
Fast and Parallel Webpage Layout∗

Leo A. Meyerovich
†

UC Berkeley
lmeyerov@eecs.berkeley.edu

Rastislav Bodík
UC Berkeley

bodik@eecs.berkeley.edu

ABSTRACT
The web browser is a CPU-intensive program. Especially on
mobile devices, webpages load too slowly, expending signif-
icant time in processing a document’s appearance. Due to
power constraints, most hardware-driven speedups will come
in the form of parallel architectures. This is also true of
mobile devices such as phones. Current browsers, however,
barely exploit hardware parallelism, so we are designing a
parallel mobile browser. In this paper, we introduce new
algorithms for CSS selector matching, layout solving, and
font rendering, which represent key components for a fast
layout engine. Evaluation on popular sites shows speedups
as high as 80x. We also formulate layout solving with at-
tribute grammars, enabling us to not only parallelize our
algorithm but prove that it computes in O(log) time and
without reflow.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Benchmarking, graphical user interfaces (GUI),
theory and methods; I.3.2 [Computer Graphics]: Graph-
ics Systems—Distributed/network graphics; I.3.1 [Computer
Graphics]: Hardware Architecture—Parallel processing

General Terms
Algorithms, Design, Languages, Performance, Standardiza-
tion

Keywords
CSS, HTML, mobile, multicore, font, selector, layout, at-
tribute grammar

1. INTRODUCTION
∗Research supported by Microsoft (Award #024263) and
Intel (Award #024894) funding and by matching funding
by U.C. Discovery (Award #DIG07-10227).
†This material is based upon work supported under a Na-
tional Science Foundation Graduate Research Fellowship.
Any opinions, findings, conclusions or recommendations ex-
pressed in this publication are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

Web browsers should be at least a magnitude faster. Cur-
rent browser performance is insufficient, so companies like
Google manually optimize typical pages [13] and rewrite
them in low-level platforms for mobile devices[1]. As we have
previously noted, browsers are increasingly CPU-bound [8,
15]. Benchmarks of Internet Explorer [16] and Safari reveal
40-70% of the average processing time is spent on visual lay-
out, so we present our new components for layout. Crucial
to exploiting modern and coming hardware, our algorithms
feature low cache usage and parallel evaluation.

Our primary motivation is to support the emerging and
diverse class of mobile devices. Consider the 85,000+ appli-
cations specifically written for Apple’s iPhone and iTouch
devices that have been downloaded over 2,000,000,000 times
by their 50,000,000+ owners [9]. Alarmingly, instead of just
refactoring existing user interfaces for the smaller form fac-
tor, sites like yelp.com and facebook.com fully rewrite their
clients with the low-level instead of losing 1-2 magnitudes
of performance. Furthermore, these applications represent
less than 1% of online content. As we consider successively
smaller computing classes, our performance concerns com-
pound. By optimizing browsers, we can make high-level
platforms like the web more viable for mobile devices.

Our second motivation to optimize browsers is for pages
that already take only 1-2 seconds to load. A team at
Google, when comparing the efficacy of showing 10 search
results vs. 30, found that speed was a significant latent
variable. A 0.5 second slowdown corresponded to a 20%
decrease in traffic, hurting revenue [13]. Other teams have
confirmed these findings throughout Facebook and Google.
Improving clientside performance is now a time-consuming
process: for example, Google sites sacrifice the structuring
benefits of style sheets in order to improve performance. By
optimizing browsers, we enable developers to instead focus
more on application domain concerns.

0 

10 

20 

0 

10 

20 

Slashdot  Yahoo!  MySpace  Wikipedia  lo
ad

 4
m
e 
(s
) 

sl
ow

do
w
n 

iPhone  MacBook Pro  slowdown 

Figure 1: 400Mhz iPhone vs. 2.4Ghz MacBook Pro load-
times using the same wireless network.

Webpage processing is replacing networking as the perfor-
mance bottleneck. Figure 1 compares loadtimes for popular

websites on a 2.4 Ghz MacBook Pro to using a 400Mhz
iPhone. We used the same wireless network for the tests:
loadtime is still 9x slower on the handheld, suggesting the
network is not entirely to blame. The IE8 team, on undis-
closed hardware, found the top 30 most popular sites use an
average 1.0s of CPU time [6] and our above sample shows
about 1.6s. Consider the 6x clock frequency slowdown when
switching from a MacBook Pro to an iPhone, as well as the
overall simplification in architecture: the 9x slowdown in our
first experiment is not surprising. Given network advances,
browsers are increasingly CPU-bound.

To improve browser performance, we should exploit par-
allelism. Driven by Moore’s Law, Proebstring’s Law empir-
ically observes that hardware improvements have far out-
paced compiler-driven ones. An effective optimization strat-
egy has therefore been to not optimize software but wait for
more hardware. Unfortunately, the power wall – constraints
involving price, heat, energy, transistor size, clock frequency,
and power – is forcing hardware architects to apply increases
in transistor counts towards improving parallel performance,
not sequential performance. This includes mobile devices;
dual core mobile devices are scheduled to be manafactured
in 2010 and we expect mobile devices with up to 8 parallel
hardware contexts in roughly 5 years. We are building a
parallel web browser so that we can continue to rely upon
the traditional hardware-driven optimization path.

Our contributions are for page layout tasks. We measured
at least 40% of the time in Safari is spent in these tasks and
others report 70% of the time in Internet Explorer for just
a subset of them [6]. We examine the following for CSS
(Cascading Style Sheets [5, 11]) layout tasks:

1. Selector Matching. A rule language is used to asso-
ciate style constraints with page elements, such as declaring
that pictures nested with paragraphs have large margins.
We reexamine how to determine, for every page element,
the associated set of constraints.

2. Layout Solving. Constraints generated by the se-
lector matching step must be solved before a renderer can
map element shapes into a grid of pixels. CSS layout is
a flow-based layout language, which is common to docu-
ment systems. Focusing on a simplified kernel language,
we present the first parallel algorithm for evaluating a flow-
based layout. Furthermore, complicating CSS layout use
and implementation, the standard is informal: in contrast,
we phrase our algorithm with attribute grammars. Finally,
this approach yields the first proofs of not only termination
but solving in log time and without reflow.

