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Abstract

Recent web search techniques augment traditional text matching with a global notion of
“importance” based on the linkage structure of the web, such as in Godgig&Ranlalgo-
rithm. For more refined searches, this global notion of importance can be specialized to create
personalized views of importance—for example, importance scores can be biased according
to a user-specified set of initially-interesting pages. Computing and storing all possible per-
sonalized views in advance is impractical, as is computing personalized views at query time,
since the computation of each view requires an iterative computation over the web graph. We
present new graph-theoretical results, and a new technique based on these results, that encode
personalized views gzartial vectors Partial vectors are shared across multiple personalized
views, and their computation and storage costs scale well with the number of views. Our ap-
proach enables incremental computation, so that the construction of personalized views from
partial vectors is practical at query time. We present efficient dynamic programming algo-
rithms for computing partial vectors, an algorithm for constructing personalized views from
partial vectors, and experimental results demonstrating the effectiveness and scalability of our
techniques.

Introduction and Motivation

General web search is performed predominantly through text queries to search engines. Because of
the enormous size of the web, text alone is usually not selective enough to limit the number of query
results to a manageable size. TRegeRankalgorithm [L0], among others§], has been proposed

(and implemented iGoogle[1]) to exploit the linkage structure of the web to compute global
“importance” scores that can be used to influence the ranking of search results. To encompass
different notions of importance for different users and queries, the basic PageRank algorithm can
be modified to create “personalized views” of the web, redefining importance according to user
preference. For example, a user may wish to specify his bookmarks as a set of preferred pages, so
that any query results that are important with respect to his bookmarked pages would be ranked
higher. While experimentation with the use of personalized PageRank has shown its utility and
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promise p, 10], the size of the web makes its practical realization extremely difficult. To see why,
let us review the intuition behind the PageRank algorithm and its extension for personalization.

The fundamental motivation underlying PageRank is the recursive notion that important pages
are those linked-to by many important pages. A page with only two in-links, for example, may
seem unlikely to be an important page, but it may be important if the two referencing pages are
Yahoo!andNetscapgwhich themselves are important pages because they have numerous in-links.
One way to formalize this recursive notion is to use the “random surfer” model introducg@d.in [
Imagine that trillions ofandom surfersare browsing the web: if at a certain time step a surfer is
looking at pagey, at the next time step he looks at a random out-neighber éfs time goes on,
the expected percentage of surfers at each pagmverges (under certain conditions) to a limit
r(p) that is independent of the distribution of starting points. Intuitively, this limit is the PageRank
of p, and is taken to be an importance scorejfosince it reflects the number of people expected
to be looking ap at any one time.

The PageRank scorép) reflects a “democratic” importance that has no preference for any
particular pages. In reality, a user may have af3eff preferred pages (such as his bookmarks)
which he considers more interesting. We can account for preferred pages in the random surfer
model by introducing a “teleportation” probability at each step, a surfer jumps back to a random
page inP with probability ¢, and with probabilityl — ¢ continues forth along a hyperlink. The
limit distribution of surfers in this model would favor pages i) pages linked-to by, pages
linked-to in turn, etc. We represent this distribution agesisonalized PageRank vect@@PV)
personalized on the sét Informally, a PPV is a personalized view of the importance of pages on
the web. Rankings of a user’s text-based query results can be biased according to a PPV instead of
the global importance distribution.

Each PPV is of lengtm, wheren is the number of pages on the web. Computing a PPV
naively using a fixed-point iteration requires multiple scans of the web grE@hwhich makes
it impossible to carry out online in response to a user query. On the other hand, PPV’s for all
preference sets, of which there &% is far too large to compute and store offline. We present
a method for encoding PPV'’s as partially-computed, shared vectors that are practical to compute
and store offline, and from which PPV'’s can be computed quickly at query time.

In our approach we restrict preference sBtto subsets of a set ¢fub pagesH, selected as
those of greater interest for personalization. In practice, we exgédct be a set of pages with
high PageRank (“important pages”), pages in a human-constructed directory sviahcas or
Open Directory[2], or pages important to a particular enterprise or application. The siZé of
can be thought of as the available degree of personalization. We present algorithms that, unlike
previous work 5, 10], scale well with the size off/. Moreover, the same techniques we introduce
can yield approximations on the much broader set of all PPV’s, allowing at least some level of
personalization on arbitrary preference sets.



