
A Scalable Machine-Learning Approach for
Semi-Structured Named Entity Recognition

Utku Irmak
Yahoo! Labs

4401 Great America Parkway
Santa Clara, CA

uirmak@yahoo-inc.com

Reiner Kraft
Yahoo! Inc.

701 First Avenue
Sunnyvale, CA

reiner@yahoo-inc.com

ABSTRACT

Named entity recognition studies the problem of locating and clas-

sifying parts of free text into a set of predefined categories. Al-

though extensive research has focused on the detection of person,

location and organization entities, there are many other entities of

interest, including phone numbers, dates, times and currencies (to

name a few examples). We refer to these types of entities as semi-

structured named entities, since they usually follow certain syntac-

tic formats according to some conventions, although their structure

is typically not well-defined. Regular expression solutions require

significant amount of manual effort and supervised machine learn-

ing approaches rely on large sets of labeled training data. There-

fore, these approaches do not scale when we need to support many

semi-structured entity types in many languages and regions.

In this paper, we study this problem and propose a novel three-

level bootstrapping framework for the detection of semi-structured

entities. We describe the proposed techniques for phone, date and

time entities, and perform extensive evaluations on English, Ger-

man, Polish, Swedish and Turkish documents. Despite the minimal

input from the user, our approach can achieve 95% precision and

84% recall for phone entities, and 94% precision and 81% recall

for date and time entities, on average. We also discuss implemen-

tation details and report run time performance results, which show

significant improvements over regular expression based solutions.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Retrieval Models;

I.2.7 [Artificial Intelligence]: Natural Language Processing

General Terms

Algorithms, Experimentation

Keywords

Boostrapping algorithm, weakly-supervised learning, NER

1. INTRODUCTION
There is a significant amount of work in the field of named entity

recognition (NER), where the goal is to locate and classify parts of

free text into a set of predefined categories. These categories in-

clude names of persons, organizations, locations and also expres-

sions of phone numbers, date and time entities, monetary values

etc. NER has been studied extensively as it is quite important for

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

a large number of applications including question answering, user-

centric entity detection systems, content de-identification and in-

formation retrieval (e.g., web search engines).

In this paper we focus on a subset of named entities, which we re-

fer to as semi-structured named entities (SSNE). We formally define

SSNE as those whose entity string may syntactically contain only:

(1) digits and white spaces; (2) a finite set of non-letter characters;

(3) a finite set of domain-specific terms (tokens), if applicable. In

other words, we define a named entity type to be semi-structured,

if its instances (of interest) conform to these restrictions. Although

the person, location and organization entities do not conform to

them, phone or fax numbers, date, time, monetary, weight, length,

percentage entities do follow such syntactical properties naturally.

However, these properties are usually not well-defined and change

greatly from language to language, and even from region to region

for the same language. As we will describe shortly, traditional ap-

proaches for SSNE recognition require significant amount of man-

ual effort, either in the form of handcrafting rules or in the form

of labeling examples, and therefore they do not scale when many

entity types, languages and regions need to be supported.

Our goal in this work is to provide a scalable solution for the

detection of semi-structured named entities for many entity types,

languages and regions. To achieve this, we propose a novel three-

level framework: The framework employs text mining techniques

and runs a novel two-step bootstrapping algorithm on a large cor-

pus of text documents, and feeds the output to a machine learning

algorithm to create the final detector. Our approach significantly re-

duces the manual effort and requires very little domain knowledge.

In fact, in some cases, the input to the system can be provided by

non-speakers of the target language. We describe our approach in

detail for the detection of phone or fax numbers and also date and

time entities. Note that the techniques can be extended for the de-

tection of other SSNE types. Below, we describe some applications

that can benefit from our approach, discuss existing solutions and

their limitations, and finally specify our contributions.

1.1 Applications
User-centric entity detections systems: These systems typically

detect various types of entities in web pages, email messages, con-

tent on mobile devices and create intelligent hyperlinks to relevant

applications [12, 31]. For phone numbers, most user-centric entity

systems offer shortcuts to address books or online phone services,

and for date and time entities they offer calendar applications. So

these systems can immediately benefit from a scalable solution.

Web search engines: Search engines can leverage semi-structured

entities recognized in the web pages to improve the overall rele-

vancy for certain types of queries. For example, if the query intent

is to find contact information, those pages that contain phone num-

bers can be boosted for a higher relevancy. Also, a number studies

including [3, 4, 16] use phone numbers (more specifically the coun-

try and area codes) as features for the goal of extracting geographic

information from web pages. Web search engines can use date and

time entities to improve results on time sensitive queries.

Data extraction, integration and classification: Detection of semi-

structured entities in text can greatly help question answering sys-

tems (e.g., [13]), as well as systems focusing on information in-

tegration over the Web (e.g., [5]). Many comparison shopping

engines need to identify money (price), time, and phone number

(contact) information on target web pages; scalable non-site spe-

cific techniques can help to boost confidence in extraction. Also,

semi-structured named entities can be quite useful features for the

classification systems. For example, the detection of currency enti-

ties might be a good indicator that the content is about finance.

Content de-identification systems: Another application that would

immediately benefit from this solution is the de-identification of

documents. This is quite crucial for the health research commu-

nity: No medical record can be released or shared with others un-

less all the private data, including phone numbers, dates and times

are removed [10, 30].

Before proceeding, we would like to note that for some applica-

tions the recognition of date and time entities alone is not sufficient,

and a second step, which understands the entity and creates a stan-

dard or machine understandable representation, is required. This

step is usually referred as normalization or resolution of the tem-

poral information [24], and is crucial for event ordering. In this

paper, we focus on the recognition task which is a prerequisite for

the normalization. Some studies, such as [25], propose techniques

to make the normalization process language independent.

1.2 Existing Solutions and Their Limitations
We will have a detailed description of the related work in the rest

of the paper, however, we give an overview of the existing solutions

here, as their limitations motivate this work.

Rule-based approaches: Since SSNE have some syntactical prop-

erties by definition, rule-based solutions work to some extent. For

this, regular expressions are commonly used, however, they usually

require a significant manual effort to generate. Since production-

quality detectors need to handle many cases, the expressions can

become more and more complicated. To give the reader some idea,

the regular expression used for phone number detection in Y! Mail

(for English in US via [31]) contains more than 600 characters as

it is required to have large coverage and handle some ambiguous

patterns.

Clearly, the phone number conventions in US are different than

in Sweden, but also in the UK. So a different regular expression

needs to be developed for every target language and region. (These

differences, which arise due to local customs and other reasons are

also discussed in [15, 16].) Imagine an application needs a phone

number detector for German in Germany, or Turkish in Turkey. In

practice, the following steps are taken for this task: (1) Editorial

study: People with the domain knowledge collect instances and

identify patterns that are commonly used; (2) Development: Pro-

grammers develop regular expressions for the patterns specified by

editors; (3) Maintenance: The first two steps usually cannot be done

perfectly initially, so a number of iterations usually follow as edi-

tors and developers identify problematic cases, such as missing or

ambiguous patterns. So supporting many languages and regions

with regular expressions does not scale (even for phone numbers,

which may be considered as a simple type), since the solution re-

quires significant amount of coordinated effort.

