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ABSTRACT
Privacy is an enormous problem in online social networking
sites. While sites such as Facebook allow users fine-grained
control over who can see their profiles, it is difficult for av-
erage users to specify this kind of detailed policy.

In this paper, we propose a template for the design of
a social networking privacy wizard. The intuition for the
design comes from the observation that real users conceive
their privacy preferences (which friends should be able to see
which information) based on an implicit set of rules. Thus,
with a limited amount of user input, it is usually possible
to build a machine learning model that concisely describes
a particular user’s preferences, and then use this model to
configure the user’s privacy settings automatically.

As an instance of this general framework, we have built
a wizard based on an active learning paradigm called un-
certainty sampling. The wizard iteratively asks the user to
assign privacy “labels” to selected (“informative”) friends,
and it uses this input to construct a classifier, which can in
turn be used to automatically assign privileges to the rest
of the user’s (unlabeled) friends.

To evaluate our approach, we collected detailed privacy
preference data from 45 real Facebook users. Our study
revealed two important things. First, real users tend to
conceive their privacy preferences in terms of communities,
which can easily be extracted from a social network graph
using existing techniques. Second, our active learning wiz-
ard, using communities as features, is able to recommend
high-accuracy privacy settings using less user input than ex-
isting policy-specification tools.

Categories and Subject Descriptors
H.2.7 [Information Systems]: Security, integrity, and pro-
tection

General Terms
Security
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1. INTRODUCTION
Social networking sites (e.g., Facebook, MySpace, Friend-

ster, Orkut, etc.) are websites that enable people to share
information and communicate with friends online. At the
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same time, users typically do not want to share all of their
information with everyone, and privacy has emerged as a
serious concern.

A growing number of social networking and social media
sites allow users to customize their own privacy policies. For
example, Facebook has a “Privacy Settings” page, which al-
lows users to specify which pieces of profile data each friend
is allowed to view. Facebook also allows users to create
friend lists, and then specify whether a piece of profile data
is visible or invisible to all friends in a particular list.

Unfortunately, studies have consistently shown that users
struggle to express and maintain such policies [4, 13, 22,
27, 39], due in part to complex and unusable interfaces [39].
On Facebook, for example, the user must manually assign
friends to lists; because the average Facebook user has 130
friends [2], the process can be very time-consuming. Worse,
numerous lists may be required since a user’s privacy pref-
erences can be different for different pieces of profile data
(e.g., Home Address vs. Religious Views).

Clearly, there is a need for something better. In this pa-
per, we propose the first privacy wizard for social networking
sites. The goal of the wizard is to automatically configure a
user’s privacy settings with minimal effort from the user.

1.1 Challenges
The goal of a privacy wizard is to automatically configure

a user’s privacy settings using only a small amount of effort
from the user. The design and implementation of a suitable
wizard present a number of difficult challenges. Ideally, the
wizard should satisfy the following requirements:

• Low Effort, High Accuracy: The wizard may solicit
input from the user. Research has shown, however, that
users have trouble reasoning holistically about privacy and
security policies [35, 27]. Thus, the user’s input should be
simple in form, and also limited in quantity.

At the same time, the settings chosen by the wizard should
accurately reflect the user’s true privacy preferences. A
naive approach would ask the user to manually configure
her privacy settings for all friends. While this approach
may produce perfect accuracy if carried to completion, it
also places an undo burden on the user.

• Graceful Degradation: It is difficult to predict the
amount of input that a particular user will be willing to
provide. As the user provides more input, the accuracy of
the resulting settings should improve. However, the wizad
should assume that the user can quit at any time.

• Visible Data: In addition to the user’s input, the wizard
may also use information that it can gather and process



automatically (i.e., without any user intervention). For
confidentiality reasons, however, when assisting a user U ,
the wizard should only use information that is already
visible to U . Typically, this includes U ’s neighborhood :
the information visible to U in U ’s friends’ profiles, and
the friend connections among U ’s friends.

• Incrementality: The settings constructed by the wizard
should gracefully evolve as the user adds new friends.

1.2 Summary of Contributions
In response to these challenges, we developed a generic

framework for the design of a privacy wizard, which is de-
scribed in Section 2. One of the key insights behind our
approach is the observation that real users conceive their pri-
vacy preferences according to an implicit set of rules. Thus,
using machine learning techniques, and limited user input,
it is possible to infer a privacy-preference model (i.e., a com-
pact representation of the rules by which an individual con-
ceives her privacy preferences). This model, in turn, can be
used to configure the user’s settings automatically.

As one instance of the generic approach, we have devel-
oped the active-learning privacy wizard described in Sec-
tion 3. The wizard implements the privacy-preference model
by learning a classifier. In the classifier, the features used to
describe each friend, including community membership, are
extracted automatically from the data visible to the user.
The wizard provides very simple user interactions: Lever-
aging the machine learning paradigm of active learning, it
iteratively asks the user to assign privacy labels (e.g., allow
or deny) to specific, carefully-selected, friends. As the user
provides more input, the quality of the classifier improves,
but the user can stop at any time. Further, the wizard
adapts gracefully as the user adds new friends.

The basic wizard is extremely simple to use, and well-
suited for typical (non-technical) users. However, advanced
technical users may complain that it does not allow them to
view or directly manipulate the resulting privacy-preference
model. Thus, in Section 4 we describe a set of visualization
and modification tools for advanced users.