The main contributions of this paper are as follows.

¢ A method, based on new graph-theoretical results (listed next), of encoding PR)édias
guantities enabling an efficient, scalable computation that can be divided between precom-
putation time and query time, in a customized fashion according to available resources and
application requirements.

e Three main theorems: Theanearity Theorenallows every PPV to be represented as a linear
combination obasis vectorsyielding a natural way to construct PPV’s from shared compo-
nents. TheHubs Theorenallows basis vectors to be encodedoastial vectorsand ahubs
skeleton enabling basis vectors themselves to be constructed from common components.
The Decomposition Theoreestablishes a linear relationship among basis vectors, which is
exploited to minimize redundant computation.

e Several algorithms for computing basis vectors, specializations of these algorithms for com-
puting partial vectors and the hubs skeleton, and an algorithm for constructing PPV’s from
partial vectors using the hubs skeleton.

e Experimental results on real web data demonstrating the effectiveness and scalability of our
techniques.

In Section2 we introduce the notation used in this paper and formalize personalized PageRank
mathematically. SectioB presents basis vectors, the first step towards encoding PPV’s as shared
components. The full encoding is presented in Sectio8ection5 discusses the computation of
partial quantities. Experimental results are presented in Se@tidtelated work is discussed in
Section7. Section8 summarizes the contributions of this paper. Additional material, primarily
proofs of theorems, appears in a set of appendices.

2 Preliminaries

LetG = (V, E) denote thaveb graphwhereV is the set of all web pages aitcontains a directed
edge(p, q) iff page p links to pageg. For a pagen, we denote byl (p) andO(p) the set of in-
neighbors and out-neighbors gfrespectively. Individual in-neighbors are denoted@s) (1 <

i < |I(p)]), and individual out-neighbors are denoted analogously. For convenience, pages are
numbered from to n, and we refer to a pageand its associated numbeinterchangeably. For a
vectorv, v(p) denoteentryp, thep-th component ob. We always typeset vectors in boldface and
scalars (e.g(p)) in normal font. All vectors in this paper aredimensional and have nonnegative
entries. They should be thought of as distributions rather than arrowsnageitudeof a vectorv

is defined to b& """, v(i) and is written|v|. In this paper, vector magnitudes are alwayir].




In an implementation, a vector may be represented as a list of its nonzero entries, so another useful
measure is theizeof v, the number of nonzero entriesn

We generalize the preference detdiscussed in Sectiof to a preference vectou, where
lu| = 1 andu(p) denotes the amount of preference for pag€&or example, a user who wants to
personalize on his bookmarked padeaniformly would have a: whereu(p) = ﬁ if p € P, and
u(p) = 0if p ¢ P. We formalize personalized PageRank scoring using matrix-vector equations.
Let A be the matrix corresponding to the web gra@hwhereA;; = le)' if page j links to
pagei, andA;; = 0 otherwise. For simplicity of presentation, we assume that every page has at
least one out-neighbor, as can be enforced by adding self-links to pages without out-links. The
resulting scores can be adjusted to account for the (minor) effects of this modification, as specified
in AppendixC.2

For a givenu, the personalized PageRank equation can be written as
v=(1-c)Av + cu 1)

wherec € (0,1) is the “teleportation” constant discussed in SectlorTypically ¢ ~ 0.15, and
experiments have shown that small changeshave little effect in practicel[0]. A solutionwv to
equation Q) is a steady-state distribution of random surfers under the model discussed in Section
1, where at each step a surfer teleports to pagéeh probabilityc-u(p), or moves to a random out-
neighbor otherwisell0]. By a theorem of Markov Theory, a solutianwith |v| = 1 always exists
and is uniqueg].* The solutiorw is thepersonalized PageRank vect{®PV) for preference vector
w. If w is the uniform distribution vecton = [1/n, ..., 1/n], then the corresponding solutieris
theglobal PageRank vectdd 0], which gives no preference to any pages.

For the reader’s convenience, Table 1 on the next page lists terminology that will be used
extensively in the coming sections.

3 Basis Vectors

We present the first step towards encoding PPV'’s as shared components. The motivation behind
the encoding is a simple observation about the lineadfyPPV'’s, formalized by the following
theorem.

