
LCA-based Selection for XML Document Collections

Georgia Koloniari
Department of Computer Science

University of Ioannina, Greece
kgeorgia@cs.uoi.gr

Evaggelia Pitoura
Department of Computer Science

University of Ioannina, Greece
pitoura@cs.uoi.gr

ABSTRACT
In this paper, we address the problem of database selection
for XML document collections, that is, given a set of collec-
tions and a user query, how to rank the collections based on
their goodness to the query. Goodness is determined by the
relevance of the documents in the collection to the query.
We consider keyword queries and support Lowest Common
Ancestor (LCA) semantics for defining query results, where
the relevance of each document to a query is determined
by properties of the LCA of those nodes in the XML docu-
ment that contain the query keywords. To avoid evaluating
queries against each document in a collection, we propose
maintaining in a preprocessing phase, information about the
LCAs of all pairs of keywords in a document and use it to
approximate the properties of the LCA-based results of a
query. To improve storage and processing efficiency, we use
appropriate summaries of the LCA information based on
Bloom filters. We address both a boolean and a weighted
version of the database selection problem. Our experimental
results show that our approach incurs low errors in the esti-
mation of the goodness of a collection and provides rankings
that are very close to the actual ones.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation, Performance

1. INTRODUCTION
As the number of available data sources increases, the

problem of database selection, that is, determining which
from a set of available databases are the most relevant to a
given user query, is attracting considerable attention [9, 4,
5, 26, 20, 22]. The relevance or goodness of a database to
a query is derived from the relevance of the data (or docu-
ments) in the database to the query. Most current research
has considered the selection of text [9, 4] or relational [26,
20, 22] databases. Since XML is the de facto standard for
data representation and exchange on the web and a large
amount of XML document collections are available, in this

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

paper, we address the problem of database selection for XML
document collections.

Keyword queries offer a popular, easy and intuitive way
of searching. The main difference between keyword search
for XML and text documents is that, for XML documents,
the relevance of a document to a query also depends on the
relative position of the query keywords in the XML tree. We
support keyword queries and rank their results by adopting
lowest common ancestor (LCA) query semantics [10, 6, 11,
14, 13, 24, 15, 21, 25, 17] based on which the result of a key-
word query is defined by the LCA node of the keywords. We
then determine the relevance (similarity) of a document to
a query based on the LCA semantics and derive the good-
ness of a collection of documents by aggregating over the
similarities of each of its documents to the query.

To avoid the processing overhead entailed in evaluating a
query against each document, we propose an approximate
approach that estimates the similarity of a document to a
query by exploiting appropriate information about the low-
est common ancestors of all pairs of keywords that appear
in a document. That is, it estimates the LCA of the query
result based on the LCA of each pair of keywords in the
query. In addition, we present a novel data structure based
on Bloom filters to efficiently summarize this LCA pairwise
information. We study both a boolean and a weighted se-
lection problem. Our experimental results both on real and
synthetic datasets show that our approximations are suffi-
ciently accurate, while requiring significantly less space and
processing overheads.

The rest of the paper is organized as follows. In Section
2, we define the lowest common ancestor semantics, and the
selection problem. Section 3 describes our pairwise approxi-
mation approach, while Section 4 introduces the Bloom filter
based structures. Section 5 includes our experimental eval-
uation and Section 6 presents related work. We conclude in
Section 7.

2. PROBLEM DEFINITION
We first describe the keyword query model and the lowest

common ancestor semantics deployed for query evaluation.
Then, we formally define the problem of database selection
over XML document collections by defining similarity and
goodness measures under both a boolean and a weighted
model.

2.1 Lowest Common Ancestor Semantics
Keyword queries present an easy and intuitive way for

querying XML data without requiring from the user to write

Figure 1: An example XML tree

complex queries or be aware of the data schema. To capture
the structural information that is inherent in XML docu-
ments, keyword queries are usually interpreted through low-
est common ancestor (LCA) semantics [10, 6, 11, 14, 13, 24,
15, 21, 25, 17].

Consider a conjunctive keyword query q = {w1, . . . , wk}
consisting of k keywords w1, . . . , wk and an unordered la-
beled XML tree T = (V, E) of an XML document d. Each
node vi ∈ V corresponds to an XML element and edges
e(vi, vj) ∈ E capture that vj is a subelement of vi. We
say that an element (node) v ∈ V directly contains a key-
word wi (contains(v, wi)), if the keyword appears as the
label of the element, the label of one of its attributes, the
value for one of its attributes, or in the content of the ele-
ment. We denote as S1 to Sk the sets of nodes such that
Si = {v|v ∈ V and contains(v, wi)}, 1 ≤ i ≤ k.

Intuitively, the result set for q consists of the subtrees
in T whose nodes contain all the keywords of q. We refer
to such subtrees (query results) by their root node. More
specifically, all approaches supporting LCA semantics de-
fine the results of q based on some variation of the lowest
common ancestor of the nodes in d that contain the query
keywords. The Lowest Common Ancestor (LCA) of a set of
nodes V ′ = {v1, . . . , vk} (V ′ ⊆ V) is defined as the deepest
node v in T which is an ancestor of all nodes in V ′ and is
evaluated by a function lca(v1, . . . , vk). A node v of tree
T (V, E) of document d belongs to the result set of query
q = {w1, . . . , wk}, denoted Result(q), if v = lca(v1, . . . , vk),
where v1 ∈ S1, . . . , vk ∈ Sk. Similarly to lca(v1, . . . , vk), we
define a function lca(S1, . . . , Sk) that evaluates the set of
LCA nodes V ′′, such that v′ ∈ V ′′ if v′ = lca(v1, . . . , vk)
and v1 ∈ S1, . . . , vk ∈ Sk. It is obvious that lca(S1, . . . , Sk)
computes the result set for q.

We discern between two groups of LCA-based approaches:
(i) the Smallest LCA [24] and the Exclusive LCA [25] with
their variations [10, 16, 21], and (ii) the Meaningful LCA
[14] and the Valuable LCA [13]. The first group defines
query results solely on the structural relationships between
the nodes in an XML document, while the second group
also takes into account node types derived from the schema
of the documents. Table 1 briefly presents each approach.