3. Font handling. We optimize use of FreeType 2 [18],
a font library common to embeded systems like the iPhone.

Our ultimate goal is a fast 1 Watt browser. After an
overview of browser design (Section 2) and the roles of our
algorithms (Section 3), we separately introduce and evaluate
our algorithms (Sections 4, 5, and 6). Due to space con-
straints, we refer readers to our project site [14] for source
code, test cases, benchmarks, and extended discussion.

2. BACKGROUND
Originally, web browsers were designed to render hyper-

linked documents. Later, JavaScript was introduced to en-
able scripting of simple animations and content transitions
by dynamically modifying the document. Today, AJAX ap-
plications rival their desktop counterparts. Browsers are
large and complex: WebKit providing both layout and JavaScript

web server

decompress

image?

parsing + build DOM

decode
image

layout render

scripts

mouse,
keyboard

request html, images,  
css, scripts, app data 

web server

Figure 2: Data flow in a browser.

engines for many systems, is over 5 million lines of code.
The simplified flow of data in a browser is shown in Fig-

ure 2. Loading an HTML page sets off a cascade of events:
the page is scanned, parsed, and compiled into a document
object model (DOM), an abstract syntax tree of the doc-
ument. Content referenced by URLs is fetched and added
to the DOM tree. As the content necessary to display the
page becomes available, the page layout is (incrementally)
solved and drawn to the screen. After the initial page load,
scripts respond to events generated by user input and server
messages, typically modifying the DOM. This may, in turn,
cause the page layout to be recomputed and redrawn.

0  500  1000  1500  2000  2500  3000  3500 

AVERAGE % 

Slashdot 

Ne2lix 

MSNBC 

Gmail 

Facebook 

deviantART 

uncategorized  CSS selectors  kernel 
rendering  parsing  JavaScript 
layout  network lib  Flash 

Figure 3: Task times (ms), 2.4GHz MacBook Pro.

To determine hotspots, we profiled the latest release ver-
sion of Safari (4.0.3), a browser known for performance. Us-
ing the Shark profiler to sample the browser’s callstack every
20µs, we estimate lowerbounds on particular task CPU times
when loading popular pages (Figure 3). For each page, us-
ing an empty cache and a fast network, we started profiling
at request time and manually stopped when the majority of
content was visible. Note that, due to the callstack sampling
approach, we throw out time spent idling (e.g., network time
and post page load inactivity). We expect at least a mag-
nitude of performance degredation for all tasks on mobile
devices because our measurements were on a laptop that
consumes about 70W under load.

We examined times for the following tasks: Flash repre-
sents the Flash virtual machine plugin, the network library
handles HTTP communication (and does not include wait-

ing on the network), parsing includes tasks like lexing CSS
and generating JavaScript bytecodes, and JavaScript time
represents executing JavaScript. We could not attribute all
computations, but suspect much of the unaccounted for sam-
ples were in layout, rendering, or CSS selector computations
triggered by JavaScript, or additional tasks in creating basic
HTML and CSS data structures.

Our performance profile illustrates what is and is not a
bottleneck. For example, optimizing JavaScript execution
on these sites would eliminate at most 7% of the average
CPU time. Surprisingly, more time is spent on parsing re-
lated tasks for JavaScript rather than actually running it.
Native library computations account for at least half of the
CPU time, which we are optimizing in our parallel browser.

0  200  400  600  800  1000  1200  1400 

AVERAGE % 
Slashdot 
Ne2lix 
MSNBC 
Gmail 

Facebook 
deviantART 

image rendering  text layout  glyph rendering 

box layout  box rendering  CSS selectors 

Figure 4: Presentation time (ms), 2.4GHz MacBook Pro.

In the following sections, we focus on bottlenecks in CSS
selectors, layout, and text handling. Benchmarks of Internet
Explorer 8 [16] by others for popular sites attribute 70% of
the time to just layout and rendering. We only attribute
34% (+/- 15%) of the time to these tasks; if most of the
unknown time is distributed between them (which is plau-
sible), our benchmarks would be consistent. Under either
intepretation, these tasks are expensive and CPU-bound.

3. OPTIMIZED ALGORITHMS
Targeting a kernel of CSS, we redesigned the algorithms

for taking a parsed representation of a page and processing
it for display. Figure 4 further breaks down task times in
Safari for this process. CSS selector matching combines a
style template with a HTML tree of content in order to gen-
erate the set of style constraints for every individual HTML
node. Box layout and text layout solve these constraints for
various node types, such as determining the size of a font
for a pargraph or the position of a square. The rendering
tasks generate raster (pixel) images from these solved node
constraints and combine them together. We optimized CSS
selector matching, box and text layout, and glyph rendering.

Figure 5 depicts, at a high level, the basic sequence of
our parallel algorithms. For input, a page consists of an
HTML tree of content, a set of CSS style rules that associate
layout constraints with HTML nodes, and a set of font files.
For output, we compute absolute element positions. Each
step in the figure shows what information is computed and
depicts the parallelization structure to compute it. Blue

2. font (size,
 color, face),
 % width

1. selector matching
div a { … } p span { … }

d go

3. glyph: (width,
 height, kerning),
 pixel map

4. preferred width,
 minimum width

5. width

6. relative (x, y),
 height

7. absolute (x, y),
 pixel map

goo

d

div a { … } p span { … }

input

output

g o o

d

Figure 5: Parallel CSS processing steps.

lines show tasks are independent while arrows describe a task
that must complete before the pointed to task may compute.
Generally, HTML tree elements (the nodes) correspond to
tasks. Our sequence of algorithms is the following:

Step 1 (selector matching) determines, for every HTML
node, which style constraints apply to it. E.g., style rule div

a {font-size: 2em} specifies that an “a” node descendant
from a “div” node has a font size twice of its parent’s. For
parallelism, rules are independently matched against nodes.

Steps 2, 4-7 (box and text layout) solve layout con-
straints. Each step is a single parallel pass over the HTML
tree. Consider a node’s font size, which is constrained as a
concrete value or a percentage of its parent’s: step 2 shows,
once a node’s font size is known, the font size of its children
may be determined in parallel. Note text is on the DOM
tree’s fringe while boxes are intermediate nodes.