Theorem (Linearity). For any preference vectous, andu., if v; andv, are the two correspond-
ing PPV'’s, then for any constants, c.; > 0 such thatw; + as = 1,

Q101 + a2 = (1 — ¢)A(a1v1 + agva) + c(a1ug + asus) (2)

1Specifically,v corresponds to the steady-state distribution ofayodic aperiodic Markov chain
2More precisely, the transformation from personalization vectote their corresponding solution vectoesis

linear.



Term Description Section

Hub Setd A subset of web pages. 1

Preference SeP Set of pages on which to personalize 1
(restricted in this paper to subsetsidj.

Preference Vectos Preference set with weights. 2

Personalized PageRank Vectolmportance distribution induced by a preference vectar.
(PPV)

Basis Vecton, (or r;) PPV for a preference vector with a single nonzero entty 3
atp (ori).

Hub Vectorry, Basis vector for a hub pagec H. 3

Partial Vector(r, — r{,{ ) Used with the hubs skeleton to construct a hub vector, 4.2

Hubs Skeletort Used with partial vectors to construct a hub vector. 4.3

Web Skeleton Extension of the hubs skeleton to include pages néfin 4.4.3

Partial Quantities Partial vectors and the hubs, web skeletons.

Intermediate Results Maintained during iterative computations. 5.2

Table 1: Summary of terms.

Informally, the Linearity Theorem says that the solution to a linear combination of preference
vectorsu; andwu, is the same linear combination of the corresponding PRY’'sndv,. The
proof is in AppendixA.

Letx,,...,x, be the unit vectors in each dimension, so that for eagl has valuel at entry
1 and0 everywhere else. Lat; be the PPV corresponding 6. Eachbasis vecton; gives the
distribution of random surfers under the model that at each step, surfers teleport back io page
with probability c. It can be thought of as representing pageview of the web, where entry
of r; is j's importance in’s view. Note that the global PageRank vecto% @1+ -+ 7p), the
average of every page’s view.

An arbitrary personalization vectar can be written as a weighted sum of the unit vectgrs

u = Z ;X 3)
=1
for some constants, .. ., «,. By the Linearity Theorem,
v = Z Ty 4)
=1

is the corresponding PPV, expressed as a linear combination of the basis wvgctors
Recall from Sectioril that preference sets (now preference vectors) are restricted to subsets
of a set of hub page#l. If a basis hub vectofor hereaftethub vectoy for eachp € H were
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computed and stored, then any PPV corresponding to a preferentecdestize & (a preference
vector withk nonzero entries) can be computed by adding up:therresponding hub vectors,
with the appropriate weights,.
Each hub vector can be computed naively using the fixed-point computatid@]inrHowever,
each fixed-point computation is expensive, requiring multiple scans of the web graph, and the
computation time (as well as storage cost) grows linearly with the number of hub vEétors
the next section, we enable a more scalable computation by constructing hub vectors from shared
components.

4 Decomposition of Basis Vectors

In Section3 we represented PPV's as a linear combination/6f hub vectorsr,, one for each
p € H. Any PPV based on hub pages can be constructed quickly from the set of precomputed
hub vectors, but computing and storing all hub vectors is impractical. To compute a large number
of hub vectors efficiently, we further decompose them paatial vectorsand thehubs skeleton
components from which hub vectors can be constructed quickly at query time. The representation
of hub vectors as partial vectors and the hubs skeleton saves both computation time and storage due
to sharing of components among hub vectors. Note, however, that depending on available resources
and application requirements, hub vectors can be constructed offline as well. Thus “query time”
can be thought of more generally as “construction time”.

We compute one partial vector for each hub pagehich essentially encodes the part of the
hub vectorr,, unique top, so that components shared among hub vectors are not computed and
stored redundantly. The complement to the partial vectors is the hubs skeleton, which succinctly
captures the interrelationships among hub vectors. It is the “blueprint” by which partial vectors are
assembled to form a hub vector, as we will see in Seeti8n

The mathematical tools used in the formalization of this decomposition are presentéd next.

4.1 Inverse P-distance

To formalize the relationship among hub vectors, we relate the personalized PageRank scores
represented by PPV’s timverse P-distances the web graph, a concept based expectedf
distancesas introduced inT].

3Note that while the mathematics and computation strategies in this paper are presented in the specific context of
the web graph, they are general graph-theoretical results that may be applicable in other scenarios involving stochastic
processes, of which PageRank is one example.