A common property of all the variations of the LCA is
that for any query q and document d the set of the LCA
nodes of the keywords in q as we have defined them above,
referred to as basic LCA nodes in the following, is a superset
of any type of LCA nodes we mentioned. The set of SLCA
nodes is the set of basic LCA nodes if we exclude nodes that
contain other LCA nodes for the query keywords in their
subtree. The set of ELCA nodes is the set of basic LCA
nodes if we exclude any node v that is a basic LCA of a
set of nodes V ′ = {v1, v2, . . . , vk} such that ∃vi ∈ V ′ that
also belongs to the subtree of another node u that is also a
descendant of v. Similarly for the MLCA and VLCA, for a
node to be an MLCA or VLCA, it also needs to be a basic

LCA by definition (Table 1). This means that if for any
query q, we evaluate its result set against a document d using
basic LCA semantics, the results for any of the other LCA
types are included in this set. Thus, in our approach, for
the document-query similarity evaluation, we do not focus
on a specific type of LCA nodes, but instead, adopt a more
general approach by supporting basic LCA semantics. Since
basic LCA-based results are a superset of any of the other
types of results, our approach can be used to approximate
the results attained by any of the LCA-based approaches.

LCA semantics ensure that all query keywords appear in
the result. However, intuitively, we would like to favor re-
sults where keywords appear close to each other in the tree,
since for example two keywords that appear in the same
chapter of a book are more related than two keywords that
appear in the same book, but in different chapters. A com-
mon approach for quantifying the distance among the key-
words in a result is the one presented in XRank [10] that
uses Exclusive LCA semantics. In this case, the evaluation
of the rank for a result takes into account the distance of
each keyword from their Exclusive LCA by including a de-
cay factor whose value increases with this distance. Here,
we take the maximum of all such distances which is the one
that determines the height of the subtree that has the LCA
node as a root and the nodes directly containing the key-
words as its leaves. In particular, we define the height, h, of
each node v ∈ Result(q) as:

h(v) = max
i

dist(v, vi), (1)

where vi (1 ≤ i ≤ k) is a node that directly contains keyword
wi, and dist is the length of the shortest path between v and
vi in the XML tree. The lower the height, the more closely
connected the keywords in the XML tree, that is, they are
contained into a more specific element. For example, in Fig.
1, for query (b,o), we have two results, one with height 2
(located under the left most a element) and one with height
1 (located under the second from the left a element).

In deep XML trees, i.e. trees with a large depth, a result
with great height may still represent only a small percentage
of the XML tree, while in shallow trees, even a result with
low height may represent a large portion of the tree. De-
pending on the semantics one wants to convey, normalizing
the height with respect to the tree depth may be required.

2.2 Problem Definition
The goal of database selection is to determine which data-

bases or document collections are more useful (relevant) to
a user query and rank them accordingly. More formally, we
define the problem of database selection over collections of
XML documents as:
Given N collections of XML documents (D1, D2, . . . , DN)
and a keyword query q, rank the collections according to their
goodness to q.

For a document collection to be useful (good) for a query,
the documents that are contained in the collection should
provide relevant results for the query. Thus, the goodness
of a collection D for query q is determined by the relevance of
its documents to q. Similarly to [9], we consider that no user
feedback is available to determine such relevance, and thus,
define the relevance of a document d ∈ D to q based solely
on the similarity of d to q. Furthermore, we consider that a
document is relevant only if this similarity measure exceeds
a user-specified similarity threshold l. This threshold is used

Table 1: Lowest Common Ancestor Semantics

LCA-type Description Definition
v is an SLCA if all keywords of q appear in the

Smallest LCA subtree rooted at v and none of its descendants v ∈ slca(S1, S2, . . . , Sk) if v ∈ lca(S1, . . . , Sk) and
(SLCA) [24] has such a subtree containing all keywords. ∀u ∈ lca(S1, S2, . . . , Sk) v not an ancestor of u.

v is an ELCA if it contains at least one occurrence v ∈ elca(S1, S2, . . . , Sk) iff ∃v1 ∈ S1, . . . , vk ∈ Sk :
Exclusive LCA of each keyword in the subtree rooted at v, v = lca(v1, . . . , vk) and ∀vi(1 ≤ i ≤ k) the child of v
(ELCA) [25] excluding the occurrences of the keywords in subtrees in the path from v to vi is not an LCA of S1, . . . , Sk

of its descendants already containing all the keywords itself or an ancestor of such an LCA.
v is an MLCA, if all pairs of nodes (vi, vj) in the

Meaningful LCA v is an MLCA if in the subtree rooted at v, the nodes subtree rooted at v that contain the keywords of q
(MLCA) [14] containing the keywords are pairwise meaningfully related are such that � v′i, v

′
j containing the same keywords

such that lca(vi, vj) is an ancestor of lca(v′i, v
′
j)

v is a VLCA, iff for the nodes vi, vj , containing keywords For v = lca(v1, . . . , vk), v is the VLCA of v1, . . . , vk

Valuable LCA (wi, wj), in the subtree rooted at v, there are no other two iff ∀vi, vj there are no other two nodes of the same
(VLCA) [13] nodes of the same label/tag except vi, vj . label/tag.

to enable the user to specify what she considers as relevant
for her query. We estimate the goodness of D by aggregating
the similarity scores of all relevant documents. In particular:

Definition 1. Given a user specified similarity threshold
l and a query q, the goodness of an XML document collection
D to q is defined as:

Goodness(q, D, l) =
∑
d∈D

sim(q, d, l),

where sim(q, d, l) determines the similarity of a single doc-
ument to a query.

Thus, we rank highly (estimate high goodness values for)
both collections that have a large number of documents with
a relatively small similarity score, as well as collections that
contain less documents but with higher similarity scores.
By using the similarity threshold, we somewhat limit the
tendency of the model to favor large collections and consider
only documents that are considered relevant by the user.
Alternatively, we can consider for the goodness evaluation
of D, instead of the entire collection, only its top-K most
relevant documents to q, where K is, similarly to l, user-
defined.

We distinguish between a boolean and a weighted model
for the selection problem, which differ on the definition of
the similarity of a document to a query.
Boolean model. For a given similarity threshold l, a docu-
ment d is considered to match query q if there exists at least
one result v ∈ Result(q) such that h(v) ≤ l.

sim(q, d, l) =

{
1, if minu∈Result(q) h(u) ≤ l
0, otherwise

The goodness of a document collection is then defined ac-
cording to Def. 1 as the number of matching documents
d ∈ D.

Note that our model is not purely boolean, as the simi-
larity threshold is used as a means to discard the irrelevant
documents from the goodness estimation. If l has a high
enough value, i.e., if l is greater than the depth of a docu-
ment d, then the similarity measure becomes purely boolean
as it only checks for the existence of the keywords in d.
Weighted model. In the weighted model, besides determin-
ing whether a document d matches a query q, i.e., ∃v ∈
Result(q) such that h(v) ≤ l, we also take into account the
height of the result into the computation of the query simi-
larity to d. We define a function F of the height h of a result

node v such that the similarity of d to q is greater when h(v)
is small. For example, F can be defined as the inverse of the
height of the node, 1/h(v). With this similarity measure, we
obtain greater similarity scores for documents that contain
all query keywords within more specific elements.