Step 3 (glyph handling) determines what characters
are used in a page, calls the font library to determine char-
acter constraints (e.g., size and kerning), and renders unique
glyphs. Handling of one glyph is independent of handling
another. Initial layout solving must first occur to determine
font sizes and types. Glyph constraints generated here used
later in layout steps sensitive to text size.

We found parallelism within every step above, and, in
many cases, even sequential speedups. While our layout
process has many steps, it essentially interleaves four al-
gorithms: a CSS selector matcher, a constraint solver for
CSS-like layouts, and a glyph renderer. We can now indi-
vidually examine the first three algorithms, where we achieve
speedups from 3x to 80x (Figures 7, 11, and 14). Beyond
the work presented here, we are applying similar techniques
to related tasks between steps 1 and 2 like cascading and
normalization, and GPU acceleration for step 8, painting.

4. CSS SELECTOR MATCHING
Our first algorithm optimizes the CSS selector language.

Selectors declaratively associate style constraints with con-

tent, enabling designers, for example, to define global style
templates. Some sites, like google.com, avoid runtime costs
from selectors by not using them, while others, like Zimbra

and Slashdot, spend 30% and 54% of their CPU time in pro-
cessing selectors, respectively. We found selector matching
time to be 22% in Safari and others report 10% of the time
for Internet Explorer 8. [16] Our innovations are in paral-
lelization and lowering memory pressure, and, by Amdahl’s
law, are successful enough to make pre- and post-processing
matched selectors the new bottlenecks.

4.1 Problem Statement
Consider the rule p img { margin: 10px; } specifying

that images descendant from paragraph nodes in a docu-
ment tree should have a large margin. The term p img

is a selector : a selector language is used to associate style
constraints like margin: 10px with document contents. A
style sheet has many such rules. A rule matcher determines
which style constraints apply to which elements in a docu-
ment. A popular site like Slashdot.org has thousands of
nodes and thousands of selectors to match against each of
those nodes: rule matching is a known optimization target.

The input to rule matching is a set of rules in the above
form and a document in the form of a tree. Every rule
consists of a predicate and a style constraint: if a node in the
document satisfies the predicate, the style constraint applies
to the node. The output of rule matching is an annotation on
every node describing the set of rules applicable to that node.
Multiple rules may apply to the same node, and, in practice,
often do. For every node, the constraints associated with its
rules must be combined (with special handling if there is a
redefinition); we have not optimized this phase.

4.2 Selectors
We first focus on what it means for one rule to match

one document node. A rule’s selector is matched against
the path from the node to the root of the document tree,
which is a problem similar to matching a restricted form of
regular expressions against strings. For the most commonly
used subset of CSS (representing over 99% of the rules we
encountered on popular sites like those listed on alexa.com),
the selector language is an exact subset of regular expression.
Our algorithm does not perform the following translation,
but it is useful for understanding the matching problem:

(a) Selector language

rule = sel | rule "," sel
sel =

nodePred
| sel "<" sel
| sel " " sel

nodePred =
tag (id? class*)

| id class* | class+

(b) Regex subset

rule = sel | rule "|" sel
sel =

symbol
| sel sel
| sel ".*" sel

To ground the mapping to regular expression matching,
we represent the path from a node to the document’s root
as a string where every character represents a node’s at-
tributes. A subset of the typical regular expression operators
– concatenation, “|” (disjunction), and “.*” (concatenation
with an arbitrary intermediate string1) – are used to build a

1The restriction of the Kleene star to the “.*” form prevents
terms like “a*”, simplifying backwards matching.

rule. If one of the selectors in a rule matches the path, the
rule matches. A symbol in a predicate does not have to de-
scribe all of the attributes in a node for it to match. For ex-
ample, the node <div id="account" class="first,on"/>

is matched by the symbol div.first. A document node
matches a predicate symbol if the node contains at least the
attributes required by the symbol.

INPUT: document : Node Tree, rules : Rule Set
OUTPUT: nodes : Node Tree where Node =
{id: Token?, classes: Token List, tag: Token, //input
rules: Rule Set} //output

idHash, classHash, tagHash = {}
for r in rules: //redundancy elimination and hashing
for s in rule.predicates:
if s.last.id: inject(idHash, s.last.id, s, r)
else if s.last.classes:
inject(classHash, s.last.classes.last, s, r)

else: inject(tagHash, s.last.tag, s, r)

random_parallel_for n in document: //hash tile 1
n.matchedList = [].preallocate(15) //locally allocate
if n.id: attemptHashes(n, idHash, n.id)

random_parallel_for n in document: //hash tile 2
for c in n.classes:
attemptHashes(n, classHash, c)

random_parallel_for n in document: //hash tile 3
if n.tag: attemptHashes(n, tagHash, n.tag)

random_parallel_for n in document: //reduction
for rules in n.matchedList:
for r in rules:
n.rules.push(r)

def inject(h, idx, s, r):
if !h[idx]: h[idx] = multimap()
h[idx].map(s, r)

def attemptHashes(n, hash, idx):
for (s, rules) in hash[idx]:
if (matches(n, s)): //a tight selector-matching loop
n.matchedList.push(rules) //overlapping list of sets

Figure 6: Most of our selector matching algorithm kernel.

4.3 High-Level Algorithm
Figure 6 presents pseudocode for our selector matching

algorithm, including many of our optimizations. We make
two assumptions to simplify the presentation: we assume
the selector language is restricted to the one defined above
and that disjunctions are split into separate selectors.

Our algorithm first creates hashtables associating attributes
with selectors that may end with them. It then, in 3 passes
over the document, matches nodes against selectors. Finally,
it performs a post-pass to format the results:

4.4 Optimizations
Some of our optimizations are adopted from WebKit:
Hashtables. Consider selector“p img”: only images need

to be checked against it. For every tag, class, and id in-
stance, a preprocessor create a hashtable associating at-
tributes with the restricted set of selectors that end with
it, such as associating attribute img with selectorp img. In-
stead of checking the entire stylesheet against a node, we
perform the hashtable lookups on its attributes and only
check these restricted selectors.

Right-to-left matching. For a match, a selector must
end with a symbol matching the node. Furthermore, most
selectors can be matched by only examining a short suffix of
the path to a node. By matching selectors to paths right-to-
left rather than left-to-right, we exploit these two properties
to achieve a form of short-circuiting in the common case.

