Tthresh as 20 minutes and Dthresh as 200 meters for stay point 
detection. To extract stay regions from stay points, we tentatively 
set the stay region size as 300×300 square meters, i.e. d = 300, 
and we will study its impact in Section 5.3.2.  

Model parameters. Our model has 3 parameters: ߣଵ,  ,ଷߣ ଶ andߣ
where  ߣଵ and ߣଶ control the contributions of location features and 
activity correlations respectively, and we will study their impacts 
in Section 5.3.1. ߣଷ controls the regularization term, and we set it 
as 10 through all our experiments. As our model is based on low-
rank matrix factorization, we set the rank k=3 for the matrices U, 
V and W in Eq.(5). 

5.2 Evaluation Methodology 
To evaluate our recommendation system, we invited 5 subjects 
who are familiar with Beijing, to individually use our system and 
provide the feedbacks. For activity recommendation, we asked the 
subjects to evaluate the top 5 recommended activities on the top 
20 popular locations according to the GPS logs; and for location 
recommendation, we asked them to evaluate top 10 recommended 
locations. Our system’s user interface is shown in Figure 4, where 
users can provide ratings to the recommended locations/activities. 

Table 2. Rating criteria for locations and activities 
Ratings Explanations 
3 I’d like to visit this location / do this activity 
2 I’d like to visit this location if passing by / do this activity 

if time spared
1 I have no feeling to visit this location / do this activity 
0 This location does not deserve to visit / this activity is not 

suitable to do there.
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In Table 2, we list the rating criteria. To get the ground truths for 
evaluation, we aggregate all the subjects’ feedbacks to get an ideal 
ranking list. As our recommendations are based on ranking 
results, we employ normalized discounted cumulative gain 
(nDCG) [8] to measure our retrieved location/activity list. nDCG 
is commonly used in information retrieval to measure the search 
engine’s performance. A higher nDCG value to a list of search 
results means that, the highly relevant items appearing earlier 
(with higher ranks) in the result list. In particular, nDCG[p], or 
referred as nDCG@p, measures the relevance of top p results: ݊[]ܩܥܦ = ீ[]ூீ[] , []ܩܥܦ = ଵ݈݁ݎ + ∑ ୪୭మ ୀଶ , 

where IDCG[p] is the DCG[p] value of ideal ranking list. reli is a 
relevance value. nDCG ranges from 0 to 1. The higher nDCG is, 
the better a ranking result list is. For example, given a ranking list 
of 4 items with relevance as <1,3,0,2>,  the nDCG@4 is  

[4]ܩܥܦ݊  = ଵାଷ మଶ⁄ ାାଶ మସ⁄ଷାଶ మଶ⁄ ାଵ మଷ⁄ = 0.89. 

5.3 Results and Discussions 
In this section, we will first study our system’s performances 
under different model parameters. Then, we will employ two 
baselines for comparison under several settings. Finally, we will 
give some more insights to our model. 

5.3.1 System performance 
5.3.1.1 Impact of the location feature information 
The parameter ߣଵ controls the contribution of the location feature 
information to the objective function (5). To study the impact of 
this information, we vary the value of ߣଵ  and plot our model’s 
performances with the average nDCG values over all the subjects 
in Figure 11. In this study, we fix ߣଶ =200, which is in the 
magnitude of division of the location-feature matrix size by the 
activity-activity matrix size. In this way, we make sure that both 
location features and activity correlations can contribute to the 
objective function. We use nDCG@5 to evaluate the results for 
activity recommendation and nDCG@10 for location recommend-
ation in this paper if without specific references.  

  
(A) activity recommendation     (B) location recommendation. 