Since a document d may contain many results for a query
q, to determine its similarity to q, we consider in the sim-
ilarity computation the height of the most specific element
node in the result set, i.e., the node in Result(q) with the
smallest height.

sim(q, d, l) =

⎧⎨
⎩

F (minv∈Result(q) h(v)),
if minv∈Result(q) h(v) ≤ l

0, otherwise

The goodness of a collection is evaluated this time by ac-
cumulating the similarity scores of all documents that have
at least one result node with height smaller than l.

3. PAIRWISE LCA ESTIMATION
To evaluate a keyword query q against a document d, the

straightforward approach is to apply on d an algorithm for
finding the LCA nodes of the k keywords that appear in
q, which constitute Result(q). Since there may be multiple
occurrences of each keyword w in d, there may also exist
more than one such LCA nodes which we need to compute.

For the selection problem, after the evaluation of the LCAs,
the LCA node v ∈ Result(q) with the minimum height is se-
lected and if h(v) ≤ l, the boolean model returns a match for
d, while the weighted model computes the similarity based
on function F .

Thus, to estimate the goodness of an XML document col-
lection D for a query q, we need to compute the LCA nodes
of the keywords in q, for each document d ∈ D. This evalu-
ation is expensive processing-wise and leads to low response
times especially for large collections with many documents.
For instance, if the Exclusive LCA (ELCA) is used, then,
for the evaluation of the ELCA nodes a brute force algo-
rithm has a O((k)(depth)|S1| . . . |Sk|) processing cost, for a
tree with depth depth and k keywords in q. Even the state-
of-the-art algorithms for ELCA, only reduce the complexity
to O((k)(depth)|S|log|S′|) [25], where |S| (|S′|) is the car-
dinality of the set with the nodes that directly contain the
least (most) frequent keyword in the query.

To avoid this step at execution time, a preprocessing phase
may be deployed. In this phase, for each document d ∈ D,

we compute the LCA nodes for all possible combinations
of keywords that appear in D and maintain their heights.
Based on this information, we may evaluate the similarity
of any query q to d very efficiently.

However, the number of all possible combinations of key-
words is very large and its precomputation imposes a large
overhead both on processing cost and on storage, since this
information needs to be maintained. In particular, the num-
ber of the LCAs that need to be computed for an XML doc-

ument with n (non-distinct) keywords is:
∑n

i=2 (
n

i) = O(2n).

Algorithm 1 Boolean Similarity Evaluation

Input: q: keyword query, Htab(d): keyword pair table for
document d, l: similarity threshold
Output: sim: similarity, fpF lg: false positive
flag

1: Extract all possible keyword pairs (ws, wt) from q
2: Lookup all (ws, wt) in Htab(d)
3: if a pair does not appear in the table then
4: sim(q, d, l) = 0
5: else
6: sim(q, d, l) = 1
7: if for any (ws, wt), hmax(s, t) = NULL then
8: fpF lg=1
9: end if

10: end if
11: RETURN(sim, fpF lg)

3.1 Pairwise Estimation
We claim that one does not need to compute and maintain

the LCA nodes of all the possible combinations of keywords
in a document d to evaluate the document similarity to a
query q. Instead, we rely on pairwise LCAs to estimate the
height of the LCA for any set of keywords.

Proposition 1. Let G(V, E) be an acyclic directed graph,
and V ′ = {v1, . . . , vM} any subset of M nodes in G, V ′ ⊆ V .
Then, h(lca(v1, . . . , vM)) = maxvi,vj∈V ′ h(lca(vi, vj)).
Proof. Let u ∈ V and u = lca(v1, . . . , vM) and there is also
u′ ∈ V and u′ = lca(vl, vm) where vl, vm ∈ V ′, such that:
h(u′) > h(u). However, u is a common ancestor of vl,vm and
since h(u′) > h(u), then, u cannot be the LCA of all v ∈ V ′.
Thus, h(lca(v1, . . . , vM)) ≥ maxvi,vj∈V ′ h(lca(vi, vj)).

Let us now assume there is a u′′ = lca(vl, vm), vl, vm ∈
V ′, such that h(u′′) = maxvi,vj∈V ′ h(lca(vi, vj)), and h(u) >

h(u′′). Then, there is at least one pair of nodes (vs, vt),
vs, vt ∈ V ′, such that lca(vs, vt) = u′′. But since the LCA
with the greatest height is u, there cannot be such a node.
Thus, h(lca(v1, . . . , vM)=maxvi,vj∈V ′ h(lca(vi, vj)).�

Based on Prop. 1, we can estimate the height for the result
of any query q against an XML document d. If the keywords
in d are distinct (i.e., each keyword appears only once), then
any query q has only a single result in d, i.e., the keywords
of q have a single LCA node and we can provide an exact
estimation of its height. If we maintain all possible pairs
of keywords that appear in d along with the corresponding
height of their LCA node, the maximum height of all the
height values of the LCAs that are recorded for any pair of
keywords in q corresponds to the height of the result of q
against d.

However, in most cases, there are multiple occurrences of
each keyword in an XML document and each pair of key-
words may have multiple LCAs of different heights. Thus,
for each distinct pair of keywords (wi, wj) in a document d,
we maintain two values: (i) the height hmin(i, j) of the LCA
node v ∈ lca(Si, Sj) with h(v) ≤ h(u),∀u ∈ lca(Si, Sj) and
(ii) the height hmax(i, j) of the LCA node v′ ∈ lca(Si, Sj)
with h(v′) ≥ h(u), ∀u ∈ lca(Si, Sj). Let us denote with
Htab(d), the three column table in which we maintain this
information for document d. In the first column of Htab(d),
we store the pair of keywords (wi, wj), in the second column,
the hmin(i, j) value, and in the third, the hmax(i, j) value.

For a query q with k keywords, we look up each pair
of keywords (ws, wt) of q in Htab(d) to determine if these
keywords appear in d. If they do, we also derive from
the information maintained for the matching pair of key-
words in Htab(d), the minimum and maximum value height
(hmin(s, t), hmax(s, t)) of the LCA nodes under which the
pair appears in d. After looking up all pairs of keywords of q
in Htab(d), let (ws′ , wt′) be the pair which has the maximum
hmin(s′, t′) value. We denote this value as Hmin(d, q). Sim-
ilarly, we consider the pair (ws′′ , wt′′) which has the max-
imum hmax(s′′, t′′) value among all pairs and denote it as
Hmax(d, q).