We do not examine the known optimization of using a trie
representation of the document (based on attributes). In
this approaches, matches on a single node of the collapsed
tree may signify matches on multiple nodes in the preimage.

We contribute the following optimizations:
Redundant selector elimination. Due to the weak

abstraction mechanisms in the selector language, multiple
rules often use the same selectors. Preprocessing avoids re-
peatedly checking the same selector against the same node.

Hash Tiling. When traversing nodes, the hashtable asso-
ciating attributes with selectors is randomly accessed. The
HTML tree, hashtable, and selectors do not fit in L1 cache
and sometimes even L2: cache misses for them have a 10-
100x penalty. We instead partition the hashtable, perform-
ing a sequence of passes through the HTML tree, where each
pass uses one partition (e.g., idHash).

Tokenization. Representing attributes likes tag identi-
fiers and class names as unique integer tokens instead of
as strings decreases the size of data structures (decreasing
cache usage), and also shortens comparison time within the
matches method to equating integers.

Parallel document traversal. Currently, we only par-
allelize the tree traversals. We map the tree into an array of
nodes, and use a work-stealing library to allocate chunks of
the array to cores. The hash tiling optimization still applies
by performing a sequence of parallel traversals (one for each
of the idHash, classHash, and tagHash hashtables).

Random load balancing. Determining which selectors
match a node may take longer for one node than another.
Neighbors in a document tree may have similar attributes
and therefore the same attribute path and processing time.
This similarity between neighbors means matching on differ-
ent subtrees may take very different amount of times, leading
to imbalance for static scheduling and excessive scheduling
for dynamic approaches. Instead, we randomly assign nodes
to an array and then perform work-stealing on a parallel
loop, decreasing the amount of steals.

Result pre-allocation. Instead of calling a memory al-
locator to record matched selectors, we preallocate space
(and, in the rare case it is exhausted, only then call the allo-
cator). Based on samples of webpages, we preallocate spaces
for 15 matches. This is tunable.

Delayed set insertion. The set of selectors matching a
node may correspond to a much bigger set of rules because
of our redundancy elimination. When recording a match,
to lower memory use, we only record the selector matched,
only later determining the set of corresponding rules.

Non-STL sets. When flattening sets of matched rules
into one set, we do not use the C++ standard template
library (STL) set data structure. Instead, we preallocate a
vector that is the size of all the potential matches (which is
an upperbound) and then add matches one by one, doing
linear (but faster) collision checks.

4.5 Evaluation
Figure 7 reports using our rule matching algorithm on

popular websites run on a 2.3 GHz 4-core × 8-socket AMD

Opteron 8356 (Barcelona). Column 2 measures our reimple-
mentation of Safari’s algorithm (column 1, run on a 2.4GHz
Intel Core Duo): our reimplementation was within 30% of
the original and handled 99.9% of the encountered CSS rules,
so it is fairly representative. GMail, as an optimization,
does not significantly use CSS: we show average speedups
with and without it (the following discussion of averages is
without it). We performed 20 trials for each measurement.
There was occasional system interference, so we dropped
trials deviating over 3x (less than 1% of the trials).

We first examine low-effort optimizations. Column “L2
opts” depicts simple sequential optimizations such as the
hashtable tiling. This yields a 4.0x speedup. Using Cilk++,
a simple 3-keyword extension of C++ for work-stealing task
parallelism, we spawn selector matching tasks during the
normal traversal of the HTML tree instead of just recur-
ring. Seqential speedup dropped to 3.8x, but, compensat-
ing, strong scaling was to 3 hardware contexts with smaller
gains up to 7 contexts (“Cilk” columns). Overall, speedup is
13x and 14.8x with and without GMail.

We now examine the other sequential optimizations (Sec-
tion 4.4) and changing parallelization strategy. The sequen-
tial optimzations (column“L1 opts”) exhibit an average total
25.1x speedup, which is greater than the speedup from using
Cilk++, but required more effort. Switching to Intel’s TBB
library for more verbose but lower footprint task parallelism
and using a randomized for-loop is depicted in the “TBB”
columns. As with Cilk++, parallelization causes speedup
to drop to 19x in the sequential case, with strong scaling
again to 3 hardware contexts that does not plateau until
6 hardware contexts. Speedup variance increases with scal-
ing, but less than when using the tree traversal (not shown).
With and without GMail, the speedup is 55.2x and 64.8x,
respectively.

Overall, we measured total selector matching runtime dropped
from an average 204ms when run on the AMD machine down
to an average 3.5ms. Given an average 284ms was spent in
Safari on the 2.4GHz Intel Core 2 Duo MacBook Pro, we
predict unoptimized matching takes about 3s on a hand-
held. If the same speedup occurs on a handheld, time would
drop down to about 50ms, solving the bottleneck.

5. LAYOUT CONSTRAINT SOLVING
Layout consumes an HTML tree where nodes have sym-

bolic constraint attributes set by the earlier selector match-
ing phase. Layout solving determines details like shape and
text size and position. A subsequent step, painting (or ren-
dering), converts these shapes into pixels: while we have
reused our basic algorithm for a simple multicore renderer,
we defer examination for future work that investigates the
use of data-parallel hardware like GPUs.

For intuition, intermediate nodes represent rectangles vi-
sually nested within the rectangle of their parent (a box lay-
out) and are adjacent to boxes of their sibling nodes. They
are subject to constraints like word-wrapping (flow layout
constraints). Text and images are on the tree’s fringe and
have constraints such as letter size or aspect ratio. To solve
for one attribute, many other nodes and their attributes are
involved. For example, to determine the width of a node, we
must consider width constraints of descendant nodes, which
might depend upon text size, which might be a function of
the current node’s text size, etc. It is difficult to implement
layout correctly, and more so efficiently.

0 

20 

40 

60 

80 

Safari  Naïve  L2  Cilk1  Cilk2  Cilk3  Cilk4  Cilk5  Cilk6  Cilk7  Cilk8  L1  TBB1  TBB2  TBB3  TBB4  TBB5  TBB6  TBB7  TBB8 

Sp
ee
du

p 
msnbc  gmail  slashdot 

deviantart  neDlix  facebook 

AVERAGE  IDEAL SCALING  AV. W/OUT GMAIL 

Figure 7: Selector matching speedup relative to a reimplementation (column 2) of Safari’s algorithm (column 1).