A rule-based approach for date and time detection is described

in [27]. Date and time detection is a more difficult problem as it

involves many more patterns, and also due to ambiguity problems,

especially with simple patterns: “1/18” can be a fraction, or a date.

The following contexts contain month and year entities: “We will

meet this may”, “2000 is a nice year”. But the same patterns fail in

the following contexts: “This may not be ok”, “Windows 2000 is an

operating system”. To avoid such mistakes, rule-based solutions are

usually optimized for the most obvious and common cases, at the

cost of coverage. For the implementation, regular expressions may

be infeasible for some applications, as they are computationally ex-

pensive. Many programming languages, such as C++, Java, Perl,

provide date and time libraries, however, their purpose is to provide

infrastructure for calendar operations (parsing, comparison, inter-

val computation of dates, etc.) but not directly NER capabilities.

Machine-learning approaches: Due to shortcomings and efforts

required as described above, machine learning approaches are highly

preferred. The supervised approaches (e.g., [6, 11, 24]) usually

require a large annotated corpus, and in most cases, they rely on

Part-of-Speech tags, as important features (which again requires

another training). These aspects make supervised techniques un-

desirable from the scalability perspective, considering that many

entity types, languages and regions need to be supported. So we

follow a weakly-supervised learning (bootstrapping) approach to

address these limitations, and develop text mining techniques for

SSNE recognition. In Section 2, we review the bootstrapping algo-

rithm in detail, and use it as our baseline in our evaluation.

1.3 Contributions
In this paper, we study the problem of detecting semi-structured

named entities (such as phone numbers, date and time entities etc.)

in text, and propose a weakly-supervised learning approach by de-

veloping new bootstrapping and text mining techniques. Our major

contributions are listed below:

(1) We propose a novel three-level bootstrapping framework,

whose main advantage is to allow attacking the recall and pre-

cision aspects separately, whereas, traditional bootstrapping algo-

rithms try to balance them at the same time, or require additional

resources. The last level employs machine learning techniques to

create the final model, which generalizes the extraction rules fur-

ther, and can be used on new content for real time detection.

(2) We adopt the framework for semi-structured entity detection,

and propose a two-step bootstrapping algorithm, which can learn

both regular expressions and contextual rules at every iteration.

(3) We evaluate the proposed techniques extensively on English,

German, Polish, Swedish and Turkish documents for phone, date

and time entities. Despite its minimal input, our approach can

achieve 95% precision and 84% recall for phone entities, and 94%

precision and 81% recall for date and time entities, on average.

(4) We discuss implementation details for the real-time detec-

tion of semi-structured entities. We report performance test results

for phone number detection; the results show that the proposed ap-

proach is an order of magnitude faster than a production-quality

regular expression based solution.

In the remainder of the paper, we review the traditional boot-

strapping techniques in Section 2, describe our three-level frame-

work in Section 3, and adopt the framework for the semi-structured

entity detection in Section 4. We then present our experimental

results in Section 5. We review implementation issues and perfor-

mance results in Section 6.

2. BOOTSTRAPPING ALGORITHM
In this section, we review the baseline bootstrapping algorithm,

which is an iterative algorithm, and usually runs on a large col-

lection of text documents. The algorithm has been studied exten-

sively and employed in a number of applications. Important ap-

plications include: (1) The extraction of the semantic lexicons,

where the term semantic lexicon refers to a dictionary of words

labeled with semantic categories, such as vehicles, animals, events

etc. [22, 28]; (2) The recognition of named entities such as per-

sons, organizations or locations [7]; (3) The extraction of pair-wise

named entities that share a certain relation, where the relation can

be organization-hasheadquarters-in for organization and location

pairs [1], book-written-by for book title and author pairs [2], and

person-bornin-year for person and year entities [19].

Figure 1: Bootstrapping algorithm

Although the proposed solutions have variations, as will be dis-

cussed shortly, the main idea can be summarized as follows, and

illustrated in Figure 1: The system starts with a small number of

seed examples, which are provided by the user. The system then

finds occurrences of these examples in a large set of documents.

By analyzing these occurrences, the system generates contextual

extraction patterns (rules) and assigns confidence scores to the pat-

terns. After this step, the system applies the extraction patterns to

the documents and extracts new candidates. Based on some vali-

dation mechanism, the system assigns scores to the extracted can-

didates, and chooses the best ones to add to the seed set. Then the

system starts over to perform many similar iterations, and at every

iteration it learns more patterns and can extract more instances.

Clearly, the success of the bootstrapping algorithm depends on

how the patterns are generated, and also the validation mechanism

used for choosing the best candidates, which are then used as seed

examples in the next iteration. The work in [2] tries to address these

issues by assigning a specificity score to the patterns, and proposes

to require that candidates are generated by multiple patterns before

moving them to the seed set. For efficient computation, the speci-

ficity of a pattern is defined to be the length of the pattern itself and

those patterns that have too low scores are rejected.

In [22] the authors study the problem of extracting semantic lexi-

cons on a text corpus, for a number of different semantic categories,

such as locations, person titles, companies, weapons. The system

relies on AutoSlog [21] to extract the patterns, which are in the form

of prefix and suffix strings. The score of an extraction pattern is

computed using the RlogF metric [21], which employs the number

of both unique lexicons and unique noun phrases produced by the

pattern. The idea behind this metric is to achieve a good balance

between precision and recall. In their multi-level approach, the au-

thors propose to add very few number of examples to the seed set

at every iteration, so that patterns are re-evaluated with a seed set

that is growing more conservatively. The score of a candidate is

computed based on the scores of its matching patterns.

The work in [1] focuses on the extraction of organization and lo-

cation pairs that have has-headquarters-in relation. The authors

propose to use named-entity tags (for organization and location

entities) in their pattern representation, and for this, they rely on

a named-enity tagger, MITRE Corporation’s Alembic Workbench

[1]. To compute the score of a pattern, the authors adapt a met-

ric similar to RlogF. The confidence of a candidate tuple is based

on the scores of its matching patterns. The authors also introduce

a parameter to control the learning rate of the system, so that the

system trusts new examples less while creating patterns.

In [19], the authors propose a novel bootstrapping approach to

achieve large-scale and fast iterative progression; the algorithm

avoids the use of syntactic parsers, named entity recognizers and

gazetteers, etc., but relies on the availability of distributionally sim-

ilar words [14], which needs to be extracted in advance for the

target language. The proposed system generates basic extraction

patterns similar to above systems, however, with the help of pre-

generated set of similar words, it generalizes these basic patterns

at every iteration, allowing higher coverage and faster progression.

For the validation, the authors check if the candidates are distribu-

tionally similar to the seed examples. They also use PMI score [29]

and a completeness score.

3. THREE-LEVEL FRAMEWORK
In this section, we describe our three-level bootstrapping frame-

work, which is the basis of our approach for semi-structured named

entity detection. The framework is illustrated in Figure 2.

Figure 2: Three-level framework

3.1 First Level
As described in Section 2, the traditional bootstrapping algo-

rithm learns extraction rules by analyzing the occurrences of the

seed examples in the corpus, which in return enables the extrac-

tion of more seed examples. Since the discovery of new exam-

ples depends on the extraction rules learned, they have to be gen-

eral enough. However, too general rules introduce noisy examples,

causing a catastrophic effect in the next iterations.