Theorem 1. Given a keyword query q and a document d,
the height of any v ∈ Result(q) is such that: Hmin(d, q) ≤
h(v) ≤ Hmax(d, q).
Proof. We first prove that any v ∈ Result(q) has a height
h(v) ≥ Hmin(d, q). Let us assume that there exists u ∈
Result(q), such that h(u) < Hmin(d, q). Then, for all key-
word pairs (ws, wt) in table Htab(d) that correspond to pairs
of keywords in q, hmin(s, t) should also be lower or equal
to h(u), since due to Prop. 1, the height of a result is
determined by the maximum height value of all the node
pairs. But Hmin(d, q) is defined as the maximum value of the
hmin(s, t) of all (ws, wt) in q, therefore we have at least one
keyword pair (ws′ , wt′) in q such that hmin(s′, t′) > h(u).
Thus, there cannot be a result node with height lower to
Hmin(d, q).

Let us now prove that v ∈ Result(q) has a height h(v) ≤
Hmax(d, q). Let us assume that there exists u ∈ Result(q)
such that h(u) > Hmax(d, q). Then, according to Prop. 1,
there is at least one pair of keywords associated with an LCA
node with a height value greater than Hmax(d, q), which is
impossible since Hmax(d, q) is defined as the maximum value
of all height values associated with any pair of keywords
corresponding to q. Thus, there cannot be a result node u
with h(u) > Hmax(d, q).�

According to Th. 1, we can bound the height of any result
of q in d between Hmin(d, q) and Hmax(d, q). Thus, if we
maintain the appropriate information for all distinct pairs of
keywords (wi, wj) in d in the table Htab(d), we can provide
an estimation for the height of the result of any keyword
query q against d. That is, we determine that the height of
any result cannot be lower than Hmin(d, q) and higher than
Hmax(d, q). For example, in Fig. 1, the height of the result
for query (o,b) is bounded between 1 and 2.

Given a query q and a similarity threshold l, if for doc-
ument d, Hmin(d, q) > l, then we can safely deduce that
there are no results in d that exceed the similarity thresh-
old the user has set. Theorem 1 guarantees, that we have
no false negatives, there are no results with lower height

than Hmin(d, q). If Hmin(d, q) ≤ l and Hmax(d, q) ≤ l, d
is surely relevant to q. False positives may appear only for
documents for which Hmin(d, q) ≤ l and Hmax(d, q) > l,
in which case pairs of nodes belonging to different subtrees
may be combined to give a false Hmin(d, q) estimation.

Algorithm 2 Weighted Similarity Evaluation

Input: q: keyword query, Htab(d): keyword pair table for
document d, l: similarity threshold
Output: sim: similarity, bsim: lower bound for similar-
ity

1: Extract all possible keyword pairs (ws, wt) from q
2: Lookup all (ws, wt) in Htab(d)
3: if a pair does not appear in the table then
4: sim(q, d, l) = 0
5: else
6: sim(q, d, l) = F (Hmin(d, q))
7: bsim(q, d, l) = F (Hmax(d, q))
8: end if
9: RETURN(sim, bsim)

3.2 Goodness Estimation
Based on the above observations, we define appropriate

algorithms for estimating the similarity of a document to a
query under both the boolean and weighted models based
on the pairwise LCA nodes. Thus, we reduce the complexity

of the preprocessing phase from O(2n) to (
n

2) = O(n2), both
processing and storage-wise.

For each document d ∈ D, we maintain the table Htab(d),
in which we insert information for the LCA with the mini-
mum and maximum height value (hmin(i, j), hmax(i, j)) for
all distinct keyword pairs (wi, wj) that appear in d. Since
we know that any pair of keywords (wi, wj) with hmin(i, j)
greater than l does not contribute in the similarity evalua-
tion, we can safely omit such pairs from Htab(d) for space
and processing efficiency. Furthermore, we do not need
to maintain the value of hmax(i, j) for any keyword pair
(wi, wj) for which hmax(i, j) > l and simply set that value
to NULL in Htab(d).

Given Htab(d), we describe how any keyword query q
is processed against document d under the boolean model.
All keyword pairs from q are extracted and looked up in
Htab(d). If any of the pairs is not found, then we set the
similarity of the document to the query to 0 (q does not
match d). Otherwise, we set the similarity equal to 1. We
also check the hmax(s, t) values for all the keyword pairs
(ws, wt) of q to determine whether there is a possibility for
a false positive and set a corresponding flag (fpF lg) accord-
ingly. The algorithm is detailed in Alg. 1.

To compute the goodness of a collection D of XML doc-
uments, the above algorithm is applied for all documents d
in the collection. The goodness of the collection based on
Def. 1 is estimated as the sum of the similarity values for
each relevant document in the collection. We can derive a
lower bound for the goodness of D, by counting the number
of documents in D that have set their false positive flags and
subtracting it from the estimated goodness value.

For the weighted version of the problem, we do not only
determine whether a document matches or not a query, but
we also evaluate a measure for its similarity as a function of
the height of the LCA node. As in the boolean version, since

Figure 2: The MBFs for the XML tree in Fig. 1.

there may be several occurrences of the query keywords in
a document to determine the similarity value, we rely again
on the height of the LCA with the minimum height and the
height of the LCA with the maximum height among all the
LCA nodes in our result set.

The table Htab(d) for a document d still suffices for deter-
mining the similarity value for the weighted model. While it
can also provide an estimation on the number of false pos-
itives, Htab(d) cannot be used for providing an estimation
on the maximum height of the LCA node that may contain
our query keywords, i.e., a lower bound for the similarity
value. For the evaluation of a lower bound, we insert in the
table for all keyword pairs (wi, wj) with hmin(i, j) < l their
hmax(i, j) value even if hmax(i, j) > l. Then, we can derive
a lower bound for the similarity (bsim) of the document d
to query q based on Hmax(d, q). The detailed procedure for
the evaluation is presented in Alg. 2.

To evaluate the goodness of the entire collection D, we
evaluate the similarity score for each document based on
Hmin(d, q) and sum these scores; thus, acquiring an upper
bound for the goodness value. Furthermore, by summing
the lower bound similarity estimations based on Hmax(d, q),
we also provide a lower bound for the goodness estimation
of the collection.

4. BLOOM-BASED SUMMARIES
Instead of maintaining the information about the keyword

pairs for every document in a table, for space efficiency, we
summarize this information using a well known hash-based
structure, the Bloom filters [3]. Bloom filters are compact
data structures for the probabilistic representation of a set
of elements that support membership queries. Consider a
set A = {a1,..., an} of n elements. The idea is to allocate
a vector x of s bits, initially all set to 0, and then choose m
independent hash functions, h1, . . . , hm, each with range 1
to s. For each element a ∈ A, the bits at positions h1(a),
. . . , hm(a) in x are set to 1. Given a membership query for
b, the bits at positions h1(b), . . . , hm(b) are checked. If any
of them is 0, then certainly b /∈ A. Otherwise, we conjecture
that b is in the set, although there is a probability that we
are wrong (false positive). To support updates, we maintain
for each location i in the bit vector a counter of the number
of times the corresponding bit is set to 1.