As with selector matching, we do not ask that developers
make special annotations to benefit from our algorithms.
Instead, we focus on a subset of CSS that is large enough to
reveal implemenation bugs in all mainstream browsers yet is
small enough to show how to exploit parallelism. This subset
is expressive: it includes the key features that developers
endorse for resizable (liquid) layout. Ultimately, we found
it simplest to define a syntax-driven transformation of CSS
into a new, simpler intermediate language, which we dub
Berkeley Style Sheets (BSS).

We make three contributions for layout solving:
Performance. We show how to decompose layout into

multiple parallel passes. In Safari, the time spent solving
box and text constraints is, on average, 15% of the time
(84ms on a fast laptop and we expect 1s on a handheld).

Specification. We demonstrate a basis for the declara-
tive specification of CSS. The CSS layout standard is infor-
mally written, cross-cutting, does not provide insight into
even the naive implementation of a correct engine, and un-
derspecifies many features. As a result, designer produc-
tivity is limited by having to work around functionally in-
correct engine implementations. Troubling, there are also
standards-compliant feature implementations with function-
ally inconsistent interpretations between browsers. We spent
significant effort in understanding, decomposing, and then
recombining CSS features in a way that is more orthogonal,
concise, and well-defined. As a sample benefit, we are ex-
perimenting with automatically generating a correct solver.

Proof. We prove layout solving is at most linear in the
size of the HTML tree (and often solvable in log time). Cur-
rently, browser developers cannot even be sure that layout
solving terminates. In practice, it occasionally does not [17].

Due to space constraints, we only detail BSS0, a simple
layout language for vertical and horizontal boxes. It is sim-
ple enough to be described with one attribute grammar, but
complicated enough that there may be long dependencies
between nodes in the tree and the CSS standard does not
define how it should be evaluated. We informally discuss
BSS1, a multipass grammar which supports shrink-to-fit siz-
ing, and BSS2, which supports left floats (which we believe
are the most complicated and powerful elements in CSS0).

5.1 Specifying BSS0
BSS0, our simplest language kernel, is for nested layout of

boxes using vertical stacking or word-wrapping. We provide
an intuition for BSS0 and our use of an attribute grammar to
specify it. Even for a small language, we encounter subtleties
in the intended meaning of combinations of various language
features and how to evaluate them.

Figure 9 illustrates the use of the various constraints in

BSS0. It corresponds to the following input:

V BOX[wCnstrnt = 200px, hCnstrnt = 150px](

V BOX[wCnstrnt = 80%, hCnstrnt = 15%](),

HBOX[wCnstrnt = 100px, hCnstrnt = auto](

V BOX[wCnstrnt = 40px, hCnsntrt = 15px](),

V BOX[wCnstrnt = 20px, hCnstrnt = 15px](),

V BOX[wCnstrnt = 80px, hCnstrnt = 15px]()))

The outermost box is a vertical box: its children are stacked
vertically. In contrast, its second child is a horizontal box,
placing its children horizontally, left-to-right, until the right
boundary is reached, and then word wrapping. Width and
height constraints are concrete pixel sizes or percentages of
the parent. Heights may also be set to auto: the height of
the horizontal box is just small enough to contain all of its
children. BSS1 [14] shows extending this notion to width
calculations adds additional but unsurprising complexity.

We specify the constraints of BSS0 with an attribute gram-
mar (Figure 8). The goal is, for every node, to determine the
width and height of the node and its x and y position rela-
tive to its parent. The bottom of the figure defines the types
of the constraints and classes V and H specify, for vertical
and horizontal boxes, the meaning of the constraints.

In an attribute grammar [10], attributes on each node
are solved during tree traversals. An inherited attribute is
dependent upon attributes of nodes above it in the tree,
such as a width being a percentage of its parent width’s. A
synthesized attribute is dependent upon attributes of nodes
below it. For example, if a height is set to auto – the sum
of the heights of its children – we can solve them all in an
upwards pass. An inherited attribute may be a function of
both inherited and synthesized attributes, and a synthesized
attribute may also be a function of both inherited and syn-
thesized attributes. In general attribute grammars, a traver-
sal may need to repeatedly visit the same node, potentially
with non-deterministic or fixed-point semantics!

BSS0 has the useful property that inherited attributes
are only functions of other inherited attributes: a traver-
sal to solve them need only observe a partial order going
downwards in the tree. Topological, branch-and-bound, and
depth-first traversals all do this. Similarly, synthesized at-
tributes, except on the fringe, only depend upon other syn-
thesized attributes: after inherited attributes are computed,
a topologically upwards traversal may compute the synthe-
sized ones in one pass. In the node interface (Figure 8),
we annotate attributes with dependency type (inherited or
synthesized). In Section 5.3, we see this simplifies paral-
lelization. By design, a downwards and then upwards pass

interface Node // passes
@input children, prev, wCnstrnt, hCnstrnt
@grammar1: // (top-down, bottom-up)
@inherit width // final width
@inherit th // temp height, for %s or bad constraint
@inherit relx // x position relative to parent
@synthesize height // final height
@synthesize rely // y position relative to parent

class V implements Node // semantic actions
@grammar1.inherit // top-down
for c in children:

c.th = sizeS(th, c.hCnstrnt) //might be auto
c.width = sizeS(width, c.wCnstrnt)
c.relx = 0

@grammar1.synthesize // bottom-up
height = joinS(th, sum([c.height | c in children]))
if children[0]: children[0]rely = 0
for c > 0 in children:

c.rely = c.prev.rely + c.prev.height

class H implements Node // semantic actions
@grammar1.inherit // top-down
for c in children:

c.th = sizeS(th, c.hCnstrnt) //might be auto
c.width = sizeS(width, c.wCnstrnt)

if children[0]:
children[0]relx = 0

for c > 0 in children:
c.relx = c.prev.relx + c.prev.width > width ? // wordwrap
0 : c.prev.relx + c.prev.width

@grammar1.synthesize // bottom-up
if children[0]:
children[0]rely = 0

for c > 0 in children:
c.rely = c.prev.relx + c.prev.width > width ? // wordwrap
c.prev.rely + c.prev.height : c.prev.rely

height =
joinS(th, max([c.rely + c.height | c in children]))

class Root constrains V // V node with some values hardcoded
th = 100 // browser specifies all of these
width = 100, height = 100
relx = 0, rely = 0

function sizeS (auto, p %) -> auto // helpers
| (v px, p %) -> v * 0.01 * p px
| (v, p px) -> p px
| (v, auto) -> auto

function joinS (auto, v) -> v
| (p px, v) -> p

R→ V | H // types

V → H∗ | V ∗

H → V ∗

V ::{wCnstrnt : P | PCNT, hCnstrnt : P | PCNT | auto

children : V list, prev : V,

th : P | auto,

width = P, relx : P, rely : P, height : P}
H ::{wCnstrnt : P | PCNT, hCnstrnt : P | PCNT | auto

children : V list, prev : V,

th : P | auto,

width = P, relx : P, rely : P, height : P}
Root ::V where {width : P, height : P, th : P}

P :: R px

PCNT :: P % where P = [0, 1] ⊂ R

Figure 8: BSS0 passes, constraints, helpers, grammar, and
types.