The main motivation for the proposed framework is to provide

a mechanism to avoid the problem of balancing this trade-off. To

achieve this, the first level requires the implementation of a module

that can extract a very large set of candidates from the corpus. The

main goal here is to have high recall rates and not worry about the

precision. The implementation clearly depends on the task at hand.

(For SSNE detection, such modules can be implemented fairly eas-

ily due to their syntactical properties, which come by definition).

In the first level, the module is run on the corpus and a very large

set of candidates are extracted with their contexts. With context,

we refer to a window that surrounds the candidate (in practice the

window size could be twenty words). This usually reduces the total

data size significantly, since most parts of the corpus are eliminated.

3.2 Second Level
The first level of the framework is expected to generate a very

large set of candidates with their context windows. The goal of the

second level is to identify the target entities in this set with very

high precision. To achieve this goal, we employ a bootstrapping

algorithm, where the input to the system is only a small number

of seed examples. Clearly, one could conservatively use the tra-

ditional algorithm described in Section 2, which learns contextual

extraction rules iteratively and validates the candidates based on the

specificity of the rules that extracted them. However, we propose a

different approach: At every iteration, (1) The candidates with their

contexts are moved to a Positive Set if the candidate matches a seed

example, (2) The confidence score of each remaining candidate is

computed based on the similarity of its contexts to the positive set

and valid ones are moved to the positive set, (3) The positive set

is analyzed and the qualifying entities are included in the seed set,

based on some statistical data. So compared to the baseline, the

validation does not rely on the extraction rules but on the contex-

tual similarities between the candidates and the positive set. We

define the similarity functions used in this paper below:

Cosine Similarity: This metric uses the bag of words model and

assigns scores to matching terms based on their tf*idf scores, where

tf stands for the term frequency and idf stands for the inverse doc-

ument frequency [23]. If the contexts of a given candidate share

many significant terms with the positive set, then the final similar-

ity score of the candidate will be high.

Cosine Similarity with Distances: This is similar to above, but

it also uses the position of the context terms in order to boost the

scores of the closer terms. The tf*idf scores are divided by the

log(distance+1), where the distance represents the number of white

spaces to the candidate (e.g., the distance of the term next to the

candidate is 1 and it increases by 1 for the following terms).

String Length: This identifies the longest prefix and suffix strings

shared by the candidate and positive set items and uses the sum of

both string’s lengths as the similarity score.

We compute the score of a candidate ci in context C, by compar-

ing C to the contexts seen in positive set:

score(ci, C) =

PN

k=1
similarity(Contextk, C)

N
(1)

Note that our approach does not necessarily require a pairwise

comparison of all candidates and the positive set. After every it-

eration, depending on the similarity function used, a hash table or

some other efficient structure can be constructed from the positive

set to allow efficient computation of the similarity score. We vali-

date candidates based on two rankings and the qualifying ones are

moved to positive set:

Local Ranking: This simply ranks all the candidates seen in the

current iteration based on their similarity scores, and identifies the

top candidates (say top 1%, or equally ranking threshold of 0.01).

Global Ranking: This keeps track of all the scores computed in

previous iterations and makes sure the best candidates are also ranked

high globally (say top 2%, or equally ranking threshold of 0.02).

At every iteration, the positive set is analyzed and the best enti-

ties are added to the seed set. We describe the details in Section 4,

for now, it is sufficient to say the qualification is based on statisti-

cal data, such as the frequencies of the entities and seed examples.

We stop the bootstrapping algorithm when the positive set growth

slows significantly (e.g., if it grows by less than 1%). This eventu-

ally happens as the similarity scores decrease after many iterations

and ultimately very few qualify according to the global ranking.

3.3 Third Level
The first level creates a very large set of candidates with high

recall and the second level identifies more of the seed examples

with high precision. The goal of the third level is to create a final

model using machine learning techniques to balance and further

improve the overall precision and recall rates. Below we describe

the feature spaces and models used.

Feature space: The first representation follows a bag of words

model and uses individual terms as features. In practice, very rarely

occurring terms may be excluded from the feature space. As a

second feature space, we generate multi-term phrases using point-

wise mutual information [29] and include them in the bag of words

model. The third feature space we employ does not follow a bag

of words model, but uses prefix and suffix strings that immediately

precede or follow the candidates (or seeds) as features. Each unique

delimiter found is represented by a unique feature in the space (we

call this approach delimiter-based feature space).

Model creation: In our approach, we employ an implementation

of support vector machine (SVM) to create the models. An open

source library for SVM models is also available in SVMlight 1. [9]

describes an open source library 2 for large-scale linear classifica-

tion without kernels. For the model creation, we can follow two

approaches: (1) We can use the positive set alone and create a one-

class model [26], or (2) In addition to the positive set alone, we can

also find most dissimilar candidates with respect to the positive set,

according to Equation 1, and use them as negative examples. Once

the SVM model is created, it is run on all the candidates created in

the first level and unique entities classified as positive are output as

the final set of seed examples. This model can also be used on new

documents in the future for a real time detection.

3.4 Discussion
We adopt this framework in Section 4 for SSNE recognition. In

our case, it is quite trivial to implement the first level by taking ad-

vantage of the syntactical properties of SSNE. However, a number

of large scale relation extraction tasks involve named entities (see

Section 2), and the first level can be fairly easily implemented for

those cases as well, by leveraging off-the shelf named entity tag-

ging tools. In fact, some approaches, such as [1], already employ

named entity tagging tools. So we discuss the advantages of the

framework below as it can be used for such tasks.

Instead of trying to balance the precision and recall at the same

time, the framework targets for the highest recall and precision val-

ues at the first two levels, and explicitly separates these two tasks.

The second level acts conservatively to build a set of examples with

high precision, and can take advantage of all the information and

global statistics made available at the first level. More specifically,

the validation of the candidates can be done more reliably, because

now all the occurrences (contexts) of the candidate is available for

this decision. In other words, the score of a candidate can be com-

puted not only based on the patterns that extract it, but also other

contexts that the candidate appears in. Some approaches such as

[8] try to achieve a similar goal by using search engine results. The

third level employs machine learning techniques and uses the out-

put generated by earlier levels. At this level the problem is reduced

to a classification problem, and the model learned goes beyond sim-

ple extraction rules that the bootstrapping algorithm can potentially

generate. Also, this model can be used later on new documents for

real time detection when the implementation of the first level is

incorporated.

1http://svmlight.joachims.org
2http://www.csie.ntu.edu.tw/˜cjlin/liblinear

Level 1 Input

Tokens –

Pattern 7 to 13 digits separated by -+()./[]_* and space

Level 2 Input

SeedPattern (ddd)ddd-dddd

SeedTerms {phone, telephone, contact, fax, call}

Table 1: Input for phone detection in English (US)

4. SSNE RECOGNITION
In this section, we adopt the three-level framework for semi-

structured named entity detection, and propose a novel two-step

bootstrapping algorithm, which is employed at the second level of

the framework. For clarity, we describe our approach for phone

numbers in Section 4.1 as a case study, and adopt the approach for

date and time detection in Section 4.2.

4.1 Phone Number Detection
First Level: The implementation of the first level is quite straight-

forward for SSNE as they follow certain syntactical properties by

definition (see Section 1 for the definition). The module for phone

number detection simply finds sequences of digits that may be sep-

arated by space character and following characters: -+()./[]_* (no

tokens applicable in this case). For any sequence found, the module

requires that the number of digits is between seven and thirteen, and

also the number of non-digit characters does not exceed ten. This

module gives a large set of candidates which contains possibly all

phone numbers, and it can be used for many languages.