Figure 11. Impact of the location features 
As shown in Figure 11(A), the model’s performance first 
increases and later decreases as ߣଵ  increases. This is because 
when ߣଵ  is too small, the model cannot fully utilize the 
information from the location features to understand the location 
functionalities and the connections among the locations. When ߣଵ 
is too large, the location feature information will dominate the 
objective function (5), thus overwhelming the activity information 
from the location-activity matrix X and activity-activity matrix Z.  
It will cause some problem; for example, given two locations i 
and j with similar location features, if location i has no rating for 
“food and drink” but has ratings for “movie and shows”, 
according to location similarity, we cannot recommend to users to 

try “food and drink” at location j although usually there are some 
nice restaurants near the movie theatres. In Figure 11(B), we 
observe the similar pattern for location recommendation. When 
the location-activity ratings are not well inferred with too small or 
too largeߣଵ, the recommended location list also may miss some 
interesting places. Note that, when ߣଵ=0, the model equals to only 
exploiting one additional information source, i.e. the activity-
activity correlation, to help recommendation. As the performance 
at ߣଵ=0 can be lower than the performance at ߣଵ>0 (e.g. ߣଵ=0.1), 
we demonstrate the benefit of using both additional information. 

5.3.1.2 Impact of the activity correlation information 
We also study the impact of parameter ߣଶ , which controls the 
contribution of the activity correlation information to the objective 
function (5). We vary the value of ߣଶ  and plot our model’s 
performances in Figure 12. In this study, we fix ߣଵ=0.1 according 
to the previous study in Figure 11. 

   
(A) activity recommendation      (B) location recommendation 

Figure 12. Impact of the activity correlations 
As shown in Figure 12(A), similarly we observe the model’s 
performance first increasing and later decreasing as ߣଶ increases. 
When ߣଶ is too small, the activity correlation information cannot 
contribute much to the objective function. When ߣଶ is too large, 
the activity correlations will dominate the objective function, so 
that for a location it will recommend the activities mostly based 
the correlation values while not fully considering whether such a 
location is suitable for some activity. For example, if a location 
has some ratings for “food and drink”, then with too large ߣଶ, the 
model will also recommend the user to see “movie and shows” 
without carefully considering whether this location has theatre or 
not. In Figure 12(B), we can observe the similar pattern for 
location recommendation. Note that, when ߣଶ=0, the model equals 
to only exploiting one additional information source for location 
features. Again, as the performance at ߣଶ=0 can be lower than the 
performance at ߣଶ>0 (e.g. ߣଶ=200), we demonstrate the benefit of 
exploiting both additional information sources. 

5.3.2 Investigation into Our System 
5.3.2.1 Comparison with baselines 
We employ two baselines: single collaborative filtering (SCF) and 
unifying collaborative filtering (UCF). In SCF, we only use the 
incomplete location-activity matrix as input for collaborative 
filtering. We employ the popular low-rank matrix factorization 
approach to accomplish such a collaborative filtering task [18]. In 
particular, SCF aims to solve an singular value decomposition 
problem by min ,ܷ)ܬ ܸ) =∥ ܫ ∘ (ܺ − ்ܷܸ) ∥ிଶ , where X denotes 
the incomplete location-activity matrix, U and V are the low-rank 
matrices, I is the indicator matrix same with Eq.(5). It can be seen 
that this optimization problem equals to the case when our 
objective function (5) has both ߣଵ and ߣଶ as zeros. We employ this 
baseline to show that with limited number of comments (and thus 
sparse in location-activity matrix), the recommendation results 
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may not be satisfying. So we can validate our motivation to use 
additional information sources to help improve recommendation.  
We also follow [10] to provide a solution, UCF, which can use the 
additional information sources for unifying collaborative filtering. 
In UCF, for each missing entry in the location-activity matrix, it 
will extract a set of top N similar locations and top N similar 
activities, and then use the ratings for these users over these items 
in a probabilistic way to calculate a value for the missing entry. 
After all the missing entries are filled in the location-activity 
matrix, similar ranking strategy with our system can be used to 
output the location and activity ranking list for recommendations. 
We use this baseline to testify the effectiveness of our model over 
other collaborative filtering methods given the same inputs. 