To evaluate our solution, we conducted a detailed study of
real users. Using raw privacy preferences, which we collected
from 45 real Facebook users, the experiments in Section 5
show two important things: First, our wizard achieves a
significantly better effort-accuracy tradeoff than alternative
policy-specification tools. On average, if a user labels just
25 (of over 200) friends, the wizard configures the user’s set-
tings with > 90% accuracy. Second, communities extracted
from a user’s neighborood are extremely useful for predicting
privacy preferences.

2. WIZARD OVERVIEW
2.1 Preliminaries

A user’s privacy preferences express her willingness (or
unwillingness) to share profile information with each of her
friends. Formally, for a particular user, we will denote the
user’s set of friends as F . We will denote the set of infor-
mation items in the user’s profile as I. At the lowest level,
the user’s privacy preferences can be expressed in terms of
the function pref : I × F → {allow, deny}. If pref(i, f) =
allow, this means that it is the user’s preference to allow
friend f to see profile item i.

We will use the term privacy preferences to refer to the
user’s idealized policy; we will use the term privacy settings
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Figure 1: User K’s neighborhood graph, and her
privacy preferences toward Date of Birth. (Shaded
nodes indicate allow, and white nodes indicate deny.)
Notice that K’s privacy preferences are highly corre-
lated with the community structure of the graph.

to refer to the policy that is actually encoded and enforced
by the social networking site. The privacy settings can also
be viewed as a function: setting : I × F → {allow, deny}.

For a particular friend set F and data item set I, the
setting accuracy is the proportion of preferences correctly
encoded by settings.1

2.2 Generic Wizard Design
This section describes the design of a generic privacy wiz-

ard. Motivating the design is the fundamental observation
that real social network users actually conceive their privacy
preferences based on unique sets of implicit rules. The de-
tails of our user study are postponed to Section 5.1, but the
intuition is illustrated with an example.

Example 1. Figure 1 shows the neighborhood of a sample
user K, and her privacy preferences toward Date of Birth.2

Each node in the graph represents one of K’s friends; there
is an edge between two nodes if there is a friend relationship
between them.

In User K’s neighborhood network, observe that there are
group of nodes clustered together. (We plotted Figure 1
using the Fruchterman-Reingold force-based layout, which
places topologically near nodes close together, and others
far apart.) In social networks research, these groups are
commonly called communities. We have manually denoted
some apparent communities on the figure: G0, G1, etc. Ob-
serve also that User K’s privacy preferences tend to break
down along the lines of the community structure. She is
willing to share her Date of Birth with the majority of her
friends. However, there are two communities (labeled G20

and G22) with whom she does not want to share this data
item. This suggests that User K has implicitly constructed
her privacy preferences according to a set of rules, and that

1Formally, Accuracy = |{(i,f)∈I×F :pref(i,f)=setting(i,f)}|
|I×F | .

2User K is the second author of this paper. Her preferences
are included as an illustrative example. To protect confiden-
tiality, we do not include the raw preference data collected
from actual study subjects.
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Figure 2: Privacy Wizard Overview

these rules are related to the underlying community structure
of her friend network.

Based on this observation, and in response to the require-
ments outlined in the introduction, we propose a generic
framework for constructing a privacy wizard, which is shown
in Figure 2. The framework consists of three main parts:

• User Input: The wizard solicits input from the user re-
garding her privacy preferences. In the most general case,
this is in the form of questions and answers. At any point,
the user may quit answering questions.

• Feature Extraction: Using the information visible to
the user, the wizard selects a feature space ~X. Each of
the user’s friends can be described using a feature vector
~x in this space.

• Privacy-Preference Model: Using the extracted fea-
tures and user input, the privacy wizard constructs a
privacy-preference model, which is some inferred charac-
terization of the rules by which the user conceives her
privacy preferences. This model is used to automatically
configure the user’s privacy settings. As the user provides
more input, or adds new friends, the privacy-preference
model and configured settings should adapt automatically.

Of course, each of these components is quite general. In
the next section, we will describe one specific instantiation
of the framework.

3. ACTIVE LEARNING WIZARD
In this section, we will describe a specific instantiation

of the generic framework outlined in the previous section.
In building the wizard, one of our goals was to keep the
user interaction as simple as possible. It is widely accepted
that users have difficulty reasoning holistically about privacy
and security policies [35, 27]. In contrast, it is easier to
reason about simple, concrete examples. Thus, our privacy
wizard solicits input from the user by asking her preference
(allow or deny) for specific (data item, friend) pairs (i, f) ∈
I × F . Without loss of generality, in the remainder of this
section, we will assume that the data item i is fixed (e.g.,
Date of Birth), and the wizard simply asks the user to assign
a preference label to a selected friend f ∈ F .

Example 2. The privacy wizard interacts with the user
by asking a series of simple questions. For example:

Would you like to share DATE OF BIRTH with ...
Alice Adams? (y/n)
Bob Baker? (y/n)
Carol Cooper? (y/n) ...

Given this form of user interaction, it is natural to view
the preference model as a binary classifier, trained using
the friends that the user has labeled. However, because the
user’s effort is limited and unpredictable, it is important that
the privacy wizard “ask the right questions,” or intelligently
request that the user provide labels to the most informative
unlabeled friends. In the machine learning literature, this
scenario, in which the learner can actively query the user
for labels, is commonly known as active learning.

In the remainder of this section, we will first describe the
construction of a classifier for predicting privacy preferences.
Then, we will describe feature extraction, based on visible
data, including automatically-extracted communities. Fi-
nally, we will describe the application of a particular active
learning technique known as uncertainty sampling [26].