Second Level: A two-step algorithm: We now describe our two-

step bootstrapping algorithm and illustrate it for phone number de-

tection (Figure 3). The second level input from the user is one seed

regular expression and optionally a small number of seed terms (Ta-

ble 1). The algorithm follows a two-step approach while moving

the candidates to the Positive Set. In the first step, the algorithm

runs the regular expression on all the candidates, and considers any

candidate that matches the expression to be a positive match, only

if its context window contains at least one of the seed terms. The

reason for using the optional seed terms is to improve our confi-

dence and avoid false positives. In the second step, the algorithm

computes similarity scores for each candidate with respect to the

existing positive set, and adds the best candidates to the set. As de-

scribed in Section 3.2, the algorithm uses local and global rankings

to determine the best candidates. Once these two steps are com-

pleted, the algorithm analyzes all the examples in the positive set,

and may add new seed regular expressions or new seed terms.

Figure 3: Two-step bootstrapping algorithm

Adding new regular expressions: The algorithm makes a pass over

the positive set, and replaces the digits found in the phone numbers

with a special character. Then it identifies the most frequent two or

more non-seed expressions to be added as seed regular expressions.

However, to ensure that no incorrect expressions are added, the al-

gorithm requires a minimum number of occurrences. This number

Level 1 Input

LongWeekdays {monday, tuesday, ..., sundays}

ShortWeekdays {mon, tue, ..., sun}

LongMonths (LM) {january, february, ..., december}

ShortMonths (SM) {jan, feb, ..., dec}

LongTimeZone {alaska daylight, ..., pacific time zone}

ShortTimeZone {akdt, ..., pt}

GeneralKeywords {yesterday, today, ..., nights}

PreText {this coming, due, next, ..., past}

PostText {am, a.m, ..., p.m.}

Connectors {from, at, on, -, –, ..., until}

NumbersWithText d*{am, a.m, ..., st, nd, rd, th}

Pattern digits separated by ()+-.,:/#

Level 2 Input

SeedPattern (SM|LM) D(D)?(th|st|nd|rd)?,? dddd

SeedPattern D(D)?:DD (a|p)(.)?m(.)?

SeedTerms –

Table 2: Input for date and time detection in English (US)

can be obtained based on the occurrences of the most frequent and

the least frequent seed expressions, (fmax and fmin respectively),

such as max(fmax/c1, fmin/c2), where c1 and c2 are constants.

For phone number detection, we used values of 5 and 1, for c1

and c2, respectively. Clearly, other functions as well as some fixed

numbers could be used for this.

Adding new seed terms: The algorithm learns and adds new seed

terms by identifying frequently occurring context terms in the posi-

tive set. To achieve this, it computes tf*idf values of all the context

terms seen and identifies the top ones. Then it uses the same func-

tion as above to ensure they are not noisy and adds the qualifying

terms to the seed terms set.

Third Level: Once the bootstrapping algorithm stops, we follow

the approach described in Section 3.3 and create a model using ma-

chine learning techniques. For the classification model, we create

negative examples by identifying the most dissimilar candidates,

using Equation 1. But now, since the semi-structured entities fol-

low certain syntactical formats, the similarity functions can also

leverage these expressions, in addition to the contextual similarities

discussed. More specifically, the score in Equation 1 is now multi-

plied by the ratio of positive examples that have the same pattern as

the candidate to all positive examples found. Similarly, each unique

pattern seen in the training set is used as a feature in the model.

4.2 Date and Time Detection
We now apply the proposed techniques for the detection of date

and time entities. Before proceeding, we would like to mention that

our focus is to detect explicit entities (e.g., “1/1/2009”, “on Mon-

day”, “4/15”), implicit references (e.g., “last Monday”), intervals

for both (e.g., “2-3pm”, “mon to tue”) and also periodic expressions

(e.g., “on Fridays”), but not durations (e.g., “10 minutes”) or event

anchored expressions (e.g., “two days after the accident”). Clearly,

a large number of expressions, or labeled training data would be re-

quired to capture all these target entities with the existing solutions,

and putting the same effort for every language may not be feasible.

First Level: Date and time entities (differently than phone num-

bers) use a limited set of tokens. We split this set into logical sub-

sets and show the input needed for the first level implementation, in

Table 2. Each input field runs separately on a given page and the de-

tections are merged to represent a single entity if they are separated

by white space characters. The fields for weekday, month, general

keywords and time zones are self-explanatory. PreText simply lists

a set of keywords to be detected if they precede another detection,

and similarly PostText defines terms that may follow another detec-

tion. Connectors help to get two other detections merged into one

when they appear in the middle. Pattern is similar to the one used

for phone detection and used for all languages: It simply matches

any digits that are separated by ()+-.,:/#. Clearly, this matches a

large number of digit sequences that possibly contain all the nu-

merical date and time expressions. Lastly, NumbersWithText de-

fines some patterns that involve both digits and letters that are not

separated by white space characters, if used in the language. Al-

though constructing this input might initially seem difficult, it is

significantly simpler than enumerating all possible date and time

patterns, and developing them via regular expressions or other lan-

guages. Our users (native speakers of the target languages) found

the task quite easy, but online dictionaries or thesauruses could also

be used either to automate this process or to assist the users.

This module can not only successfully capture the numerical date

and time entities (e.g., “1:10”, “11.15.2005”, or “11/15”), and for-

mally written entities (e.g., “Thu Apr 30 11:33:52 PDT 2009”), but

also long entities (e.g., “on monday april 6th from 5:15pm to 6:15

pm pst”). This is possible as it merges contiguous detections to be

a single entity, if they are separated by white space characters. This

ideally captures all the date and time entities of interest based on

the user input, which in fact, expresses the desired detection ca-

pabilities in a very flexible manner. Clearly, this flexibility causes

many ambiguous and noisy data to be extracted as candidates as

well, including all the numerical values (such as “13/13”, “100”,

“15-15.9999”) and text pieces (such as in contexts “Usa Today”,

“Jan sings well”, “sun is shining”). However, the next levels in the

framework are designed particularly to handle these cases.

Second and Third Levels: These work exactly same as in the

phone number detection. The input for the second level is shown

in Table 2: We use two seed regular expressions (one for date and

one for time entities), and we do not require any seed terms, since

these expressions are already strong and contain some keywords.

As mentioned above, the contiguous detections are merged into

a single date and time entity, if they are separated by space charac-

ters. Although this approach significantly improves coverage and

simplifies the input from the user, it may cause some over-selection

problems (i.e including extra text as part of the entity). For exam-

ple, in context “... in year 2002 3rd place was ...”, the approach

would merge 2002 and 3rd into a single entity. We address this

issue by leveraging the distribution of the patterns: When the algo-

rithm stops, we compute the frequencies of all the patterns found

in the corpus. Then for each entity found, we require its pattern to

have a minimum frequency and trim the surrounding text until the

requirement is satisfied. This effectively adjusts the entity bound-

aries based on the pattern frequencies observed in the corpus.