For the boolean problem, we replace the table Htab(d), for
each document d in the collection, with two Bloom filters,
BFmin(d) and BFmax(d) corresponding to the second and

third columns of the Htab(d) table respectively, that main-
tained the hmin(i, j) and hmax(i, j) values for each distinct
keyword pair (wi, wj) in d. Given a similarity threshold
l, any keyword pair (wi, wj) in d for which hmin(i, j) ≤ l is
hashed as one key and inserted into BFmin(d). All keyword
pairs (wi, wj) inserted in BFmin(d) for which hmax(i, j) ≤ l
are also inserted into BFmax(d).

Algorithm 3 Bloom-Based Boolean Similarity Evaluation

Input: q: query, BFmin(d), BFmax(d): Bloom filters for
document d, l: similarity threshold
Output: sim: similarity, fpF lg: false positive
flag

1: Extract all possible keyword pairs (ws, wt) from q
2: for all (ws, wt) ∈ q do
3: Apply the hash functions to (ws, wt)
4: Lookup the output of the hash functions for (ws, wt)

in BFmin(d)
5: if there is a miss then
6: sim(q, d, l) = 0
7: RETURN(sim)
8: end if
9: end for

10: sim(q, d, l) = 1
11: for all (ws, wt) ∈ q do
12: Lookup the output of the hash functions for (ws, wt)

in BFmax(d)
13: if there is a miss then
14: fpF lg = 1
15: RETURN(sim, fpF lg)
16: end if
17: end for
18: fpF lg = 0
19: RETURN(sim, fpF lg)

To evaluate the similarity of d to q, first every pair of
keywords of q is checked against BFmin(d) and if there are
no misses, the similarity is set to 1. Then BFmax(d) is also
checked to identify any possible false positives (Alg. 3).

The goodness estimation proceeds as when Htab(d) is
used. Note that this time the sum of false positive flags
over all the collection only gives an estimation of the false
positives present and not an upper bound. This is because
the use of the Bloom filters introduces additional false pos-
itives due to the hash function collisions.

Bloom filters cannot be directly used for the weighted
problem since they cannot maintain the value of the height
of the LCA nodes which is required to determine the similar-
ity value. Instead, we deploy a variation, called Multi-Level
Bloom filters.

Instead of inserting all pairs of keywords (wi, wj) in d with
hmin(i, j) ≤ l in a single Bloom filter BFmin(d), we group
the keyword pairs according to their hmin(i, j) value and we
use a separate Bloom filter for each such group. Thus, we
construct a multi-level Bloom filter MBFmin(d), which is
defined as a set of l simple Bloom filters BF 1, BF 2, . . . , BF l

such that all pairs of keywords (wi, wj) in d with hmin(i, j) =
1 are hashed into BF 1, with hmin(i, j) = 2 into BF 2 and
so on until hmin(i, j) = l. Again, we are not interested in
any keyword pair for which hmin(i, j) > l, since such pairs
do not contribute to the similarity of d to q.

Similarly to the MBFmin(d), we define MBFmax(d) in-

stead of BFmax(d). However, if we want to provide a lower
bound for the similarity value of document d to q, as ex-
plained, maintaining only l levels in our filter is not enough.
In this case, the number of levels in the filter is at most equal
to the depth of the XML tree T of document d, since the
highest value for the height of any LCA node in the tree is
at most equal to the XML tree height. Figure 2 shows the
MBFmin(d) and MBFmax(d) for the XML tree of Fig. 1
and l = 3.

To provide a lower bound for the similarity value, for each
document d ∈ D, we maintain both the MBFmin(d) with l
levels and the MBFmax(d) with depth levels, where depth
is the depth of the XML tree corresponding to d. For each
query q, we first examine the MBFmin(d) and maintain
for each pair of keywords (ws, wt) of q the highest level at
which we found a match (y′

s,t). If a pair cannot be found
in any level, then we set similarity to 0. Otherwise, the
highest level y′′, such that: y′′ > y′

s,t,∀(ws, wt) ∈ q, is used
to estimate the similarity. A similar procedure is followed
then against the MBFmax(d) to estimate the lower bound
for the similarity. By adding the similarity estimation and
the lower bound for the similarity for all the documents in
the collection, we determine an estimation (upper bound)
and a lower bound for the goodness of the collection.

5. EXPERIMENTAL EVALUATION
We assume one of the popular LCA-type semantics, and

in particular, exclusive lowest common ancestor (ELCA) se-
mantics [10, 25], and examine whether our approximation
approach can be efficiently used to estimate the goodness of
a collection. That is, we compare our approach with an al-
gorithm, we refer to as the tree-based (tree) approach, that
estimates the goodness of a collection by evaluating a query
against each document to retrieve the ELCA-based results,
and returns a similarity measure based on the height of these
results. Since the evaluation of the results and thus, the sim-
ilarity of each document to the query is exact, we consider
that the tree-based approach provides also the exact value
for goodness.

We include in our comparison a keyword-based (keyword)
approach, which ignores the structure of the XML data and
evaluates the goodness of a collection by considering a docu-
ment as relevant to a query q based solely on the appearance
of the k keywords in the document, returning similarity 1
if all keywords exist, and 0 otherwise. We evaluate both a
pair-based (pair) approach that uses the Htab(d) table, and
a bloom-based (bloom) approach that uses the Bloom-based
summaries for maintaining the LCA information.

We first perform a set of experiments on synthetic data
to examine the performance of our approach under different
settings and also explore the influence of the different pa-
rameters. In a second set of experiments, we evaluate our
approach against a real data set to demonstrate how it works
in real conditions.

5.1 Synthetic Data Sets
For data generation, we use the Niagara generator [18].

The accuracy of our pairwise estimation of goodness depends
mainly on the structure of documents and in particular on
the relative position of the query keywords. Thus, to gen-
erate documents, we keep the number of elements fixed and
vary the percentage of distinct elements and the tree height.
The generated queries consist of keywords of which 90% be-

Table 2: Input Parameters

Parameter Range Default
of documents per collection (|D|) 20-200 100
of elements per document (n) - 50000
depth of XML tree (depth) 4-20 12
% of repeating element names (r) 0-0.6 0.3
query length (k) 1-6 4
similarity threshold (l) 1-12 4
number of collections (N) 12
number of Bloom filter hash functions 4
size of Bloom filter 996bits

long to the documents and 10% are other random keywords.
Table 2 summarizes our parameters.
Goodness Estimation. We first evaluate the quality of
the goodness estimation for a single document collection.
Collection Size. We vary the number of documents in the
collection from 20 to 200, and measure the goodness estima-
tion for all four approaches and the lower bound estimation
for our two approaches (lower-pair and lower-bloom) for the
boolean (Fig. 3c) and the weighted model (Fig. 3a).