Letp,q € V. We define thénverse P-distance/,(¢) fromp to g as
rp(@) =) Pltle(l — )" (5)
t:p~q

where the summation is taken over @lrs¢ (paths that may contain cycles) startingpaand
ending aty, possibly touching or ¢ multiple times. For a tour = (w, ..., wy), the lengthl(t) is
k — 1, the number of edges in The termP]t|, which should be interpreted as “the probability of
travelingt”, is defined a§ [~} ony O Lif I(t) = 0. If there is no tour fronp to ¢, the summation
is taken to bé).* Note thatr) () measures distances inversely: it is higher for nad&goser” to
p. As suggested by the notation and proven in Appe@ix;,(q) = r,(¢) forall p,q € V, so we
will use r,(¢) to denote both the inverse P-distance and the personalized PageRank score. Thus
PageRank scores can be viewed as an inverse measure of distance.

Let H C V be some nonempty set of pages. poj € V, we definer/’(¢) as a restriction of
rp(q) that considers only tours which pass through some pageH in equation §). That is, a
pageh € H must occur ort somewhere other than the endpoints. Precigﬂyq) is written as

@)=Y Pltle(t -0 (6)
tip~>H~~q
where the notation : p ~~ H ~» ¢q reminds us that passes through some pagefn Note thatt
must be of length at lea&t In this paperH is always the set of hub pages, gni usually a hub
page (until we discuss the web skeleton in Sectigh3.

4.2 Partial Vectors

Intuitively, ' (¢), defined in equationg), is the influence o on ¢ throughH. In particular, if
all paths fromp to ¢ pass through a page i, thenH separatep andq, andr/’(¢q) = r,(¢). For
well-chosen setd/ (discussed in Sectioh.4.2), it will be true thatr,(q) — rf(q) = 0 for many
pagew, ¢g. Our strategy is to take advantage of this property by breakirigto two components:
(rp — r}) andrf!, using the equation
rp = (rp — 1) + 7l (7)
We first precompute and store tpartial vector(rp—rf ) instead of the full hub vectat,,. Partial
vectors are cheaper to compute and store than full hub vectors, assuming they are represented as a
list of their nonzero entries. Moreover, the size of each partial vector decreadésiasreases,
making this approach particularly scalable. We them@d)ack at query time to compute the full

hub vector. However, computing and storirﬁ explicitly could be as expensive ag itself. In
the next section we show how to encatfg so it can be computed and stored efficiently.

4The definition here of inverse P-distance differs slightly from the concept of expgatéstance in 7], where
tours are not allowed to visit multiple times. Note that general expectédiistances have the forin, P[t] f(L(t));
in our definition,f (x) = ¢(1 — ¢)*.



4.3 Hubs Skeleton

Let us briefly review where we are: In SectiBnwve represented PPV’s as linear combinations
of hub vectorsr,, one for eaclp € H, so that we can construct PPV’s quickly at query time if
we have precomputed the hub vectors, a relatively small subset of PPV’s. To encode hub vectors
efficiently, in Sectiord.2 we said that instead of full hub vectorg, we first compute and store
only partial vectorgr,, — rf), which intuitively account only for paths that do not pass through a
page ofH (i.e., the distribution is “blocked” by7). Computing and storing the difference vector
rf efficiently is the topic of this section.
It turns out that the vectar[’ can be be expressed in terms of the partial vedtogs— /),
for h € H, as shown by the following theorem. Recall from SecBdhatx;, has valud ath and
0 everywhere else.

Theorem (Hubs). Foranyp e V, H C V,

P = 137 () — ey (1) (o~ vl — can) ®)
heH
In terms of inverse P-distances (Sectbd), the Hubs Theorem says roughly that the distance
from pagep to any page; € V throughH is the distance,(h) from p to eachh € H times the
distancery,(¢) from h to ¢, correcting for the paths among hubs#¥(q). The terms:z,(h) and
cxp, deal with the special cases whgor q is itself in H. The proof, which is quite involved, is in
AppendixD.

The quantity(frh —rf ) appearing on the right-hand side &) {s exactly the partial vectors
discussed in SectioA.2 Suppose we have computegd H) = {(h,r,(h))|h € H} for a hub
pagep. Substituting the Hubs Theorem into equatiGnve have the followingdubs Equatiorfor
constructing the hub vectet, from partial vectors:

rp = (rp — i) = 37 (ry(h) — ey (1) [ (7 — i) — caon) ©)

Cc
heH

This equation is central to the construction of hub vectors from partial vectors.