Table 3. Comparisons under different p-values for nDCG@p 

 Activity Recommend. Location Recommend.
p=3 p=5 p=5 p=8 p=10

CLAR 0.83±0.04 0.91±0.03 0.84±0.06 0.84±0.04 0.86±0.04 
UCF 0.72±0.06 0.87±0.03 0.76±0.03 0.74±0.03 0.75±0.03 
SCF 0.70±0.07 0.84±0.05 0.63±0.08 0.62±0.07 0.63±0.06 

 
In Table 3, we report the performances of our model and other 
two baselines for both activity and location recommendations. We 
vary the p-values for nDCG@p to extensively evaluate the 
systems’ performances. The entry value in Table 3 denotes the 
mean and standard deviation of the nDCG values. As shown in the 
table, our model CLAR consistently outperforms the two 
baselines under different measurements. We also conduct the t-
test over the results and find our results are significantly better 
than the baselines’ results (one-tailed test p1<0.01, two-tailed test 
p2<0.01) in both location and activity recommendations. Both our 
CLAR and UCF can outperform SCF due to using more 
information. Besides, our CLAR can outperform UCF because in 
UCF, the information flow is in a single direction from location 
features and activity correlations while our CLAR enables the 
information flow in both directions. In other words, in UCF, the 
location similarities and activity similarities are learned from the 
location features and activity correlations; then they are passed to 
the location-activity matrix for collaborative filtering. This 
collaborative filtering does not have further feedback to the 
location-features and activity correlations. So, if the similarities 
learned from this additional information are not accurate, there is 
no second chance to refine. In contrast, in our CLAR, we put the 
location-activity matrix and the two pieces of additional 
information together in an objective function for optimization, so 
that we can have the feedback from the matrix factorization in 
location-activity matrix to the location-feature matrix and activity-
activity correlation matrix. In this way, our CLAR can have bi-
directional information flows and thus outperform UCF. 

5.3.2.2 Impact of the stay region size 
We also study the impact of stay region size in recommendation. 
As discussed above, in recommendations, we may prefer smaller 
stay region size so that the users can easily find what she wants in 
the recommended location. Therefore, we vary the stay region 
size by varying the region width d from 200 to at most 500 
(d=500 means that the stay region size is 500×500 square meters).  

As shown in Table 4, as the stay region size increases, the number 
of stay regions extracted by grid-based clustering (shown in 
Figure 6) decreases. Our CLAR model consistently outperforms 
the two baselines UCF and SCF. We also conduct the t-test and 
find our results are better than the baselines’ results (one-tailed 
test p1<0.05, two-tailed test p2<0.05) in both location and activity 

recommendations. When d=300, our CLAR works the best, 
showing that too small region size may make the extracted stay 
regions’ location features insufficient to represent the location 
functionalities and too large region size may lead to difficulty in 
finding interested points of interests from a big area. 

Table 4. Impact of stay region size 

 #(stay 
region) 

Activity Recommend. Location Recommend. 
CLAR UCF SCF CLAR UCF SCF 

d=200 3329 0.86 
±0.02 

0.85 
±0.02 

0.83 
±0.02 

0.82 
±0.03 

0.72
±0.03 

0.58
±0.05 

d=300 2503 0.91 
±0.03 

0.87 
±0.03 

0.84 
±0.05 

0.86 
±0.04 

0.75
±0.03 

0.63
±0.06 

d=500 1696 0.86 
±0.01 

0.81 
±0.03 

0.83 
±0.02 

0.86 
±0.03 

0.74
±0.03 

0.67
±0.02 

 

5.3.2.3 Impact of the user number 
As the GPS devices become popular, we will have more and more 
users and accumulate such GPS data on the Web as time goes by. 
We study the impact of user numbers so as to see whether our 
system can handle the data well.  

Table 5. Impact of user number 
 #(stay 

point)
Running 
Time (ms) 

Activity 
Recommend.

Location 
Recommend.