VBOX wCnstrnt=80%
VBOX wCnstrnt=200px

hCnstrnt=shrink

hC
nstrnt=15%

HBOX wCnstrnt=100px

hC
nstrnt=150px

Figure 9: Sample BSS0 layout constraints.

suffices for BSS0 (steps 2 and 4 of Figure 5).
In our larger languages, [14] inherited attributes may also

access synthesized attributes: two passes no longer suffice.
In these extensions, inherited attributes in the grammar
are separated by an equivalence relation, as are synthe-
sized ones, and the various classes are totally ordered: each
class corresponds to a pass. All dependency graphs of at-
tribute constraints abide by this order. Alternations be-
tween sequences of inherited and synthesized attributes cor-
respond to alternations between upwards and downwards
passes, with the amount being the number of equivalence
classes. Figure 5 shows these passes. The ordering is for the
pass by which a value is definitely computable (which our
algorithms make a requirement); as seen with the relative
x coordinate of children of vertical nodes, there are often
opportunties to compute in earlier passes.

5.2 Surprising and Ambiguous Constraints
Even for a seemingly simple language like BSS0, we see

scenarios where constraints have a surprising or even unde-
fined interpretation in the CSS standard and browser imple-
mentations. Consider the following boxes:

V[hCnstrnt=auto](V[hCnstrnt=50%](V[hCnstrnt=20px]))
Defining the height constraints for the outer 2 vertical

boxes based on their names, the consistent solution would
be to set both heights to 0. Another approach is to ignore
the percentage constraint and reinterpret it as auto. The
innermost box size is now used: all boxes have height 20px.
In CSS, an analogous situation occurs for widths. The stan-
dard does not specify what to do; instead of using the first
approach, our solution uses the latter (as most browsers do).

Another subtlety is that the width and height of a box
does not restrict its children from being displayed outside of
its boundaries. Consider the following:

V[hCnstrnt=50px](V[hCnstrnt=100px])
Instead of considering such a layout to be inconsistent and

rejecting it, BSS0 (like CSS) accepts both constraints. Lay-
out proceeds as if the outer box really did successfully con-
tain all of its children. Depending on rendering settings, the
overflowing parts of the inner box might still be displayed.

We found many such scenarios where the standard is un-
defined, or explicitly or possibly by accident. In contrast,
our specification is well-defined.

5.3 Parallelization
Attribute grammars expose opportunties for paralleliza-

tion [2]. First, consider inherited attributes. Data depen-
dencies flow down the tree: given the inherited attributes of

class Node
def traverse (self, g):
self[’calcInherited’ + g]();
@autotune(c.numChildren) //sequential near fringe
parallel_for c in self.children:
c.traverse(g) //in parallel to other children

self[’calcSynthesized’ + g]();
class V: Node

def calcInheritedG1 (self):
for c in self.children:
c.th = sizeS(self.th, c.hCnstrnt)
c.width = sizeS(self.tw, c.wCnstrnt)

def calcSynthesizedG1 (self):
self.height =
joinS(self.th,

sum([c.height where c in self.children]))
if self.children[0]: self.children[0].rely = 0
for c > 0 in sel.children:
c.rely = c.prev.rely + c.prev.height

self.prefWidth =
join(self.tw,

max([c.prefWidth where c in self.children]))
self.minWidth =
join(self.tw,

max([c.minWidth where c in self.children]))
...

...

for g in [’G1’, ...]: //compute layout
rootNode.traverse(g)

Figure 10: BSS0 parallelization psuedocode. Layout calcu-
lations are implemented separately from the scheduling and
synchronization traversal function.

a parent node, the inherited attributes of its children may be
independently computed. Second, consider synthesized at-
tributes: a node’s childrens’ attributes may be computed in-
dependently. Using the document tree as a task-dependency
graph, arrows between inherited attributes go downwards,
synthesized attribute dependencies upwards, and the fringe
shows synthesized attributes are dependent upon inherited
attributes from the previous phase (Figure 5).

A variety of parallel algorithms are now possible. For
example, synthesized attributes might be computed with
prefix scan operations. While such specialized and tuned
operators may support layout subsets, we found much of
the layout time in Safari to be spent in general or random-
access operations (e.g., isSV G()), so we want a more general
structure. We take a task-parallel approach (Figure 10). For
each node type and grammar, we define custom general (se-
quential) functions for computing inherited attributes (cal-
cInherited()) and synthesized attributes (calcSynthesized()).
Scheduling is orthogonally handled as follows:

We define parallel traversal functions that invoke layout
calculation functions (semantic actions [10]). One grammar
is fully processed before the next. To process a grammar,
a recursive traversal through the tree occurs: inherited at-
tributes are computed for a node, tasks are spawned for pro-
cessing child nodes, and upon their completion, the node’s
synthesized attributes are processed. Our implementation
uses Intel’s TBB, a task parallel library for C++. Tradi-
tional optimizations apply, such as tuning for when to se-
quentially process subtrees near the bottom of the HTML
tree instead of spawning new tasks. Grammar writers define
sequential functions to compute the attributes specified in

Figure 8 given the attributes in the previous stages; they do
not handle concerns like scheduling or synchronization.

0 

1 

2 

3 

4 

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 

Sp
ee
du

p 

Hardware Contexts (2.3Ghz 8‐socket x 4‐core  AMD Opteron 8356) 

IDEAL 

Figure 11: Simulated layout parallelization speedup.