3.1 Preference Model as a Classifier
For a particular social network user, it is natural to view

the privacy-preference model as a classifier. Each of the
user’s friends f can be represented by a vector of extracted
features ~x in a feature space ~X (see Section 3.2).

Using a set of labeled training examples (in this case, la-
beled friends) Flabeled, many well-known algorithms (e.g.,
Decision Trees, Naive Bayes, Nearest Neighbor, etc.) can be
used to infer a classifier. (We tried several such algorithms
in our experiments.) In the most general sense, the classifier
uses a feature vector representation of a friend to predict the
friend’s privacy label. Formally, for a particular data item
i ∈ I, the classifier can be viewed as a function of the form

p̂ref : ~X → {allow, deny}
The resulting classifier can be used to predict the user’s

privacy preferences for unlabeled friends in Funlabeled. It is
important to point out that, in the context of the privacy
wizard, we will assume that the labels the user assigns ex-
plicitly to friends in Flabeled are always correct. The classifier

p̂ref is only used to configure the user’s privacy settings for
friends whom she has not labeled explicitly.

3.2 Feature Extraction
In order to build a reasonable classifier, it is important to

select a good set of features. For the purposes of this work,
we considered two main types of features: features based on
extracted communities, and other profile data.

• Community Structure: Let Flabeled and Funlabeled de-
note the user’s labeled and unlabeled friends, respectively.
We can automatically extract a set of communities from
the user’s full neighborhood (i.e., Flabeled∪Funlabeled, and
the edges connecting these friends) using techniques de-
scribed in Section 3.2.1. Each extracted community can
be regarded as a boolean feature (i.e., a particular friend
belongs to the community or not). For example, suppose
that we have extracted a community G1 from the network.
If a particular friend belongs to G1, then that friend has
feature value G1 = 1; otherwise, G1 = 0.

• Other Profile Information: There are additional at-
tributes in the user’s friends’ profiles that can be used
as features. Since our study wizard is implemented in
the context of Facebook, we consider the following when
they are visible to the user: Gender, Age, Education his-
tory (high school and college), Work History, Relation-
ship Status, Political Views, and Religious Views. These
items can be directly translated to features. For example,



Age Gender G0 G1 G2 G20 G21 G22 G3 Obama Fan Pref. Label (Date of Birth)
(Alice Adams) 25 F 0 1 0 0 0 0 0 1 allow
(Bob Baker) 18 M 0 0 1 1 0 0 0 0 deny

(Carol Cooper) 30 F 1 0 0 0 0 0 0 0 ?

Figure 3: Example friend data with extracted features, including community-based features (G0, G1, etc.)

Gender has nominal values {male, female}. In addition,
the user’s friends’ online activities can be used, including
Facebook groups, “fan” pages, events, and tagged photos.
For these, we use binary features, which indicate whether
a particular friend is a member.

Example 3. As a simple example, Figure 3 shows a set
of labeled friends, using a feature-vector representation. For
example, Bob is a member of the extracted communities G2

and G20, and Alice is a “fan” of Barack Obama. The user
has assigned preference labels to Alice and Bob, but Carol’s
label is unknown.

In the remainder of this section, we briefly describe how we
extract communities from the user’s neighborhood network.

3.2.1 Community-Based Features
In the study of social networks, a network is often said

to have a community structure if its nodes can naturally be
separated into groups, where the nodes in each group are
densely connected, but there are few connections between
disparate groups. For example, in Figure 1, it is easy to
see several such communities, some of which we have circled
and labeled. From a sociological perspective, two individuals
in the same community are relatively more likely to know
one another than two individuals who are not in the same
community.

Numerous algorithms have been developed for finding com-
munities. (For an extensive survey on the topic, please see
[18].) In this paper, our primary goal is not to develop new
community-finding algorithms. Instead, we will simply ap-
ply a common algorithm based on the idea of edge between-
ness [33]. Please note that, in all cases, this algorithm can
be replaced with any hierarchical (agglomerative or divisive)
community-finding algorithm.

When finding communities in a social network, it is often
difficult to know the right number of communities ahead of
time. For example, in Figure 1, G0, G1, and G3 seem to
be well-defined communities. Looking at G2, however, it is
not immediately clear whether this is a single community, or
if it makes sense to further divide it into sub-communities
G20, G21, and G22. This problem can be addressed in several
different ways. One option is to partition the network into
communities to maximize the modularity score [33]. In this
case, the number of communities is automatically selected
based on modularity.

For the purposes of this work, it is not necessary to par-
tition the graph into a single set of communities. Because
a user’s privacy preferences can be expressed at varying de-
grees of granularity, it makes sense to retain some hierar-
chical structure (i.e., larger communities that fully contain
several smaller communities). For example, in Figure 1, we
have marked a total of seven communities, but community
G2 fully contains three smaller communities.

In the remainder of the paper, we will extract multi-
granularity communities according to the following process:
(1) First, we partition the full network into communities us-
ing the edge-betweenness algorithm and maximizing mod-

ularity. (2) For each resulting community, we discard the
surrounding network, and view the community as its own
network. (3) We repeat this process recursively until each
community contains a single node.

Observe the community structure is only re-calculated
when new friends are added. Typically, this will be done
offline. For the networks typically encountered in online so-
cial networks, which contain on the order of several hundred
friends, we do not expect the performance of the community-
finding algorithm to be a major issue.