5. EVALUATION AND RESULTS
We now present our experimental setup and results for phone

and date-time entity detection in English, German, Polish, Swedish

and Turkish, for the regions US, Germany, Poland, Sweden and

Turkey, respectively. For each language, we use a corpus of 1GB,

which contains about 200K random web pages from a large crawl.

We run the proposed algorithms on this corpora; due to the infea-

sibility of examining every detected entity we use a sample set.

In our case, the first level identifies all the target entities of inter-

est by definition, in addition to the other possibly large noisy data.

We sample this output, and for each language we use 250 and 300

instances for phone numbers and date-time entities, respectively.

Each instance is then judged by a native speaker of the language:

“No”: This is not a target entity; “Yes”: This is a target entity and

boundaries are correct; “Over-Selection”: This is a target entity,

but some unrelated text is included; “Under-Selection”: This is a

target entity, but some part of the entity is not included. We eval-

uate the algorithms using these judgments (boundary problems re-

ported separately, if any). Our key metrics in the evaluation are

precision and recall. By definition, Precision = TP/(TP+FP) and

Recall = TP/(TP+FN), where TP, FP and FN represent true posi-

tives, false positives and false negatives, respectively. We focus on

two target behaviors in the evaluation: (1) Highest possible preci-

sion with as high recall as possible, as many target consumer ap-

plications require, (2) Highest F-measure score, where F-measure

is the weighted harmonic mean of precision and recall, defined as

Fβ = (1 + β2).precision.recall/(β2.precision + recall). For

the parameter β, we use the value 1, which weighs the precision

and recall equally. In our experiments, we parse the html tags,

lower case all the characters and remove the surrounding punctua-

tion characters in the context window. We tried the alternatives for

all the algorithms and the results were either worse or comparable.

5.1 Phone Number Detection
We first review the bootstrapping algorithms below, and perform

some initial experiments to choose the best termination settings, as

well as to get some insights on various feature sets and models used

in the three-level framework. For these initial experiments, we use

a collection of English (US) web pages randomly chosen from a

large crawl. The size of the collection is again 1GB and it contains

207K unique documents. We use the input shown in Table 1.

Baseline: We adopt the bootstrapping algorithm described in Sec-

tion 2 as our baseline algorithm. Clearly, providing individual

phone numbers as seed examples would not achieve the desired

behavior; the numbers may not even exist in the corpus. So we use

the following approach: We run the seed regular expression on the

corpus and require occurrence of at least one seed term. This gen-

erates more than 1000 examples (positive set) in this corpus. We

provide them to the baseline algorithm to be used in the creation

of contextual extraction patterns. Recall that the contextual extrac-

tion patterns are based on prefix and suffix context strings of the

entities identified. The confidence score is computed based on the

length of the pattern, as was done in [2]. So the candidates which

are generated by longer patterns get higher scores at every iteration.

Since we run the baseline algorithm on the contexts created by the

first level of our framework, they are ensured to contain phone can-

didates. For fair comparison, we also adopt the local and global

ranking mechanism, described in Section 3.2, which defines the ter-

minating condition. Recall that at every iteration, the candidates are

sorted based on their scores, and those candidates that get ranked

high locally (specified by the local ranking threshold) are moved to

seed set only if their scores are also ranked high globally (specified

by the global ranking threshold). We test with all pairwise combi-

nations of local ranking threshold values of {0.0005, 0.001, 0.005,

0.01, 0.02, 0.03}, and global ranking thresholds values of {0.005,

0.01, 0.02, 0.10, 0.15}; this is done for all algorithms.

Similarity-based bootstrapping algorithm: We keep everything

same as the baseline algorithm, but replace the candidate scoring

mechanism with the similarity functions described in Section 3.2.

We test all three functions, and the best results are obtained with

the longest string length similarity function, so we use this one.

Two-step bootstrapping algorithm: We employ the two-step boot-

strapping algorithm (Section 4.1), which moves the candidates to

the positive set not only based on the contextual similarities, but

also when they are matched with seed regular expressions and terms.

Three-level framework: In the third level, we create an SVM

model using the positive set generated by the two-step algorithm

(Section 3.3): This can be one-class SVM model (using only posi-

tive examples), or C-support vector classification (using both posi-

tive and negative examples, where the latter are obtained from the

Algorithm Setting Precision Recall F-measure

Baseline 0.01 and 0.05 1.00 0.08 0.15

Sim-based 0.03 and 0.025 1.00 0.32 0.23

Two-step 0.02 and 0.05 1.00 0.73 0.84

Baseline 0.03 and 0.15 0.77 0.50 0.61

Sim-based 0.01 and 0.10 0.81 0.58 0.68

Two-step 0.03 and 0.10 1.00 0.73 0.84

Algorithm Setting Precision Recall F-measure

Three-level BoW 1.00 0.90 0.95
(C-svm) Regexp 0.96 0.97 0.96

BoW+Regexp 1.00 0.91 0.95

Regexp – 1.00 0.85 0.92

Table 3: Initial results for phone number detection for the best

precision, best f-measure, three-level framework and regexp

most dissimilar 25% of all non-positive candidates). In the experi-

ments, C-svm performed significantly better and we do not include

one-class SVM results here due to space constraints. For the SVM

kernels, we test with linear, rbf and poly kernels with the default

settings, and choose to use the linear model since its results were

either comparable or better. We experimented with the following

contextual feature spaces: bag of words (BoW), BoW with multi-

term phrases, and delimiter-based feature space. The delimiter-

based feature space alone performed significantly worse than the

others, and including multi-term phrases did not improve BoW.

These observations are inline with our intuition and due to space

constraints we do not include the results here. We also performed

experiments to understand the effect of contextual and regular ex-

pression features; the combined set performs best, as expected.

With C-svm model, a probability estimate (confidence score) is re-

turned for each instance. In the initial experiments, we used the

default threshold value of 0.5, however, a higher value can be used

for a better precision at the cost of a reduced recall, or vice versa.

Regexp: We include the results of a regular expression based solu-

tion for English (US), which is currently being used in a production

system [31] on Yahoo! Mail. The expression is manually tuned

carefully over time and contains more than 600 characters.

We first perform experiments to find the termination settings that

yield the best precision and best f-measure values for each algo-

rithm (Table 3). As we can see, the two-step bootstrapping al-

gorithm greatly improves the baseline and similarity-based algo-

rithms, which only employ contextual extraction rules. The three-

level framework, which internally employs the best precision two-

step bootstrapping algorithm, performs significantly better than the

baseline approach. Compared to the regexp approach, which re-

quires a significant amount of effort, three-level framework achieves

a comparable perfect precision and improves the recall.

Experiments in Five Languages: We obtain a new collection for

English (US) and collections for German, Polish, Swedish and Turk-

ish, as described earlier. We use the parameters according to the

initial experiments performed above. The input (one seed regular

expression and about 5 seed terms, as shown in Table 1) is obtained

as follows: We check the websites of three international companies

(Microsoft, Citibank, and IBM in our case) and identify one com-

mon phone expression for each language; during this process we

favor patterns that have the most non-digit characters. For the seed

terms, we use online dictionaries for the translations. We would

like to note that these tasks were done by a user who does not speak

German, Polish or Swedish, and the judgments are performed by

native speakers of the target languages.