#user=50 3895 5780.15 0.84±0.04 0.75±0.03 
#user=100 8039 10828.45 0.88±0.03 0.89±0.02 
#user=162 12656 15053.6 0.90±0.03 0.91±0.03 
 
As the user number increases, the GPS data size increases and 
thus the number of stay points also increases (though it might not 
be the case when the user number is sufficiently large). As shown 
in Table 5, the running time for our CLAR model is almost linear 
to the number of stay points. This is because the computational 
complexity of our CLAR model is linear to the number of stay 
points. Consider the algorithm for our CLAR model in Figure 8. 
Given the input matrices ܺ× , ܻ× , ܼ×  and their low-rank 
factorized matrices ܷ×, ܸ×, ܹ×, we have the computational 
complexity of evaluating the objective function (5) is: ݉ × ݇ ×݊ + ݉ × ݇ × ݈ + ݊ × ݇ × ݊ + (݉ × ݊ + ݊ × ݇ + ݈ × ݇), which is ܱ(݉) since n, l and k are much smaller than m (e.g. in our case 
with 162 users, m=12656, n=5, l=13, k=3). Similarly, we can have 
the computational complexity for the gradients as ܱ(݉). As our 
algorithm has an iteration limit and in practice it converges fast 
(in less than 300 iterations), the whole computational complexity 
for our model is linear to the number of stay points ܱ(݉). Hence, 
our model can be quite efficient. From Table 5, we also observe 
that as the user number increases, there are more GPS data and 
thus we can keep improving the system’s performance. 

5.3.3 Discussions 
5.3.3.1 Impact of the location types to activity 
recommendation 
Is our system doing equally well on activity recommendation for 
different types of locations? We summarize the experimental 
results for the setting with d=300 and #user=162 to answer this 
question in Figure 13. As can be seen from the figure, for the 20 
most popular locations, our system works the best on the locations 
that are in the type of “food and sports area”, and the worst on the 
locations that are in the type of “shopping and movie area” (here 
we aggregate the user evaluations and pick the top 2 activities as 
the location types). This is because the activity “food and drink” 
happens more often in our daily life; and it’s also more likely to 



have many restaurant POIs in the location feature for predicting 
this activity. For “sports” areas, the location features can capture 
the location functionality by detecting the parks and stadiums. For 
“tourism” areas, there are more comments from the GPS users, so 
that the prediction on such areas can be comparatively accurate. 
For the “shopping & movie” area, the activity recommendation 
results are not as good as the other areas, because there are fewer 
comments from the GPS users on these activities and thus fewer 
ratings in collaborative filtering. Besides, such areas are usually 
also suitable for food hunting and sometimes tourism, so that they 
are overwhelmed by the recommendations to food and tourism. 

 
Figure 13. Impact of location types to activity recommend. 

5.3.3.2 Impact of the activity types to location 
recommendation 
We also ask the question whether our system does equally well on 
location recommendation for different activity types? Based on 
the same setting with previous section, we summarize the location 
recommendation results on each activity type in Figure 14.  

 
Figure 14. Impact of activity types to location recommend. 

As expected, for activity “food and drinks” which more often 
happens, and activity “tourism and amusement” which has more 
user comments, the recommendation results are quite satisfying. 
For “movie and shows”, the results are still good. For “shopping”, 
the performance is worse due to less user comments in modeling 
the location-activity matrix for collaborative filtering. For “sports 
and exercises”, the performance is also worse than other activities; 
and an interesting observation is that, in Figure 13, our system 
usually performs well on the “sports” areas. Is there something 
wrong? By analyzing the data, we find that this is reasonable; 
because in our system the locations with more comments are more 
likely to be recommended (i.e. the higher ratings on other 
activities can propagate to the activity “sports”), but most of these 
locations are related to food hunting and tourism which are 
loosely connected with “sports”. As a result, the location 
recommendation for the activity “sports” is worse than the others. 

5.3.3.3 Prediction for new locations and activities 
Our system is based on some GPS data which is limited in size. 
Therefore, there could be some locations that we do not see in the 
existing GPS dataset. Similarly, we also only define 5 main 

activities, what if the user wants to get recommendations for some 
more-detailed activities, such as “Thai food” instead of general 
“food”? One possible solution could be relying on the data 
accumulation on the Web. As the GPS devices become popular, 
there can be more and more GPS data related to more detailed 
activities in people’s daily life. Once we have these data, we can 
keep updating our system. Since our model’s computational 
complexity is linear to the number of GPS stay points (i.e. the data 
size), such updates could be easy. Another possible solution is to 
get such location-activity information from the Web. As there are 
blogs describing such information (e.g. travel logs), we may mine 
such knowledge from the Web to enhance our system. However, 
considering that the blog contents can be quite noisy, it’s not clear 
how much it helps. We may leave it as our future study. 