3.3 Uncertainty Sampling
Ultimately, the accuracy achieved by the wizard depends

on two factors: (1) The number of friends that the user labels
explicitly (these are always assumed to be correct), and (2)

The accuracy of the inferred classifier p̂ref in predicting the
labels of unlabeled friends. Since the amount of effort a
user is willing to devote to labeling friends is limited and
unpredictable, it is important that we be able to learn an
accurate classifier with a limited amount of training data.

Motivated by the graceful degradation principle, which
aims to achieve the best accuracy possible, with the un-
derstanding that the user may quit labeling friends at any
time, we have chosen to address this problem using an active
learning paradigm known as uncertainty sampling [26].

Uncertainty sampling consists of two phases:

1. In the sampling phase, the wizard selects friends for
the user to label.

2. Then, during the classifier construction phase, the wiz-
ard uses the labeled examples to build the actual clas-

sifier (p̂ref), which is used to configure the user’s set-
tings.

The sampling phase works as follows. Initially, all of
a user’s friends are unlabeled. The sampling proceeds in
rounds. During each round, the wizard selects the k unla-
beled friends about which it is most uncertain, and asks the
user to assign labels to these friends. The process termi-
nates after all friends have been explicitly labeled, or when
the user abandons the process, whichever comes first.3

The uncertainty of a class label is traditionally measured
by training a classifier (using labeled training data Flabeled),
and using this classifier to predict the distribution of class
labels associated with each friend in Funlabeled. In our case,
there are two possible class labels, and the predicted dis-
tribution of class labels is of the form P (allow) = Pallow,
P (deny) = Pdeny, where Pallow ∈ [0, 1.0], Pdeny ∈ [0, 1.0],
and Pallow + Pdeny = 1.0. The uncertainty score is com-
puted based on the entropy of the predicted class distri-
bution: Entropy =

P
i∈{allow,deny}−Pi log Pi. A large en-

tropy value indicates high uncertainty; entropy is minimized
when Pallow or Pdeny equals 1, which indicates that the prob-
abilistic classifier is 100% sure about the class prediction.

3In principle, we can also use the uncertainty score to sug-
gest to the user when it would be prudent to stop labeling.



After the sampling phase terminates, the classifier con-

struction phase trains the classifier p̂ref using the labeled
friends Flabeled.

Note that the classification algorithms used in the sam-
pling phase and the classifier construction phase need not
be the same [25]. We tried a variety of classifiers in our ex-
periments. From a practical perspective, there may be addi-
tional considerations. If the sampling process is interactive,
it is important that the classifier used in that phase be effi-
ciently updatable; classifiers such as Naive Bayes appear to
be a good option for that phase. In contrast, for typical-size
friend lists, we do not expect performance to be much of a
concern in the classifier-construction phase. For this part,
user attention, rather than performance is the main bottle-
neck; in most cases, the classifier can be trained within a
few seconds. As we will see in Section 4, if it is important

to communicate the model p̂ref back to the user, then a
human-readable classifier (e.g., decision tree) is attractive
for the second phase.

3.4 Incremental Maintenance
Of course, users are always adding new friends. Suppose

that the user has labeled an initial set of friends, using the
active learning wizard described above. Ideally, we would
like to satisfy the following two goals with respect to incre-
mental maintenance:

1. When the user adds new friends, the classifier p̂ref ,
which has been learned by the wizard, should make
reasonable predictions for the new friends, without any
additional input from user.

2. After the user adds new friends, the user may con-
tinue labeling friends. The wizard should use these
new labels, in combination with the user’s original in-
put, without wasting the original labels.

Both of these goals are easily satisfied by the active learn-
ing wizard. Given the original set of friends F with a subset
Flabeled of them labeled, when some new set of friends F ′ is
added, the privacy settings for the new friends can be pre-

dicted by constructing p̂ref using Flabeled, and applying it
to each friend in F ′.

The only part of this process that is tricky is manag-
ing features based on community structure. Recall that
community-membership features are extracted from the la-
beled and unlabeled data. Thus, when new friends arrive,
we will need to reconstruct the communities using F ∪ F ′.
However, the labels that the user has assigned to individ-
ual friends remain valid. For example, in Figure 3, after
new friends are added, the community structure may change
(i.e., we may need to replace features G0, G1, ...). However,
the label allow still applies to the (new feature-vector rep-
resentation of) friend Alice Adams.

Finally, if new friends are added and the user wishes to
devote more effort to refining her privacy settings, this is
easy. The wizard simply adds F ′ to Funlabeled, and continues
the sampling process described in the last section.

4. MODEL VISUALIZATION AND
MODIFICATION

The active learning wizard interacts with the user by ask-
ing her to label specific friends. This type of interaction is
ideal for non-technical users, who have difficulty reasoning

Figure 4: Visualization of Decision Tree Model

holistically about their policy configurations. On the other
hand, the classifier and auto-configuration are essentially a
black box, and more advanced users may want to understand
the rationale behind the resulting configuration. For these
users, we propose some additional tools that allow the user
to visualize and update the classifier learned by the basic
wizard.

While the basic wizard can use any classification algo-
rithm, if we are going to display the result to the user, then
it is important to choose a classifier that is human-readable.
Thus, in the remainder of this section, we will assume that,
in the classifier construction phase, the active learning wiz-
ard constructs a binary decision tree.

4.1 Visualization
The basic structure of a binary decision tree is easily inter-

pretable: Each interior node represents a binary condition
(e.g., Hometown = NYC), and each leaf contains a decision
(allow or deny). Each node (either interior or leaf) corre-
sponds to a set of friends that are consistent with the binary
conditions from root to the node. For the privacy-preference
model, however, it is necessary to incorporate several addi-
tional pieces of information into the basic decision tree.