5.4 Performance Evaluation
We represented a snapshot of slashdot.org using our sys-

tem and found that box layout time takes only 1-2ms in
our simplified model with another 5ms for text layout. In
contrast, our profile of Safari reported 21ms and 42ms, re-
spectively (Figure 4). We parallelized our implementation,
seeing 2-3x speedups (for text; boxes were too fast). We
surmise our grammars are too simple. We then performed
a simple experiment: given a tree with as many nodes as
Slashdot, what if we performed multiple passes as in our
algorithm, except uniformly spun on each node so that the
total work equals that of Slashdot, simulating the workload
in Safari? Figure 11 shows, without trying to optimize the
computation any further and using the relatively slow but
simple Cilk++ primitives, we strongly scale to 3 cores and
gain an overal 4x speedup. The takeaway is that our algo-
rithm exposes exploitable parallelism; as our engine grows,
we will be able to tune it as we did with selectors.

(a) speculations

world ok ok ok ok ok

hello

world
ok ok

ok ok ok

(b) evaluation

world ok ok ok ok ok

hello

world

ok ok

ok ok ok

contents

(relx,rely)

(c) mispeculation checking

world

ok ok

ok ok ok

hello

world

ok ok ok ok ok

(d) reevaluation

Figure 12: Speculative evaluation for floats.

5.5 Floats
Advanced layouts such as multiple columns or liquid (mul-

tiresolution) flows employ floating elements. For example,
Figure 12d depicts a newspaper technique where images float
left and content flows around them. Floats are ambiguously
defined and inconsistently implemented between browsers;

our specification of them took significant effort and only
supports left (not right) floats. We refer to our extended
version for more detailed discussion [14].

A revealed weakness of our approach in BSS0 and BSS2 is
that floating elements may have long sequential dependen-
cies. For example, notice that attempting to solve the second
paragraph in Figure 12b without knowing the positions of
elements in the first leads to an incorrect layout. Our solu-
tion is to speculatively evaluate grammars (Figures 12a, 12b)
and then check for errors (Figure 12c), rerunning grammars
that misspeculate (Figure 12d). Our specification-driven ap-
proach makes it clear which values need to be checked.

5.6 Termination and Complexity
Infinite loops occasionally occur when laying out web-

pages [17]. Such behavior might not be an implementation
bug: there is no proof that CSS terminates! Our specifica-
tion approach enables proof of a variety of desirable prop-
erties – and, beyond the scope of this work, potentially the
ability to automatically generate solvers that have them.

We syntactically prove for BSS0 that layout solving ter-
minates, computes in time at worst linear in HTML tree
size, and for a large class of layouts, computes in time log
of HTML tree size. Our computations are defined as an
attribute grammar. The grammar has an inherited compu-
tation phase (which is syntactically checkable): performing
it is at worst linear using a topological traversal of the tree.
For balanced trees, the traversal may be performed in par-
allel by spawning at nodes: given log(|tree|) processors, the
computation may be performed in log time. A similar ar-
gument follows for the synthesized attribute pass, so these
results apply to BSS0 overall. A corollary is that reflow
(iterative solving for the same attribute) is unnecessary.

Our extended version [14] discusses extending these tech-
niques to richer layout languages. An exemption is that we
cannot prove log-time performance for our speculative float
algorithm.

6. FONT HANDLING
Font library time, such as for glyph rendering, takes at

least 10% of the processing time in Safari (Figure 4). Calls
into font libraries typically occur greedily whenever text is
encountered during a traversal of the HTML tree. For ex-
ample, to process the word “good” in Figure 12, calls for
the bitmaps and size constraints of ’g’, ’o’, and ’o’ would be
made at one point, and, later, for ’d’. A cache is used to
optimize the repeated use of ’o’.

L

…

L
i

L

a

…

L

L

L

Figure 13: Bulk and parallel font handling.

Figure 13 illustrates our algorithm for handling font calls

in bulk. This is step 3 of our overall algorithm (Figure 5): it
occurs after desired font sizes are known for text and must
occur before the rest of the layout calculations (e.g., for
prefWidth) may occur. First, we create a set of necessary
font library requests – the combination of (character, font
face, size, and style) – and then make parallel calls to pro-
cess this information. We currently perform the pooling step
sequentially, but it can be described as a parallel reduction
to perform set unions. We use nested parallel_for calls,
hierarchically encoding affinity on font file and creating tasks
at the granularity of (font, size).

0 

1 

2 

3 

4 

MB1 MB2  N1  N2  N3  N4  N5  N6  N7  N8 

Sp
ee
du

p 

Hardware Contexts (MB=MacBook Pro, N=Nehalem) 

msnbc  gmail  slashdot  deviantart 

neKlix  facebook  AVERAGE  IDEAL 

Figure 14: Glyph rendering parallelization speedup.

Figure 14 shows the performance of our algorithm on sev-
eral popular sites. We use the FreeType2 font library[18], In-
tel’s TBB for a work stealing parallel_for, and a 2.66GHz
Intel Nehalem with 4 cores per socket. For each site, we
extract the HTML tree and already computed font styles
(e.g., bold) as input for our algorithm. We see strong par-
allelization benefits for up to 3 cores and a plateau at 5. In
an early implementation, we also saw about a 2x sequential
speedup, we guess due to locality benefits from staging in-
stead of greedily calling the font library. Finally, we note
the emergence of Amdahl’s Law: before parallelization, our
sequential processor to determine necessary font calls took
only 10% of the time later spent making calls, but, after
optimizing elsewhere, it takes 30%. Our font kernel paral-
lelization succeeded on all sites with a 3-4x speedup.

7. RELATED WORK
Multi-process browsers. Browsers use processes to iso-

late pages from one another, reducing resource contention
and hardening against attacks [19]. This leads to pipeline
parallelism between components but not for the bulk of time
spent within functionally isolated and dependent algorithms.

Selectors. Our rule matching algorithm incorporates
two sequential optimizations from WebKit. Inspired by our
work, Haghighat et al [7] speculatively parallelize matching
one selector against one node – the innermost loop of algo-
rithm implicitly within function match – but do not show
scaling beyond 2 cores nor significant gains on typical sites.