The setr,(H) has size at most{ |, much smaller than the full hub vectsy, which can have
up ton nonzero entries. Furthermore, the contribution of each eptry to the sum is no greater
thanr,(h) (and usually much smaller), so that small values,0f.) can be omitted with minimal
loss of precision (Sectio). The setS = {r,(H) |p € H} forms thehubs skeletangiving the
interrelationships among partial vectors.

An intuitive view of the encoding and construction suggested by the Hubs Equ&jios (
shown in Figurel. At the top, each partial vectér,, — r#¥), including(r, — frf), is depicted as
a notched triangle labelgdat the tip. The triangle can be thought of as representing paths starting
ath, although, more accurately, it represents the distribution of importance scores computed based
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Partial Vectors
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Hubs Skeleton

Hub Vector

Figure 1: Intuitive view of the construction of hub vectors from partial vectors and the hubs skele-
ton.

on the paths, as discussed in Secdoh A notch in the triangle shows where the computation of

a partial vector “stopped” at another hub page. At the center, a-p@dtt) of the hubs skeleton

is depicted as a tree so the “assembly” of the hub vector can be visualized. The hub vector is
constructed by logically assembling the partial vectors using the corresponding weights in the
hubs skeleton, as shown at the bottom.

4.4 Discussion
4,41 Summary

In summary, hub vectors are building blocks for PPV’s corresponding to preference vectors based
on hub pages. Partial vectors, together with the hubs skeleton, are building blocks for hub vectors.
Transitively, partial vectors and the hubs skeleton are building blocks for PPV’s: they can be used
to construct PPV’s without first materializing hub vectors as an intermediate step (Seebion

Note that for preference vectors based on multiple hub pages, constructing the corresponding PPV
from partial vectors directly can result in significant savings versus constructing from hub vectors,
since partial vectors are shared across multiple hub vectors.



4.4.2 Choice ofH

So far we have made no assumptions about the set of hub pagest surprisingly, the choice of

hub pages can have a significant impact on performance, depending on the location of hub pages
within the overall graph structure. In particular, the size of partial vectors is smaller when pages

in H have higher PageRank, since high-PageRank pages are on average close to other pages in
terms of inverse P-distance (Sectd), and the size of the partial vectors is related to the inverse
P-distance between hub pages and other pages according to the Hubs Theorem. Our intuition is
that high-PageRank pages are generally more interesting for personalization anyway, but in cases
where the intended hub pages do not have high PageRank, it may be beneficial to include some
high-PageRank pages fii to improve performance. We ran experiments confirming that the size

of partial vectors is much smaller using high-PageRank pages as hubs than using random pages.

4.4.3 Web Skeleton

The techniques used in the construction of hub vectors can be extended to enable at least approxi-
mate personalization on arbitrary preference vectors that are not necessarily béseSuppose

we want to personalize on a paget H. The Hubs Equation can be used to constnf,étfrom

partial vectors, given that we have computg). As discussed in Sectich3, the cost of com-

puting and storing, (H) is orders of magnitude less thap. Thoughrf is only an approximation

to r,,, it may still capture significant personalization information for a properly-chosen hutb,set
asr}! can be thought of as a “projection” f, onto H. For example, ifd contains pages from

Open Directoryrf can capture information about the broad topia-pf Exploring the utility of

theweb skeletonV = {r,(H) |p € V'} is an area of future work.

5 Computation

In Section4 we presented a way to construct hub vectors from partial ve¢igys- rz{f ), for
p € H, and the hubs skeletofi = {r,(H)|p € H}. We also discussed the web skeleton
W = {r,(H)|p € V}. Computing thesgartial quantitiesnaively using a fixed-point itera-
tion [10] for eachp would scale poorly with the number of hub pages. Here we present scalable
algorithms that compute these quantities efficiently by using dynamic programming to leverage
the interrelationships among them. We also show how PPV’s can be constructed from partial vec-
tors and the hubs skeleton at query time. All of our algorithms have the property that they can
be stopped at any time (e.g., when resources are depleted), so that the current “best results” can
be used as an approximation, or the computation can be resumed later for increased precision if
resources permit.