Our approaches provide a very accurate estimation for
both the boolean and weighted models having only a small
difference from the actual value of the goodness as given by
the tree-based approach. The keyword-based approach, in
most cases, overestimates the goodness, and only provides
accurate estimations for 10% of the queries, which include
keywords that do not appear in the documents. While, our
approaches also overestimate the goodness, the estimation
error is significantly smaller. For the weighted model, we
observe lower goodness values than the boolean one because
of the use of function F . The keyword-based approach is
not considered in this case since it ignores structure.

The bloom-based approach trades off accuracy for storage
and processing efficiency. While it increases the estimation
error compared to the pair-based approach because of the
false positives caused by the Bloom filters, it also reduces
the required storage to about 8% of the storage occupied by
the Htab(d) table. It also reduces the processing cost by
relying on hash-based lookups instead of table scans.

If we also evaluate the lower bounds for the goodness esti-
mation, we provide tight bounds in which the actual good-
ness value for a collection is always included. The bloom-
based approach usually presents a more optimistic lower
bound estimation due to false positives introduced by the
structure, which are around 10%.

Finally, we observe that as the number of documents in a
collection increases, the estimation error of our approaches
scales gracefully (around 20%) at the most. The bloom-
based approach behaves a bit worse for larger collections
also due to an increase of the false positives as the size of the
Bloom filters remains fixed in the experiment. Allocating
larger sizes for the Bloom filters alleviates this problem.
Similarity threshold. We maintain the number of docu-
ments fixed, and vary the similarity threshold l (Fig. 3d-Fig.
3b). The similarity threshold affects mostly our approach
with respect to the depth of the XML documents. When
l is small, then our approaches provide better estimations
(Fig. 3d). As the value of l increases estimation errors in
the height of the LCA nodes cause larger estimation errors in
both the goodness estimation and the lower bound estima-

tion. For values closer to the tree depth our estimation again
improves since most documents are considered matches. In
particular, for the boolean model, if l becomes equal to the
tree depth, then our estimation is similar to the one of the
keyword-based approach that only checks for keyword con-
tainment.
Document and Query Structure. To examine the in-
fluence of the document structure and the size of the query,
we measure the absolute estimation error of our approaches
which is defined as the absolute value of the difference be-
tween the actual goodness value as provided by the tree-
based approach and the value provided by each approxima-
tion approach. We observe similar results under both the
boolean and the weighted model (Fig. 4).
XML tree depth. All approaches provide the best estima-
tions for tree depths close to the similarity threshold (Fig.
4a). The estimations of our approaches are still reasonable
for larger depths, where in the worst case, for depth = 16,
the pair-based approach overestimates goodness by 27% and
the bloom-based one by 34%. The keyword-based approach
is not affected by the depth of the tree. If the tree depth in-
creases even further, since we keep the number of elements
fixed, due to the small fan-out of the tree, our approach
again behaves better.
Percentage of repeating elements. Our approach is 100% ac-
curate when we have no repeating element names and its
accuracy decreases as the percentage of repeating elements
increases (Fig. 4b). After a point the accuracy starts to im-
prove, since the probability that two keywords appear close
to each other at least once increases. Again, the keyword-
based approach is not significantly affected.
Query length. As the query length increases, our approach
behaves better since it considers more pairs for the ELCA
evaluation (Fig. 4c). For a single-keyword query, all ap-
proaches except the bloom-based one provide accurate esti-
mations.
XML Document Selection. We evaluate the quality
of the rankings we derive based on our goodness estima-
tion. We consider 12 document collections and compare
both boolean and weighted versions of the keyword-based,
the pair-based and the bloom-based approach.

We measure for each of the approaches, the Spearman
Footrule distance to the actual ranking for varying similar-
ity thresholds. The Spearman Footrule (SF) distance be-
tween two ranked lists is defined as the absolute difference
of their pairwise elements and is normalized by dividing with
1/2(S), where S is the number of elements in each list. We
also evaluate the MAP , mean average precision of each ap-
proach, which is defined for a set of different queries as the
average of the precision value (percentage of relevant col-
lections) attained after each different query, divided by the
number of queries. While the SF distance focuses on com-
paring the respective rank of each collection in two rankings,
MAP is more precision oriented.

The document collections are constructed as follows: for
a given set of queries, we produced a collection in which
each document has at least one result with height 1, an-
other collection in which each document has no results with
height 1 but at least one result with height 2, and so on.
Each document is constructed with the default parameter
values. We consider three different sets of document collec-
tions. The first set contains collections of equal size, i.e.,
collections having the same number of documents. The sec-

0

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180 200

go
od

ne
ss

 e
st

im
at

io
n

number of documents

(a) Number of documents

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10 12

go
od

ne
ss

 e
st

im
at

io
n

similarity threshold

(b) Similarity threshold

0
20
40
60
80

100
120
140
160
180
200

20 40 60 80 100 120 140 160 180 200

go
od

ne
ss

 e
st

im
at

io
n

number of documents

(c) Number of documents

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10 12

go
od

ne
ss

 e
st

im
at

io
n

similarity threshold

tree
pair

lower-pair
bloom

lower-bloom
keyword

(d) Similarity threshold

Figure 3: Goodness estimation for (a-b) the weighted and (c-d) the boolean problem.

0

10

20

30

40

50

60

70

80

4 6 8 10 12 14 16 18 20

es
tim

at
io

n
er

ro
r

XML tree depth

(a) XML tree depth

0
10
20
30
40
50
60
70
80
90

100

0 0.1 0.2 0.3 0.4 0.5 0.6

es
tim

at
io

n
er

ro
r

elements reappearance percentage

(b) Repeated elements

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6

es
tim

at
io

n
er

ro
r

query length

keyword
boolean-pair

weighted-pair
boolean-bloom

weighted-bloom

(c) Query length

Figure 4: Goodness estimation for different document and query structures.

ond set contains collections of different size. In particular,
we set the collection with the greatest ELCA height result
we constructed (the 12th collection) as the one with the
most documents, and decrease the size of the collection as
the ELCA height decreases. That is, the collection with the
results with ELCA height equal to 1, thus, the most rele-
vant collection, is the one with the smallest size. Finally, we
include a third set of random size collections as constructed
in the first set of experiments.

The keyword-based approach has the worst overall per-
formance with regards to the SF distance (Fig. 5a), since
all collections are regarded as equally relevant despite their
different structural properties. The approach approximates
the real ranking best for collections of different sizes (Fig.
5b), since both the actual ranking in the boolean model and
the keyword-based approach favor collections with large size.