First, automatically-extracted communities (e.g., G20 in
the running example) are meaningless to the user by default.
Thus, in the visualization, we need to produce a meaningful
description of each community. One reasonable option ex-
tracts unique keywords from the profiles of friends in each
community (e.g., using the TF-IDF score).

Second, we observed that in some cases the resulting de-
cision trees are large, and difficult to view all at once. To
help guide users towards parts of the tree that are likely to
require attention, we incorporate two additional pieces of
information for each node:

• Class Distribution: For each node in the tree, the visu-
alization indicates the class distribution (i.e., proportion
labeled allow and deny) of the labeled friends who satisfy
the conditions for the (subtree rooted at the) node.

• Representative Rate: the proportion of labeled friends
among all friends who satisfy the conditions for a node.

Example 4. Figure 4 shows a decision tree that was trained
using User K’s privacy preferences for Date of Birth. For
each node, the class distribution is shown in grayscale, and
the representative rate is indicated by node size. For exam-
ple, the diagram indicates that friends who are members of



HM Software Corp., and who have hometown NYC should
be allowed to see Date of Birth. The representative rate is
high, meaning that the user has explicitly labeled most of
these friends. In contrast, notice that there is another node
on the left, which describes all friends who are not part of
HM Software Corp., and also not part of Alpha University
Computer Science. Few friends in this category have been
labeled, as indicated by the small circle. Further, the class
distribution is heterogeneous.

4.2 Modification and Incremental Maintenance
The model visualization may guide the user in determin-

ing which friends need further attention. After visualizing
the model, the user may decide to label more friends. She
can do this by choosing a node (often one with low repre-
sentative rate) and labeling more friends in the node. We
do this as follows: When the user clicks on a node (interior
or leaf), the unlabeled friends in the subtree rooted at that
node are shown to the user in order of decreasing uncer-
tainty (defined in Section 3.3). The user could label some
of the displayed friends, and the visualization would change
accordingly.

Incremental maintenance of model visualization and mod-
ification is straightforward and does not require additional
effort. After new friends come, they are added to corre-
sponding nodes in the tree. Class distribution will remain
the same while the representative rate would decrease. The
modification process remains the same: unlabeled friends
(including the newly added friends) of a node would be dis-
played to the user when a node is clicked.

5. EVALUATION
The goal of our experiments is to analyze the effort-accuracy

tradeoff achieved by our privacy wizard. Specifically, we
want to answer the following two questions:

• How effective is the active learning wizard, compared
to alternative policy-specification tools?

• Which features (e.g., community structure, profile in-
formation, etc.) are the most useful for predicting pri-
vacy preferences?

To answer these questions, we collected raw privacy pref-
erence data from a population of real Facebook users. Our
results indicate that the active-learning wizard is more ef-
fective than existing alternatives. The results also indicate
that automatically-extracted communities are very effective
features for predicting privacy preferences.

5.1 Collecting Preference Data from Real Users
As the basis for our evaluation, we collected detailed pri-

vacy preference information from a group of real social net-
work users. We conducted our study electronically using
Facebook. We selected Facebook in particular because of
the availability of an open development platform [1], and we
built a Facebook application, which allowed our study sub-
jects (a set of Facebook users) to exhaustively label their
privacy preferences for all of their friends.

Our application presented each study subject with two
questionnaires. The first questionnaire consisted of a se-
ries of coarse-grained questions, which asked, for each pro-
file data item, whether the user would like to share the data
item with all friends, some friends, or no one. For the pur-
pose of the user study, we selected a representative set of

Figure 5: Screenshot of user study application, gen-
eral questions

Figure 6: Screenshot of user study application, de-
tailed questions.

profile data items: Date of Birth, Home Address, Relation-
ship Status, Photos, Political Views, Religious Views, and
Status Updates. A screenshot of the first questionnaire is
shown in Figure 5.

The second questionnaire collected more detailed informa-
tion. For each profile data item for which the user selected
some friends during the first phase, we solicited detailed in-
formation during the second phase. The questionnaire listed
the user’s friends in a random order, and for each friend f ,
we asked the user to indicate her preferred access level for
the friend: Y ES (interpreted as allow), NO (deny). The
friends were presented in a sequence of pages, with 24 friends
per page. A screenshot of the second questionnaire is shown
in Figure 6. (The names of the user’s friends have been
hidden for confidentiality.)

In addition to the privacy preference information, the
Facebook application allowed us to view the information
about each subject’s neighborhood described in Section 3.2.

A total of 45 people participated to our user study by la-
beling preferences. Of the 45 respondents, 27 of them were
male, and 18 of them were female. The respondents are
primarily the authors’ colleagues, and they volunteered to
participate. Our respondents had an average of 219 friends.
The maximum number of friends was 826 and the minimum
number of friends was 24. During the first phase, 30 of
the respondents indicated that at least one profile data item
should be visible to some friends. In total, there were 64
(user, data item) pairs that required fine-grained privacy
controls; that is, the users specified that these data items
should be visible to some friends.

5.2 Experimental Setup
Our experimental setup incorporated several open-source

packages. For community-finding, we used the implementa-
tion of the edge-betweenness in the iGraph library [3]. (We
modified the algorithm as described in Section 3.2.1 to find
hierarchical communities.) For classification, we used the



Figure 7: Effort vs. Average Accuracy tradeoff
(within limited effort 100)

NaiveBayes, NearestNeighbors, and DecisionTree oper-
ators found in the RapidMiner [31] package.