In Table 4, we present the precision and recall values obtained for

the two settings of interest: best precision (left) and best f-measure

(right). We see similar trends as in the initial experiments, not only

Lang Algorithm P1 R1 F1 P2 R2 F2

English regexp 1.00 0.79 0.88 1.00 0.79 0.88
baseline 1.00 0.07 0.13 0.69 0.58 0.63
sim-based 1.00 0.23 0.37 0.62 0.56 0.59
2-step 1.00 0.52 0.69 0.98 0.65 0.79
3-level (0.50) 1.00 0.77 0.87 1.00 0.77 0.87
3-level (best) 1.00 0.89 0.94 0.99 0.95 0.97

German baseline 1.00 0.05 0.09 0.62 0.60 0.61
sim-based 0.95 0.22 0.35 0.98 0.74 0.84
2-step 0.96 0.30 0.45 0.99 0.76 0.86
3-level (0.50) 1.00 0.66 0.80 1.00 0.66 0.80
3-level (best) 1.00 0.78 0.88 0.99 0.84 0.91

Polish baseline 0.86 0.21 0.34 0.38 0.49 0.43
sim-based 1.00 0.42 0.59 0.31 0.46 0.37
2-step 0.96 0.42 0.59 0.20 0.49 0.29
3-level (0.50) 0.95 0.66 0.78 0.95 0.66 0.78
3-level (best) 0.95 0.66 0.78 0.87 0.85 0.86

Swedish baseline 1.00 0.07 0.14 0.35 0.54 0.42
sim-based 1.00 0.24 0.39 0.73 0.56 0.63
2-step 1.00 0.74 0.85 0.29 0.85 0.44
3-level (0.50) 0.92 0.90 0.91 0.92 0.90 0.91
3-level (best) 0.92 0.90 0.91 0.91 0.94 0.92

Turkish baseline 1.00 0.10 0.18 0.47 0.62 0.54
sim-based 1.00 0.19 0.32 0.49 0.62 0.55
2-step 1.00 0.33 0.50 1.00 0.57 0.72
3-level (0.50) 0.98 0.67 0.79 0.98 0.67 0.79
3-level (best) 1.00 0.64 0.78 0.87 0.92 0.90

Table 4: Phone number detection results in five languages

for English, but other languages as well. As mentioned earlier, the

SVM model in the three-level framework produces a probability

estimate (confidence score). Although we used the default value

of 0.5 in our experiments, we can use different threshold values

to boost either precision or recall, at the cost of the other. Next,

we test various threshold values and report the precision and recall

values in Figure 4. The best values are also included in Table 4 to

illustrate the potential improvements.

To get a sense on the phone patterns used in each language, we

list the most frequent 10 patterns in Table 5. We also present the

frequency of the patterns along with the total number of unique

patterns (that occur at least three times). As we can see, the phone

numbers used in English (US) follow well-accepted conventions,

however, this does not seem to be the case for other languages. For

example, the number of phone patterns used in German is quite

large, and the most frequent one only has a frequency of about

4.5%. Based on these statistics, we would not expect regular ex-

pressions for other languages to be as successful as in English (US).

Detection in Multi-Language Documents: Since some documents

or messages are authored by multi-lingual people, it is possible that

the authors follow the conventions of one language although they

are writing in another one. To address this edge case, we employ

the three-level framework, and create a model using only the con-

textual features. Under this setup, the system could use two models:

one with the full feature set to capture the common case as usual,

and another one with only contextual features but with a higher

confidence threshold. So the second model would cover the edge

case with less recall. To test this, we rerun the experiments with

only contextual features with a confidence level of 0.75, and report

the results in Table 6. As we can see, the solution can detect phone

numbers (that may have unexpected formats) with high precision,

by just using the contextual features.

5.2 Date and Time Detection
We use the same setup and metrics as we do for phone number

detection, which is described above. Below, we perform our initial

experiments to find the best settings. In Table 7, we present the

Figure 4: Phone detection results with three-level framework

Patterns (English, 245) % Patterns (German, 2290) %

ddd-ddd-dddd 39.4 ddddd/dddddd 4.46

(ddd) ddd-dddd 35.7 ddddd-dddddd 3.92

d-ddd-ddd-dddd 6.55 ddddd dddddd 2.55

ddd.ddd.dddd 5.01 ddddd/ddddd 2.15

(ddd)ddd-dddd 2.83 dddd-ddddddd 1.82

ddd-dddd 2.25 dddd/ddddddd 1.78

ddd/ddd-dddd 0.80 dddd ddddddd 1.51

d.ddd.ddd.dddd 0.65 ddddddddddd 1.48

dddddddddd 0.63 ddddd-ddddd 1.20

ddd ddd dddd 0.56 ddddd / dddddd 1.08

Patterns (Polish, 691) % Patterns (Swedish, 502) %

ddddddd 12.6 dddd-dd dd dd 18.8

ddd ddd dd dd 11.9 ddd-ddd dd dd 18.4

d-ddd ddd ddd 5.15 dd-ddd ddd dd 12.0

(ddd) ddd dd dd 4.50 dddd-dddddd 4.53

dddddddddd 4.33 dddddddddd 4.02

+dd dd ddd dd dd 3.35 ddd-ddddddd 3.88

ddd/ddddddd 3.18 dddd-ddd ddd 2.59

ddd dd dd 3.05 ddd - ddd dd dd 2.21

ddd-dd-dd 2.71 ddd-ddd dddd 1.95

d ddd ddd ddd 2.64 dd-ddd dd ddd 1.68

Patterns (Turkish, 344) %

dddd ddd dd dd 20.3
d ddd ddd dd dd 9.08
(ddd) ddd dd dd 8.25
ddd dd dd 7.69
+dd ddd ddd dd dd 5.78
(dddd) ddd dd dd 3.88
dd-ddd-ddddddd 3.57
+dd (ddd) ddd dd dd 3.06
ddddddd 2.78
(ddd) ddd dddd 2.21

Table 5: Common phone patterns in each language, their fre-

quencies and total number of unique patterns discovered

Language Precision Recall F-measure

English 0.99 0.83 0.90

German 1.00 0.64 0.78

Polish 0.94 0.60 0.74

Swedish 0.90 0.83 0.86

Turkish 0.95 0.64 0.76

Table 6: Phone number detection results when only contextual

features are used to support multi-language documents

Algorithm Setting Precision Recall F-measure

Baseline 0.01 and 0.01 1.00 0.10 0.19

Sim-based 0.01 and 0.01 1.00 0.13 0.28

Two-step 0.03 and 0.02 1.00 0.19 0.32

Baseline 0.03 and 0.15 0.76 0.23 0.35

Sim-based 0.02 and 0.15 0.70 0.45 0.55

Two-step 0.02 and 0.15 0.81 0.50 0.62

Algorithm Setting Precision Recall F-measure

Three-level BoW 0.85 0.55 0.67
(C-svm) Regexp 0.91 0.80 0.85

BoW+Regexp 0.95 0.76 0.84

Table 7: Date and time detection results for the best precision,

best f-measure scores, and three-level framework

Lang Algorithm P1 R1 F1 P2 R2 F2

English baseline 1.00 0.10 0.18 0.69 0.27 0.38
sim-based 1.00 0.14 0.25 0.72 0.57 0.64
2-step 1.00 0.23 0.37 0.76 0.64 0.69
3-level (0.50) 0.93 0.76 0.84 0.93 0.76 0.84
3-level (best) 0.99 0.61 0.76 0.84 0.88 0.86