6. RELATED WORK 

6.1 Location Recommendation 
Location recommendation has been an important topic in geo-
related services. Some systems, based on an individual user’s 
current location, retrieve important surrounding locations and 
their contexts for recommendations. For example, in [12], a 
mobile application framework, which enables a mobile phone user 
to query the geo-coded Wikipedia articles for landmarks in 
vicinity, is presented. In [13], a Cyberguide system is developed 
to provide the librarian information which describes the nearby 
buildings and related people identities. Comparatively, our system 
exploits the user location histories and recommends the interesting 
locations all round the city instead of only nearby locations.  
There are some systems focusing on recommending some specific 
types of locations. For example, in [14], a CityVoyager system is 
developed to recommend shops. It collects the users’ shop visiting 
histories based on GPS logs, and uses an item-based collaborative 
filtering method to recommend to a user some shops that are 
similar to his/her previously visited shops. In [15], a system 
considering both users’ preferences and location contexts is 
shown to recommend restaurants. It uses Bayesian learning to 
calculate some recommendation values for restaurants so as to 
provide a ranking list for recommendation. Similarly, in [16], a 
Geowhiz system, which uses a user-based collaborative filtering 
algorithm to recommend restaurants, is proposed. In [9], the 
recommended locations are hot spots for tourism. A HITS-based 
model is proposed to take into account a user’s travel experience 
and the interest of a location in recommendation, so that only the 
locations that are really popular and also recommended by 
experienced users can be recommended. In contrast to those 
systems limited in modeling only one type of location for 
recommendations, our system is capable to handle various types 
of locations. That is, we can recommend locations not only for 
foods and drinks but also for shopping, etc.  

6.2 Activity Recommendation 
Activity recommendation is a pretty new research issue with little 
research on it so far. Yet it is a quite common question in our 
daily life to ask what we can do if we want to visit some place. 
Most of the previous work related to activity study focuses on 
how to recognize an activity from sensor data by ubiquitous 
computing [21]. For example, in [5], based on GPS data, a 
hierarchical conditional random field model is used to recognize 
whether a user is at work, or sleeping at home, or taking leisure, 
or visiting friend, etc. In [17], activities of daily living such as 
brushing teeth or making a snack in indoor environment are 
recognized by using RFID sensors. Some object use common 
sense knowledge is extracted from Web to help training a 
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recognition model in an unsupervised way. In contrast, rather than 
recognize the activity for an individual user in real time, we aim 
to do mining over the  users’ activity histories (i.e. GPS logs) and 
recommend what a user can do on some location.  

7. CONCLUSION 
In this paper, we studied how to mine knowledge from the real-
world GPS data to answer two common questions in our daily life. 
The first question is, if we want to do something, where shall we 
go? This question corresponds to location recommendation. The 
second question is, if we visit some place, what can we do? This 
question corresponds to activity recommendation. We show that 
these two questions are inherently related, as they can be seen as a 
ranking problem over a location-activity rating matrix. Because 
the location-activity matrix is very sparse in practice, we proposed 
to exploit other information, including the location features and 
the activity-activity correlations from various information sources, 
to enhance the performance. We provided a collaborative filtering 
approach based on collective matrix factorization to take these 
information sources as inputs and train a location and activity 
recommender. Both PC and hand-held device users can access our 
recommender through the Web to get recommendations for better 
trip planning, etc. We evaluated our system on a large GPS 
dataset, and showed 7% improvement on activity recommendation 
and over 20% improvement on location recommendation over the 
simple baseline without exploiting any additional information. 

In the future, we will consider more information, such as user 
features, to further enhance the performance. Our current system 
is for general recommendations; if we have the user features, we 
may be able to personalize our recommendation system so as to 
better satisfy the user’s information needs. Besides, we may also 
use the user features to establish a social network among the users 
so that the experiences from friend (similar) users can contribute 
more in retrieving recommendation results.  
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