The pair-based and the bloom-based approaches provide
a ranking very close to the real one (maximum SF distance
0.3). The ranking of the pair-based approach has the small-
est SF distance to the real ranking, in general, but the
bloom-based approach sometimes outperforms it because of
the more optimistic estimations it provides (Fig. 5). In the
boolean model, similar to the actual ranking, our approaches
also order all the collections with ELCA lower than l accord-
ing to their size, and give a 0 goodness estimation to the
others. Their SF distance is in most cases lower than 0.15.

For the weighted problem, for different size collections, the
performance is slightly worse than for equal size collections.
In this case, large collections are not favored against smaller
ones with more specific ELCA-based results. For l = 12, for
example, the 5-6th collections, that have ELCA with height
5 and 6, and are about average size among all, are the ones
ranked the highest. Finally, the random collections induce
the largest estimation errors, since there are more errors
in the ELCA height estimation, and the weighted model is
more sensitive to such errors than the boolean one.

With regards to the MAP measure, we obtain similar re-
sults. For the boolean model, the keyword-based approach
has the worst precision since it considers any document that
contains the query keywords as relevant (Fig. 6). Both our
approaches behave well with a MAP that does not drop be-
low 0.67, while it is in most cases around 0.75 to 0.85 (Fig.
6). The worst behavior is observed for collections of dif-
ferent size and when l takes values from 2 to 6. For larger
values, the precision increases, since the percentage of irrele-
vant collections in our data set is reduced. The bloom-based
approach is less precise than the pair-based one, because of
the errors caused by the false positives in the structure.

5.2 Real Datasets
To evaluate our approach under a realistic setting, we use

the DBLP bibliographic data collection. We split the DBLP
data set into different documents so as to have one docu-
ment for all the publication in one conference for each year,
i.e., we have a document with the publications for “VLDB
2009”, one for “VLDB 2008”, etc. Journal articles are omit-
ted. We then form two sets of collections, one set by group-
ing the documents based on their year of publication and
one based on their conference. For instance, in the first set,
we have collections such as “2009” which include documents
“VLDB 2009”, “ICDE 2009”, and so on, while in the second
set we have collections such as “VLDB”with documents cor-
responding to “VLDB 2009”, “VLDB 2008”, etc.

We pose queries using author names as our keywords and
report our results. Note that according to the format of the
DBLP data, if author “X” is a coauthor with author “Y”
in an article, then the minimum height of the ELCA-based
result for query “X and Y” is 1, while if they are authors in
different articles then the minimum height is 2. We evaluate
our approach under the boolean model and set l equal to 1 in
order to retrieve documents including publications cowritten
by “X” and “Y”. Next, we report some indicating results.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

di
st

an
ce

similarity threshold

(a)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

di
st

an
ce

similarity threshold

(b)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

di
st

an
ce

similarity threshold

keyword
boolean-pair

boolean-bloom
weighted-pair

weighted-bloom

(c)

Figure 5: Database selection for (a) equal size collections, (b) different size collections and (c) random collections.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

m
ea

n
av

er
ag

e
pr

ec
is

io
n

similarity threshold

(a)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

m
ea

n
av

er
ag

e
pr

ec
is

io
n

similarity threshold

(b)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

m
ea

n
av

er
ag

e
pr

ec
is

io
n

similarity threshold

keyword
boolean-pair

boolean-bloom
weighted-pair

weighted-bloom

(c)

Figure 6: MAP for (a) equal size collections, (b) different size collections and (c) random collections.

We posed the following query: “Omar Benjelloun and
Serge Abiteboul” against the document collections split by
year. According to the DBLP data, the two authors had
the most publications together (excluding journals) in 2004
with 4, followed by 2002 with 3, 2003 with 3, and 2005 with
1. Thus, the correct order for the collection selection prob-
lem is 2004, 2002, 2003 and 2005, while all other collections
contain no results of interest. By applying the pair-based ap-
proach, we retrieved the collections in this exact order, i.e.,
with 0 SF distance from the actual ranking and precision
equal to 1. For the bloom-based approach, the SF distance
becomes 0.2 while the precision drops to 5/6 because of the
false positives caused by the Bloom filters. Finally, for the
keyword-based approach, the SF distance dropped to 0.46
and the precision became 1/2. In particular, the first two
top-ranked collections were the ones corresponding to years
2006 and 2007 in which both authors had a lot of publica-
tions and many of them in common conferences, but not as
coauthors.

We performed a second experiment against the collections
split by conference, with query“Alon Y. Halevy and Zachary
G. Ives”. The authors have the most articles together in SIG-
MOD (6 articles) followed by several venues such as WebDB,
WWW, CIDR, ICDE where they have one cowritten article.
Both our approaches and the keyword based approach are
able to identify SIGMOD as the collection with the most
articles of interest. The pair-based approach again returns
exactly the actual ranking, while the bloom-based one has
an SF of 0.75 and a precision of 6/8. The keyword-based
approach has the worst behavior.

6. RELATED WORK
Keyword-based XML Queries: Most approaches to key-
word query evaluation are based on some type of LCA se-
mantics [10, 24, 13, 14]. All such approaches can be ap-

proximated by our pairwise LCA estimations and can ex-
ploit the proposed compact statistics to efficiently support
database selection. We have also shown experimentally the
accuracy of such approximations for the ELCA [10, 25] se-
mantics. Other related approaches include variations of the
basic types of LCAs that we have presented, such as the
Multi-Way Smallest LCA [21], which extends the Smallest
LCA [24]. There is also related work towards more efficient
evaluation of the LCA-based results, such as [25] that pro-
poses efficient stack-based algorithms for the evaluation of
the ELCAs, and [16] that uses materialized views to evaluate
SLCAs. Recently, MaxMatch [17] extends previous LCA-
based semantics to compute results that follow more strict
querying properties, such as consistency and monotonicity.
XKeyword [11] is a different approach that builds appro-
priate path indices summarizing the data, which however
requires schema information. IR techniques have also been
deployed for keyword queries processing over XML data such
as [8, 6].
Selectivity Estimation for XML Documents: Sum-
maries for XML documents have also been used to provide
selectivity estimations for queries against XML documents.
For this problem, most approaches rely on the use of path
indexes [2] or summary graphs [19] and are designed to sup-
port queries on structure (such as twigs) instead of keyword
queries. Also, [7] presents a tool for extracting statistics
from XML schema to construct compact and accurate struc-
tural summaries. The approach requires schema informa-
tion. Bloom filters were also used for summarizing the path
expressions in an XML document in the form of Bloom his-
tograms [23]. A histogram based on the frequencies of the
paths in an XML tree is built, and the paths that fall in
each bucket are summarized by a Bloom filter. This struc-
ture supports efficient matching similar to ours, but as [2]
supports path and not keyword queries. Bloom-based sum-

maries were also used for XML (not keyword-based) query
processing in peer-to-peer networks [12, 1]. The focus there
is on using such summaries for indexing collections as op-
posed to ranking collections.
Database Selection: The problem of database selection
has been mainly addressed for text and relational databases.
Most approaches rely on summaries of the database content.
Previous research has not addressed what should such sum-
maries for XML contain. This paper proposes maintaining
information about the LCA of pairs of document keywords.
In [9], the vector-space model is deployed for maintaining
statistical summaries of each document of a text collection
that contain information such as the tf/idf frequencies of
the terms in the collection. Similarly in [4], inference net-
works based on information retrieval principles are used to
estimate the goodness of document collections.