German baseline 0.82 0.12 0.20 0.51 0.23 0.32
sim-based 1.00 0.05 0.10 0.47 0.38 0.42
2-step 0.96 0.15 0.26 0.48 0.38 0.42
3-level (0.50) 0.91 0.83 0.87 0.91 0.83 0.87
3-level (best) 0.98 0.56 0.72 0.93 0.82 0.87

Polish baseline 0.88 0.19 0.31 0.70 0.38 0.49
sim-based 1.00 0.21 0.35 0.69 0.53 0.60
2-step 1.00 0.31 0.48 0.69 0.52 0.59
3-level (0.50) 0.99 0.86 0.92 0.99 0.86 0.92
3-level (best) 0.99 0.86 0.92 0.96 0.93 0.95

Swedish baseline 0.95 0.11 0.20 0.80 0.32 0.45
sim-based 0.89 0.04 0.08 0.61 0.36 0.45
2-step 0.94 0.17 0.29 0.64 0.42 0.50
3-level (0.50) 0.85 0.87 0.86 0.85 0.87 0.86
3-level (best) 0.96 0.53 0.69 0.85 0.90 0.87

Turkish baseline 0.87 0.13 0.22 0.69 0.34 0.46
sim-based 0.96 0.15 0.25 0.65 0.51 0.57
2-step 0.84 0.23 0.36 0.67 0.54 0.60
3-level (0.50) 0.84 0.90 0.87 0.84 0.90 0.87
3-level (best) 0.95 0.84 0.89 0.95 0.89 0.92

Table 8: Date and time detection results in five languages

best precision (upper part) and best f-measure (middle part) values

achieved by each algorithm. Next, we run experiments with C-

svm model (lowest part): As expected and observed in Section 5.1,

combined set of BoW and regular expressions performs best.

Experiments in Five Languages: The input for English (US) has

already been shown in Table 2. For other languages, we obtain the

translations and the seed patterns from our users. Although online

dictionaries could be leveraged for assistance, this was not neces-

sary as our users found the task trivial. We run the algorithms on

the five collections with the best settings found above. In Table 8,

we present the precision and recall values for the best precision and

best f-measure settings. Similar to the results obtained in phone

number detection, we see significant improvements with the pro-

posed techniques. Recall the SVM model in the three-level frame-

work produces a probability estimate. Next, we test with various

threshold values and report the precision and recall values in Fig-

ure 5. The best values are also included in Table 8 to illustrate the

potential improvements.

In Table 9, we report the boundary detection problems observed.

The left part of the table shows over and under selection cases in

terms of percentages, when the first level candidates are directly

used in the final output. The right part of the table shows the results

when the boundaries are adjusted based on the frequencies of the

Figure 5: Date and time detection results with three-level

framework using various threshold values

Language Over (%) Under (%) Over (%) Under (%)

English 3.25 0.00 1.62 0.00

German 1.56 0.00 0.00 0.00

Polish 3.62 1.45 2.90 1.45

Swedish 0.60 0.60 0.60 0.60

Turkish 2.11 0.70 0.70 1.40

Table 9: Selection problems when 1st level output is used (left),

when boundaries adjusted based on pattern frequencies (right)

patterns, as described in Section 4.2. Based on our observations, the

reasons for under selection cases include character problems (use

of non-white space characters as separators), missing input from

the users for the first level module, and not-optimal settings.

5.3 Statistical Significance Tests
We compute SampleError = (FP+FN)/SampleSize for the base-

line and three-level algorithms using all the judgments in five lan-

guages, and compute the true error intervals at 99% confidence

level. For phone number detection, baseline: 0.218 ± 0.033, and

three-level: 0.048 ± 0.016. For date and time detection, baseline:

0.458 ± 0.033 and three-level: 0.139 ± 0.023.

We also perform a Cohen’s Kappa test to see the agreement rate

between the judgments and the two approaches. For the phone de-

tection, the kappa scores and the agreement strengths are baseline:

0.341 (fair) and three-level: 0.855 (very good). For date and time

detection, baseline: 0.100 (poor) and three-level: 0.702 (good).

6. PERFORMANCE
For some applications, the running time performance of the SSNE

detector can be a crucial factor. For example, user-centric entity

detection systems perform real-time detection and certain response

time requirements apply. Web search engines process large collec-

tions of crawled web pages and even small improvements can result

in big reductions in the overall processing time. Therefore, we re-

view some implementation details here and present performance

test results for phone number detection, as a case study.

We implement the proposed approach in C++ and use a linear

SVM model based on [9]. The integration of the final detector,

which is created by the three-level framework, is illustrated in Fig-

ure 6. The first level module in the framework is re-used and it

Figure 6: Implementation overview

Algorithm Run Time Processing Rate

regexp 3.813 sec 0.975 MB/sec

level1regexp 0.842 sec 4.417 MB/sec

svmModel 0.082 sec 45.158 MB/sec

Table 10: Running time performance results

generates the candidates. The module can run quite efficiently, as

it simply finds sequences of digits in the string which may be sep-

arated by phone characters (Section 4.1). For these candidates, we

first create features based on the terms found in the context window.

Next, we replace the digits in the candidate with a special charac-

ter and obtain a regular expression feature. We then make lookups

into the feature table, and create an SVM vector to run with the

model. Based on the probability estimate, we output the candidate

as an entity. We call this approach as svmModel, and compare it to

a production-quality regular expression, which is currently used in

[31] and tested in Section 5.1. This is based on the PCRE library

[20] and called via a C++ wrapper library. We call this solution

as regexp, which can simply output phone entities found in a given

document. However, one could argue that it does not have to run

on the whole document, but only on the candidates generated by

module. We test this solution as well and call it as level1regexp.

For the run time results, we perform the following experiment

on a Linux machine with Dual Core AMD Opteron Processor 275

(1808 MHz) with enough main memory and 1MB cache. In the

test, we used 1493 randomly chosen documents with an average

size of 2.5KB. The corpus contained 152 phone numbers according

to the svmModel detector. The total running time and processing

rates of the above solutions are shown in Table 10. As we can

see, the proposed approach is an order of magnitude faster than the

production quality regular expression solution.

7. RELATED WORK
Much of the relevant work was already reviewed in the first three

sections, so we briefly describe here the most closely related results

and differences in our approach. The first category of related work

involves bootstrapping algorithms, such as [1, 2, 19, 22], which

have been successfully employed for the extraction of relations,

semantic lexicons and named entities on large collections of text

documents. In [17, 18], bootstrapping algorithms are run on web

search engine query logs for the goal of extracting class attributes

(such as side effects or generic equivalent for drugs). We are un-

aware of any previous studies that employed bootstrapping tech-

niques for the recognition of semi-structured named entities. To

provide a scalable solution for this problem, we propose a new

framework and a two-step bootstrapping algorithm that can learn

not only contextual rules but also regular expressions.