5.3 Comparing Policy-Specification Tools
Our first set of experiments compares the active-learning

wizard with alternative policy-specification tools. Because
our other experiments (Section 5.4) show that community-
based features are extremely effective, we use these features
for the experiments in this section. We include results for
the following three approaches:

• DTree-Active: This is a specific implementation of the
active learning wizard described in Section 3. We used a
Naive Bayes classifier in the sampling phase, and a deci-
sion tree to construct the final classifer.

• DecisionTree: To isolate the effects of the uncertainty
sampling, we have also implemented a strawman solution.
Whereas DTree-Active selects samples based on an uncer-
tainty estimate, this algorithm selects samples at random.
Like the previous approach, it uses the labeled examples
to train a Decision Tree classifier.

• BruteForce: As a baseline, we evaluated a strawman
policy-specification tool based on the following process:
The user selects a default setting (in our experiments, this
is assumed to be the majority class label). Then, the user
can assign labels, one-by-one, to friends. Any friend left
unlabeled is given the default label. The effort required by
this process is very similar to the effort required to man-
ually assign friends to lists, as required by the Facebook
policy-specification tool.

In addition to the three tools described above, we also
evaluated some variations of the active-learning and random-
sampling wizards. In particular, we tried using alternative
classifiers (Naive Bayes, K-Nearest Neighbors, and Decision
Trees) for both sampling and classifier construction. The
results were quite similar, and they are omitted for space.

5.3.1 Static Case
We begin with the static case, where the user is construct-

ing a policy from scratch for a static set of friends. As the
user applies more effort (i.e., labels more friends), using each
of the policy-specification tools, we expect that the user’s
setting accuracy will increase.

Figure 7 illustrates this effort-accuracy tradeoff in a very
rough way. The x-axis shows the number of friends labeled
(up to 100), and the y-axis shows the average setting accu-
racy. (This is the average across all 64 (user, data item)

pairs for which we obtained detailed preference informa-
tion in our user study.) As expected, the active-learning
approach (DTree-Active) outperforms the random-sampling
approach (DecisionTree), and both outperform BruteForce.
The results for DTree-Active are promising from a practical
perspective, too; by labeling just 25 friends, users achieve
an average setting accuracy of over 90%.

Of course, by averaging across different users and data
items, Figure 7 does not capture all of the interesting details
of the comparison. To understand the results better, we also
developed a scoring approach. Intuitively, for a particular
(user, data item) pair, the score Sstatic is a real number
in [0, 1.0] that measures the normalized area beneath the
effort-accuracy curve; higher scores are better.

Definition 1 (Static Score). For a particular user
and data item, the effectiveness of a policy-specification tool
can be summarized using a score, where AccuracyF (E = e)
is the setting accuracy achieved after applying effort e on the

set of friends F : Sstatic =
P|F |

e=0 AccuracyF (E=e)

|F | .

Using this scoring mechanism, our results are summarized
in Figure 8, which shows the mean Sstatic score, as well as
the standard deviation, across all 64 (user, data item) pairs:

Tool
Sstatic

mean std
DTree-Active 0.94 0.04
DecisionTree 0.92 0.05
BruteForce 0.88 0.08

Figure 8: Comparison Summary (Static Case);
Difference between tools is statistically significant
based on a paired t-test

For each (user, data item) pair, we obtained a Sstatic score
for each alternative policy-specification mechanism. Ob-
serve that, for example, the scores obtained for user Bob’s
Date of Birth using DTree-Active and DecisionTree can be
treated as a dependent pair. Thus, we can test whether,
for example, the Sstatic score for DTree-Active is signifi-
cantly better than the score for DecisionTree using a paired-
sample t-test. After performing this test, we discovered
that, while the mean scores are similar, the differences be-
tween the policy specification tools are statistically signif-
icant. (DTree-Active is superior to DecisionTree, which is
superior to BruteForce.)

Finally, while the results are omitted for space, we ob-
served that for other classifiers the results are similar (i.e.,
active learning is superior to learning from a random sample,
which is superior to the brute force approach).

5.3.2 Dynamic Case
The previous experiments focused on policy-specification

for a static set of friends. In this section, we continue com-
paring the three policy-specification tools, but this time in
the dynamic case, where the user adds new friends over time.
In the following, we will denote the initial set of friends F ,
and suppose that the user adds a new set of friends F ′.

To capture the dynamic case, we extend the scoring ap-
proach described in the previous section. Specifically, we
will use two new scores: Spred and Sdynamic.

The first score (Spred) is based on the following scenario.
Using one of the policy-specification tools, the user assigns



labels to e of the friends in the original set F (i.e., expends
effort e). Then, the new set of friends F ′ arrives, and we
measure the setting accuracy for the new friends,4 which
we denote AccuracyF ′(E = e). Like before, for a particular
user and data item, we will measure this across all values of
e, and summarize the result with a single score.

Definition 2 (Prediction Score). The prediction qual-
ity of a policy-specification tool can be summarized using the
following score. AccuracyF ′(E = e) is the predictive accu-
racy of the settings, trained using effort e, and applied to a

new set of friends F ′: Spred =
P|F |

e=0 AccuracyF ′ (E=e)

|F | .