In Kite [20], keyword queries are deployed against rela-
tional data. Similarly, in [26] and [22], database selection
is supported based on keyword queries. In [26, 22] mean-
ingful relationships between keywords are defined against
summaries built on top of relational databases. The rela-
tionships are defined based on the number of joins required
to combine the tuples that hold the respective keywords and
evaluated based on the tuple query tree that contains all
query keywords and connecting tuples. Our approach uses
a similar measure to define the importance of a result based
on the height of the respective result tree that contains all
keyword queries. A matrix summarizing the relationships
of each keyword pair in a database is constructed as a sum-
mary in [26], while the same information is maintained in
a more compact graph-based structure in [22]. Instead, we
summarize the respective information in the Bloom filter
structures. While both we and [26] rely on keyword pairs
in the query to determine our results, [22] treats queries
holistically. Finally, both [26, 22] deploy frequency statis-
tics appropriate for relational databases for measuring the
importance of each result. While these approaches could be
applied for XML document collections if they were trans-
fered into appropriate relational databases, they cannot be
directly applied to the document collections. Furthermore,
the main difference between our work and keyword queries
on relational data is that in our case similarly to [9, 4] and
based on IR principles when dealing with text document col-
lections, the basic unit of information is a document, while
in relational databases the basic unit is a tuple.

7. CONCLUSIONS
In this paper, we dealt with the problem of selection for

XML document collections. We considered keyword queries
and evaluated the similarity of a document to a query based
on the height of the LCA node defining the query result.
We introduced an efficient approach for approximating the
height of the LCA node of any keyword query by maintain-
ing information about the LCAs of the pairs of keywords
that appear in a document. Furthermore, we presented a
compact index structure for maintaining this information
and exploited these approximations to estimate the good-
ness of an XML collection under both a boolean and a
weighted model. Through our experimental evaluation on
both real and synthetic data, we evaluated our approach
with respect to approximating exclusive LCA [10, 25] se-
mantics and showed that it is accurate, efficient and provides
rankings close to the actual one.

We plan to experimentally study how well our approach
can approximate other types of LCA semantics, such as
smallest LCA [24] semantics. Furthermore, we plan to exam-
ine other forms of statistical information about the pairwise
LCAs for the goodness estimation for specific types of LCA
semantics.

8. REFERENCES
[1] S. Abiteboul, I. Manolescu, N. Polyzotis, N. Preda, and

C. Sun. XML processing in DHT networks. In ICDE, 2008.
[2] A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton.

Estimating the selectivity of xml path expressions for
internet scale applications. In VLDB, 2001.

[3] B. Bloom. Space/time trade-offs in hash coding with
allowable errors. CACM, 13(7), 1970.

[4] J. P. Callan, Z. Lu, and W. B. Croft. Searching distributed
collections with inference networks. In SIGIR, 1995.

[5] S. Chernov, P. Serdyukov, M. Bender, S. Michel,
G. Weikum, and C. Zimmer. Database selection and result
merging in p2p web search. In DBISP2P, 2005/2006.

[6] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. Xsearch: A
semantic search engine for xml. In VLDB, 2003.

[7] J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and
J. Simeon. Statix: making xml count. In SIGMOD, 2002.

[8] N. Fuhr and K. Groβjohann. Xirql: A query language for
information retrieval in xml documents. In SIGIR, 2001.

[9] L. Gravano, H. Garcia-Molina, and A. Tomasic. Gloss:
text-source discovery over the internet. ACM Trans. on
Database Systems, 24(2):229–264, 1999.

[10] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.
Xrank: Ranked keyword search over xml documents. In
SIGMOD, 2003.

[11] V. Hristidis, Y. Papakonstantinou, and A. Balmin.
Keyword proximity search on xml graphs. In ICDE, 2003.

[12] G. Koloniari and E. Pitoura. Content-based routing of path
queries in peer-to-peer systems. In EDBT, 2004.

[13] G. Li, J. Feng, J. Wang, and L. Zhou. Effective keyword
search for valuable lcas over xml documents. In CIKM,
2007.

[14] Y. Li, C. Yu, and H. V. Jagadish. Schema-free xquery. In
VLDB, 2004.

[15] Z. Liu and Y. Chen. Identifying meaningful return
information for xml keyword search. In SIGMOD, 2007.

[16] Z. Liu and Y. Chen. Answering keyword queries on xml
using materialized views. In ICDE (Poster), 2008.

[17] Z. Liu and Y. Chen. Reasoning and identifying relevant
matches for xml keyword search. PVLDB, 1(1):921–932,
2008.

[18] The niagara generator. In http://www.cs.wisc.edu/niagara.
[19] N. Polyzotis, M. Garofalakis, and Y. Ioannidis. Selectivity

estimation for xml twigs. In ICDE, 2004.
[20] M. Sayyadian, H. LeKhac, A. Doan, and L. Gravano.

Efficient keyword search across heterogeneous relational
databases. In ICDE, 2007.

[21] C. Sun, C. Chan, and A. Goenka. Multiway slca-based
keyword search in xml data. In WWW, 2007.

[22] Q. H. Vu, B. C. Ooi, D. Papadias, and A. K. H. Tung. A
graph method for keyword-based selection of the top-k
databases. In SIGMOD, 2008.

[23] W. Wang, H. Jiang, H. Lu, and J. X. Yu. Bloom histogram:
Path selectivity estimation for xml data with updates. In
VLDB, 2004.

[24] Y. Xu and Y. Papakonstantinou. Efficient keyword search
for smallest lcas in xml databases. In SIGMOD, 2005.

[25] Y. Xu and Y. Papakonstantinou. Efficient lca based
keyword search in xml data. In EDBT, 2008.

[26] B. Yu, G. Li, K. Sollins, and A. K. H. Tung. Effective
keyword-based selection of relational databases. In
SIGMOD, 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