Another category of related work includes supervised learning

techniques developed for the recognition of temporal expressions,

including [11, 24]. In addition to our target entities (Section 4.2),

these approaches focus on more complex expressions (e.g., “the

same period a year ago”, “Christmas Day”). To achieve this, they

usually require a large training data. For example, above stud-

ies use the ACE2004 (automatic context extraction) corpus, which

contains 767 documents and more than 8000 labeled temporal ex-

pressions. Obtaining such training data for many languages is a

difficult task. Additionally, the final model depends on the nature

and style of the training data. So if a small training set is used, we

would not expect that model to perform well on web content as it is

generated by many authors from different backgrounds. Therefore,

we focus on the scalability aspect and propose a weakly-supervised

technique as many languages need to be supported for the target en-

tities, as specified by the users.

8. CONCLUSIONS
In this paper, we study the problem of detecting semi-structured

named entities (such as phone numbers, date and time entities etc.)

in text, and propose a scalable three-level bootstrapping framework

to support many entity types, languages and regions. The frame-

work identifies a large set of candidates in the first level by running

a simple module, and employs a novel two-step bootstrapping al-

gorithm in the second level to obtain an accurate set of positive

examples. The algorithm can learn both regular expressions and

contextual rules at every iteration. In the third level, the framework

employs machine learning techniques and creates a model using

the examples generated in the first two levels. This model, which

generalizes the extraction rules further, can be used on new content

for real time detection.

We evaluate the proposed techniques extensively on English, Ger-

man, Polish, Swedish and Turkish documents for phone, date and

time entities. Although the input required from the user is mini-

mal, our approach can achieve 95% precision and 84% recall for

phone entities, and 94% precision and 81% recall for date and time

entities, on average. We also discuss some implementation issues

and report our performance test results for phone number detection.

The results show that the proposed approach is an order of magni-

tude faster than a production-quality regular expression based so-

lution. In our future work, we are planning to incorporate active

learning techniques to the framework and investigate capabilities

for the extraction of other named entities and relations.

Acknowledgment

We are grateful to Vadim von Brzeski and Omid Rouhani-Kalleh

for their help in the experimental evaluation. We would like to

thank John Thrall and Kun Liu for their helpful suggestions.

9. REFERENCES
[1] E. Agichtein and L. Gravano. Snowball: extracting relations from

large plain-text collections. In Proc. of the 5th ACM Conf. on Digital
Libraries, 2000.

[2] S. Brin. Extracting patterns and relations from the world wide web.
In Proc. of the 1st Intl. Workshop on the Web and Databases, 1998.

[3] O. Buyukkokten, J. Cho, H. Garcia-Molina, L. Gravano, and
N. Shivakumar. Exploiting geographical location information of web
pages. In Proc. of the WebDB, 1999.

[4] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query processing in
geographic web search engines. In Proc. of the 2006 ACM SIGMOD

Intl. Conf. on Management of Data, 2006.

[5] T. Cheng and K. C.-C. Chang. Entity search engine: Towards agile
best-effort information integration over the web. In Proc. of the 3rd

Conf. on Innovative Data Systems Research (CIDR), 2007.

[6] H. L. Chieu and H. T. Ng. Named entity recognition with a
maximum entropy approach. In Proc. of the 7th Conf. on Natural

Language Learning, 2003.

[7] M. Collins and Y. Singer. Unsupervised models for named entity
classification. In Proc. of the Joint SIGDAT Conf. on Empirical
Methods in Natural Lang. Processing and Very Large Corpora, 1999.

[8] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu, T. Shaked,
S. Soderland, D. S. Weld, and A. Yates. Unsupervised named-entity
extraction from the web: an experimental study. Artificial
Intelligence, 165(1):91–134, 2005.

[9] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.
Liblinear: A library for large linear classification. Journal of

Machine Learning Research, 9:1871–1874, 2008.

[10] R. Farkas, G. Szarvas, S. Ivan, K. Andras, and R. Busa-Fekete. An
iterative method for the de-identification of structured medical text.
In Proc. of AMIA I2B2NLP workshop, 2006.

[11] K. Hacioglu, Y. Chen, and B. Douglas. Automatic time expression
labeling for english and chinese text. In Proc. of Conf. on Intelligent

Text Processing and Computational Linguistics, 2005.

[12] U. Irmak, V. von Brzeski, and R. Kraft. Contextual ranking of
keywords using click data. In Proc. of the 25th Intl. Conf. on Data
Engineering (ICDE), 2009.

[13] A. Ittycheriah and S. Roukos. Ibm’s statistical question answering
system-trec 11. In TREC, 2002.

[14] D. Lin. Automatic retrieval and clustering of similar words. In Proc.

of the 17th Intl. Conf. on Computational Linguistics, 1998.

[15] C. Manning and H. Schütze. Foundations of Statistical Natural
Language Processing. MIT Press, 1999.

[16] K. S. Mccurley. Geospatial mapping and navigation of the web. In
Proc. of the 10th Intl. Conf. on World Wide Web, 2001.

[17] M. Paşca. Organizing and searching the world wide web of facts –
step two: harnessing the wisdom of the crowds. In Proc. of the 16th

Intl. Conf. on World Wide Web, 2007.

[18] M. Paşca, B. V. Durme, and N. Garera. The role of documents vs.
queries in extracting class attributes from text. In Proc. of the 16th

ACM Conf. on Information and Knowledge Management, 2007.

[19] M. Paşca, D. Lin, J. Bigham, A. Lifchits, and A. Jain. Organizing and
searching the world wide web of facts - step one: the one-million fact
extraction challenge. In Proc. of Natl. Conf. on AI, 2006.

[20] Perl Compatible Regular Expressions. http://www.pcre.org.

[21] E. Riloff. Automatically constructing a dictionary for information
extraction tasks. In Proc. of Conf. on Artificial Intelligence, 1993.

[22] E. Riloff and R. Jones. Learning dictionaries for information
extraction by multi-level bootstrapping. In Proc. of Conf. on Artificial

Intelligence, 1999.

[23] G. Salton and C. Buckley. Term-weighting approaches in automatic
text retrieval. Information Processing and Management,
24(5):513–523, 1988.

[24] E. Saquete, O. Ferrández, S. Ferrández, P. Martínez-Barco, and
R. Munoz. Combining automatic acquisition of knowledge with
machine learning approaches for multilingual temporal recognition
and normalization. Inf. Sci., 178(17):3319–3332, 2008.

[25] E. Saquete, R. Munoz, and P. Martinez-Barco. Event ordering using
terseo system. Data Knowledge and Engineering, 58(1):70–89, 2006.

[26] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and R. C.
Williamson. Estimating the support of a high-dimensional
distribution. Neural Comput., 13(7):1443–1471, 2001.

[27] M. K. Stern. Dates and times in email messages. In Proc. of the 9th
Intl. Conf. on Intelligent User Interfaces, 2004.

[28] M. Thelen and E. Riloff. A bootstrapping method for learning
semantic lexicons using extraction pattern contexts. In Proc. of the

2002 Conf. on Empirical Methods in Natural Lang. Processing, 2002.

[29] P. Turney. Mining the web for synonyms: PMI-IR versus LSA on
TOEFL. In Proc. of European Conf. on Machine Learning, 2001.

[30] O. Uzuner, Y. Luo, and P. Szolovits. Evaluating the state-of-the-art in
automatic de-identification. Journal of the American Medical

Informatics Association, 14, 2007.

[31] V. von Brzeski, U. Irmak, and R. Kraft. Leveraging context in
user-centric entity detection systems. In Proc. of the 16th ACM Conf.

on information and knowledge management, 2007.