The second score (Sdynamic) is based on a slightly different
scenario. In this case, we assume that the user labels E
friends (from the original set F ). Then, a new set of friends
F ′ is added, and the user labels E′ more friends. We will
use the notation AccuracyF∪F ′(E = e, E′ = e′) to denote
the resulting setting accuracy for the full friend set F ∪ F ′.
In this case, we will measure the accuracy across all values
of E and E′; Sdynamic is a real number in [0, 1.0].

Definition 3 (Dynamic Score). The effectiveness of
a policy-specification tool in a dynamic setting can be sum-
marized using the following score:

Sdynamic =
P|F |

e=0
P|F ′|

e′=0
AccuracyF∪F ′ (E=e,E′=e′)

|F ||F ′| .

Using both of these scoring mechanisms, our results are
summarized in Figure 9. In order to simulate the case of
adding new friends, for each user, we randomly pick 30% of
their friends as new friends while the remaining are regarded
as the original friends. Again, based on a paired test, we
also observe that DTree-Active is significantly better than
DecisionTree, which is significantly better than BruteForce.

Tool
Sdynamic Spred

mean std mean std
DTree-Active 0.92 0.05 0.82 0.15
DecisionTree 0.90 0.06 0.81 0.13
BruteForce 0.87 0.10 0.74 0.18

Figure 9: Comparison Summary (Dynamic Case);
Difference between tools is statistically significant
based on a paired t-test

5.3.3 Impact of Class Distribution
In our final set of comparison experiments, we observe

that it is common for different users to have different dis-
tributions of privacy preferences. For example, user A may
allow 90% of his friends to view Date of Birth, while user
B may assign only 40% of friends allow permission. Ideally,
we should adopt a policy-specification tool that adapts to
these differences.

In order to measure the effect of skewed class distribution
on each of the policy-specification tools, we use p to rep-
resent the proportion of labels in the minority class (i.e.,
0 ≤ p ≤ 50%), and we partition our experimental data
into three groups according to p value: p ∈ (0%, 10%],
p ∈ (10%, 30%] and p ∈ (30%, 50%].

4For DTree-Active and DecisionTree, the settings for the
new friends are obtained by applying the classifer to F ′. The
best BruteForce can do is assign each of the new friends the
default label.

Figure 10 summarizes the results, using the Sstatic score.
In cases where p is low (i.e., users have homogeneous prefer-
ences for all friends), the improvement from using the active
learning wizard is small. However, when the p value is larger
(e.g., p ∈ (30%, 50%]), the active learning wizard is particu-
larly helpful.

Tool
p ∈ (0%, 10%] p ∈ (10%, 30%] p ∈ (30%, 50%]
mean std mean std mean std

DTree-Active 0.95 0.04 0.93 0.02 0.92 0.06
DecisionTree 0.95 0.03 0.90 0.03 0.88 0.04
BruteForce 0.94 0.04 0.88 0.07 0.80 0.05

Figure 10: Effects of class distribution (Sstatic score)

5.4 Comparing Features
Our final set of experiments compares the effectiveness of

different alternative features, which can be used by learning-
based wizards. In preliminary studies, we observed that
DTree-Active, which uses a Naive Bayes classifier during the
sampling phase, and then constructs a DecisionTree clasifier
using the labeled data, resulted in the highest accuracy of
all our active learning wizards (by a slight margin). Thus,
in this section, we will present results based on the DTree-
Active tool.

We compared five different combinations of features: (For
more details, see Section 3.2.)

• Community These experiments used only features based
on extracted communities.

• Profile These experiments used only profile-based fea-
tures such as gender, age, education history (high school
and college), work history, relationship status, political
views, and religious views.

• Activity These experiments used only features based on
online activities such as Facebook groups, “fan” pages,
events, and tagged photos.

• None-Comm These experiments used only Profile and
Activity features.

• All These experiments used all of the above.

Figure 11 summarizes our results. In addition, as de-
scribed in the last section, we also conducted a paired sample
t-test for each of the scores Sstatic, Sdynamic and Spred). We
observed that Community is statistically significant better
than all other feature combinations. It’s interesting to no-
tice that features as profiles and online activities are not
helping much, it may be partially because that these fea-
tures are usually incomplete and they’re also conjecturable
from the community features.

6. RELATED WORK
The development of usable, fine-grained tools for protect-

ing personal data is a serious emerging problem in social
media [4, 19, 21, 22, 23, 36]. In one study, Acquisti and

Features
Sstatic Sdynamic Spred

mean std mean std mean std
Community 0.94 0.04 0.92 0.05 0.82 0.15

Profile 0.87 0.07 0.84 0.08 0.67 0.15
Activity 0.89 0.07 0.88 0.08 0.78 0.16

None-Comm 0.87 0.06 0.85 0.07 0.70 0.15
All 0.92 0.05 0.89 0.06 0.78 0.13

Figure 11: Comparing features (DTree-Active)



Gross discovered that while users of social networking sites
(Facebook, MySpace, Friendster, etc.) expressed high lev-
els of concern about their privacy, the same users often did
not implement strict privacy controls over their profiles. In
many cases, this appeared to be due to users’ poor under-
standing of the available privacy controls and the visibility
of their profiles [4, 22].

Several recent papers have proposed novel user interfaces
for specifying Facebook-style privacy settings, but none has
constructed a wizard of the style described in this paper,
which models and anticipates a user’s preferences based on
limited user input. Most related to our work is a pair of
proposals by Adu-Oppong et al. [5] and Danezis [14]. Both
propose partitioning a user’s friends into lists, based on com-
munities extracted automatically from the network, as a way
to simplify the specification of privacy policies. ([14] de-
scribes this partitioning as a way of inferring a privacy “con-
text.”) While both are related to our work, neither studies
real users’ privacy preferences to evaluate their proposal.
Also, in both cases, the proposed tools are based on parti-
tioning friends into a fixed set of non-overlapping commu-
nities, which does not resolve the challenge of community
granularity.