Bordawekar et al [3] study matching XPath expressions
against XML files. They experiment with data partitioning
(spreading the tree across multiple processors and concur-
rently matching the full query against the partitions) and
query partitioning (partitioning the parameter space of a
query across processors). Their problem is biased towards
single queries and large files while ours is for many queries
and small files. We perform data partitioning, though, in

contrast, we also tile queries. We perform query partitioning
by splitting on disjunctions, though this represents a work-
inefficient strategy and mostly exists to further empower our
redundancy elimination optimization: it is more analogous
to static query optimizations. Overall, we find it important
to focus on memory, performing explicit reductions, memory
preallocation, tokenization, etc. Finally, as CSS is more con-
strained than XPATH, we perform additional optimizations
like right-to-left matching.

Glyph rendering. Parallel batch font rendering can al-
ready be found in existing systems, though it is unclear how.
We appear to be the first to propose tightly integrating it
into a structured layout system.

Specifying layout. Most document layout systems, like
TEX, are implementation-driven, occasionally with informal
specifications as is the case with CSS [11, 5]. For perfor-
mance concerns, they are typically implemented in low-level
languages, but, increasingly, high-level languages like Java
or ActionScript are used. These are still general purpose;
we use an analyzable domain specific language.

Constraint-based layout. Executable specifications of
layout is an open problem. The Cassowary project [4] pro-
poses extending CSS with its linear constraint solver. Un-
fortunately, linear constraints are insufficient for CSS. A so-
lution is to make a pipeline of linear and ad-hoc solvers [12].
These approaches do not currently support reasoning about
layouts, do not have performance on-par with browsers, and
elide popular powerful features like floats. In contrast, for a
difficult and representative set of rich CSS-like features, we
have demonstrated advances in reasoning and performance
while still supporting equational reasoning.

Attribute grammars. Attribute grammars are a well-
studied model [10]. They have primarily been examined as
a language for the declarative specification of interpreters,
compilers, and analyses for Pascal-like languages. It is not
obvious that attribute grammar primitives are appropriate
for specifying and optimizing layout. For example, we found
multiple passes of parallel (work-stealing) tree traversals to
be a suitable parallelization structure, but the only demon-
strated support for parallelism in attribute grammars is for
decomposing based on regions of the tree. [2] As another
concern, we are not aware of any attribute grammar system
that meets our need for speculative evaluation.

8. CONCLUSION
We have demonstrated algorithms for three bottlenecks of

loading a webpage: matching CSS selectors, laying out gen-
eral elements, and text processing. Our sequential optimiza-
tions feature improved data locality and lower cache usage.
Browsers are seeing increasingly little benefit from hardware
advances; our parallel algorithms show how to take advan-
tage of advances in multicore architectures. We believe such
work is critical for the rise of the mobile web.

Our definition of layout solving as a series of attribute
grammars is of further interest. We have proved that, not
only does layout terminate, but it is possible without re-
flow and often in log time. Furthermore, our approach is
amenable to machine-checking and we are even examining
automatically generating solvers. This simplifies tasks for
browser developers and web designers dependent upon them.

Overall, this work is a milestone in our construction of a
parallel, mobile browser for browsing the web on 1 Watt.

9. REFERENCES
[1] Apple, Inc. iPhone Dev Center: Creating an iPhone

Application, June 2009.

[2] H.-J. Boehm and W. Zwaenepoel. Parallel Attribute
Grammar Evaluation. Technical Report TR87-55, Rice
University, 1987.

[3] R. Bordawekar, L. Lim, and O. Shmueli.
Parallelization of XPath Queries using Multi-Core
Processors: Challenges and Experiences. In EDBT
’09: Proceedings of the 12th International Conference
on Extending Database Technology, pages 180–191,
New York, NY, USA, 2009. ACM.

[4] A. Borning, K. Marriott, P. Stuckey, and Y. Xiao.
Solving Linear Arithmetic Constraints for User
Interface Applications. In UIST ’97: Proceedings of
the 10th annual ACM symposium on User interface
software and technology, pages 87–96, New York, NY,
USA, 1997. ACM.

[5] B. Bos, H. W. Lie, C. Lilley, and I. Jacobs. Cascading
Style sheets, Level 2 CSS2 Specification, 1998.

[6] S. Dubey. AJAX Performance Measurement
Methodology for Internet Explorer 8 Beta 2. CODE
Magazine, 5(3):53–55, 2008.

[7] M. Haghighat. Bug 520942 - Parallelism Opportunities
in CSS Selector Matching, October 2009.
https://bugzilla.mozilla.org/show bug.cgi?id=520942.

[8] C. Jones, R. Liu, L. Meyerovich, K. Asanovic, and
R. Bodik. Parallelizing the web browser, 2009. to
appear.

[9] N. Kerris and T. Neumayr. Apple App Store
Downloads Top Two Billion. September 2009.

[10] D. E. Knuth. Semantics of Context-Free Languages.
Theory of Computing Systems, 2(2):127–145, June
1968.

[11] H. W. Lie. Cascading Style Sheets. Doctor of
Philosophy, University of Oslo, 2006.

[12] X. Lin. Active Layout Engine: Algorithms and
Applications in Variable Data Printing.
Computer-Aided Design, 38(5):444–456, 2006.

[13] M. Mayer. Google I/O Keynote: Imagination,
Immediacy, and Innovation... and a little glimpse
under the hood at Google. June 2008.

[14] L. Meyerovich. A parallel web browser. http://www.
eecs.berkeley.edu/~lmeyerov/projects/pbrowser/.

[15] L. Meyerovich. Rethinking Browser Performance.
Login, 34(4):14–20, August 2009.

[16] C. Stockwell. IE8 What is Coming.
http://en.oreilly.com/velocity2008/public/schedule/detail/32
90, June 2008.

[17] G. Talbot. Confirm a CSS Bug in IE 7 (infinite loop).
http://bytes.com/topic/html-css/answers/615102-
confirm-serious-css-bug-ie-7-infinite-loop, March
2007.

[18] D. Turner. The Design of FreeType2. The FreeType
Development Team, 2008.
http://www.freetype.org/freetype2/docs/design/.

[19] H. J. Wang, C. Grier, A. Moshchuk, S. T. King,
P. Choudhury, and H. Venter. The Multi-Principal OS
Construction of the Gazelle Web Browser. In 18th
Usenix Security Symposium, 2009.