In a mobile location-based application, Ravichandran et
al. [34] studied the problem of predicting a user’s privacy
preferences (i.e., share her location or not) based on location
and time of day; however, this work did not consider taking
an underlying social network structure into account when
making these decisions.

After a policy is specified, many have observed that it is
important to provide tools to help users understand the re-
sulting settings. Lipford et al. proposed and evaluated an
“audience view,” which allows a user to view her profile as
it appears to each of her friends [27]. A variation of this
interface appears to have been recently adopted by Face-
book. This work is quite complimentary to ours; while the
audience view helps a user to understand and evaluate the
correctness of an existing policy, it does not assist the user
in creating the policy in the first place.

In a similar vein, recent work has proposed a methodology
for quantifying the risk posed by a user’s privacy settings
[30, 28]; at a high level, a risk score communicates to a user
the extent to which his privacy settings differ from those
of other users who are close to him in the social network
graph. Like the audience view, the score provides feedback
to the user regarding his existing settings, but it does not
help him in creating an initial policy. Further, the tools
only provide a single score, so if a user’s privacy settings are
out of line, they do not communicate to the user precisely
how he should refine his settings in order to achieve a more
acceptable configuration.

Fong et al. [17] and Carminati et al. [11, 12] look to
formalize the access control model required by social net-
working sites. Our work is complementary; the goal is to
assist users in expressing their privacy preferences.

In this paper, we have focused on helping users to express
simple privacy settings, which is a difficult task on its own.
We have not considered additional problems such as infer-
ence [40], or shared data ownership [38]. As a simple exam-
ple of the former, suppose that a user Alice wishes to hide
her political affiliation. The first problem, which is the focus
of this paper, is to make sure that Alice can even express
this preference to the social networking site. However, even

if the site hides Alice’s political affiliation, it may still be
possible for an attacker to infer the hidden information [40].
(For example, if 95% of Alice’s friends are liberal, then there
is a good chance that Alice is also liberal.) Interestingly, it is
often not possible for Alice to prevent this kind of inference
by simply configuring her own privacy settings. The Pri-
vAware system [8] makes an initial step toward quantifying
the risk of this type of inference; as a solution, the authors
suggest removing certain friend relationships to reduce the
inference risk.

Broadly-speaking, social networking websites have led to
a number of interesting research questions in information se-
curity and privacy. For example, in 2007, Facebook opened
a development API, which allows developers to construct
their own applications leveraging user profile data [1]. This
was met with some concern for personal privacy; for exam-
ple, one study revealed that applications written using this
API could often access significantly more information than
necessary for their core functionality [16]. As an initial solu-
tion to this problem, Felt and Evans proposed a proxy-based
architecture, which limits the amount of information avail-
able to installed applications [16]. Singh et al. propose a
trusted third-party mediator called xBook [37]. Lucas and
Borisov [29] and Anderson et al. [6] consider an even more
restrictive case in which users are reluctant to share their
personal information with the Facebook service.

Social networking sites may also enable new forms of clas-
sical attacks, including phishing [9] and spam [10]. [15] con-
siders the new risk to anonymous routing that is posed by
an attacker who knows users’ social network graphs.

Finally, recent work has focused on the privacy risks as-
sociated with publishing de-identified social network graphs
for research. Even if all profile information is removed, it
is often possible to re-identify individuals in the published
data simply based on unique graph topologies [7, 24, 32].

7. CONCLUSION AND FUTURE WORK
Privacy is an important emerging problem in online social

networks. While these sites are growing rapidly in popular-
ity, existing policy-configuration tools are difficult for aver-
age users to understand and use.

This paper presented a template for the design of a pri-
vacy wizard, which removes much of the burden from indi-
vidual users. At a high level, the wizard solicits a limited
amount of input from the user. Using this input, and other
information already visible to the user, the wizard infers a
privacy-preference model describing the user’s personal pri-
vacy preferences. This model, then, is used to automatically
configure the user’s detailed privacy settings.

To illustrate this idea in concrete terms, we have built a
sample wizard, which is based on an active learning paradigm.
We have also constructed a visualization tool, which allows
advanced users to view and modify the resulting model. Our
experimental evaluation, which is based on detailed privacy-
preference information collected from 45 Facebook users, in-
dicates that the wizard is quite effective in reducing the
amount of user effort, while still producing high-accuracy
settings. The results also indicate that the community struc-
ture of a user’s social network is a valuable resource when
modeling the user’s privacy preferences.

In the future, we plan to conduct more user studies to
understand how users like the wizard comparing to alter-
native privacy settings tools, and how much time users are



willing to put into the policy specification process. We will
also consider other instances of privacy wizards. For ex-
ample, our active learning wizard solicits user input in a
very simple form (i.e., asking the user to assign a label to
a (friend, data item) pair), which is easy for the user to
understand. Perhaps there are other questions that would
yield more information, or require less user effort. Also,
in this work, we considered three main sources of informa-
tion in a user’s neighborhood when constructing the privacy-
preference model: communities, profile data and online ac-
tivities. In the future, other sources of information may be
taken into account. For example, it would be interesting to
understand whether ideas such as tie strength [20] are useful
in predicting privacy preferences.
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