We begin in SectioB.1by presenting a theorem underlying all of the algorithms presented (as
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well as the connection between PageRank and inverse P-distance, as shown in Agperalix
Section5.2, we present three algorithms, based on this theorem, for computing general basis vec-
tors. The algorithms in Sectidn2are not meant to be deployed, but are used as foundations for the
algorithms in Sectio®d.3 for computing partial quantities. Secti®¥ discusses the construction

of PPV'’s from partial vectors and the hubs skeleton.

5.1 Decomposition Theorem

Recall the random surfer model of Sectibninstantiated for preference vectoer= x,, (for page
p’'s view of the web). At each step, a surfeteleports to page with some probabilitye. If s is
atp, then at the next step,with probability 1 — ¢ will be at a random out-neighbor of That is,
a fraction(1 — ¢) - of the time, surfer will be at any given out-neighbor of one step after

|O(p)|
teleporting top. This behavior is strikingly similar to the model instantiated for preference vector
u = |ozp)\ ng” xo,(p), Where surfers teleport directly to each(p) with equal probability
m_ The similarity is formalized by the following theorem.

Theorem (Decomposition).For anyp € V,

(1
0

o)
The Decomposition Theorem says that the basis vagidor p is an average of the basis vectors
T0,(p) fOr its out-neighbors, plus a compensation facteg. The proof is in AppendiB.

The Decomposition Theorem gives another way to think about PPV’s. It saystha¢w of
the web ¢,) is the average of the views of its out-neighbors, but with extra importance given to
p itself. That is, pages important jis view are eithep itself, or pages important in the view of
p’s out-neighbors, which are themselves “endorsed’pbyn fact, this recursive intuition yields
an equivalent way of formalizing personalized PageRank scoring: basis vectors can be defined as
vectors satisfying the Decomposition Theorem.

While the Decomposition Theorem identifies relationships among basis vectors, a division
of the computation of a basis vectpy, into related subproblems for dynamic programming is
not inherent in the relationships. For example, it is possible to compute some basis vectors first
and then to compute the rest using the former as solved subproblems. However, the presence of
cycles in the graph makes this approach ineffective. Instead, our approach is to consider as a
subproblem the computation of a vector to less precision. For example, having comgyjgdo
a certain precision, we can use the Decomposition Theorem to combing,iBgs to computer,,
to greater precision. This approach has the advantage that precision needs not be fixed in advance:
the process can be stopped at any time for the current best answer.

1O(p)]
Z To;(p) T CTp (10)
i=1
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5.2 Algorithms for Computing Basis Vectors

We present three algorithms in the general context of computing full basis vectors. These algo-
rithms are presented primarily to develop our algorithms for computing partial quantities, presented
in Section5.3. All three algorithms are iterative fixed-point computations that maintain a set of
intermediate result§ Dy |, Ex[*]). For eactp, Dy[p] is a lower-approximation of,, on iter-
ationk, i.e., Di[p|(¢q) < rp(q) forall ¢ € V. We build solutionsDy[p] (k = 0,1,2,...) that

are successively better approximations-jo and simultaneously compute the error components
Ex[p], whereEy,[p] is the “projection” of the vectofr, — Dx[p]) onto the (actual) basis vectors.
That is, we maintain the invariant that for &> 0 and allp € V/,

Dy[p] + Y Ex[pl(q)rg =7 (11)

qeV

Thus, Dy [p] is a lower-approximation of,, with error ‘quv Ey [p](q)’rq‘ = | Ex[p]|- We begin

with Dy [p] = 0 and Ey[p] = x,, S0 that logically, the approximation is initially and the error

is r,. To storeEy[p] and Dy [p] efficiently, we can represent them in an implementation as a list
of their nonzero entries. While all three algorithms have in common the use of these intermediate
results, they differ in how they use the Decomposition Theorem to refine intermediate results on
successive iterations.

It is important to note that the algorithms presented in this section and their derivatives in
Section5.3 compute vectors to arbitrary precision; they are not approximations. In practice, the
precision desired may vary depending on the application. Our focus is on algorithms that are
efficient and scalable with the number of hub vectors, regardless of the precision to which vectors
are computed.

5.2.1 Basic Dynamic Programming Algorithm

In the basic dynamic programming algorithra new basis vector for each pagé computed on
each iteration using the vectors computedjfgrout-neighbors on the previous iteration, via the
Decomposition Theorem. On iteratidn we derive(Dy.1[p], Exy1[p]) from (Dg[p], Ex[p])
using the equations:

|O(p)|

Diplp] = ;);a; > DulOi(p)] + cay (12)
1—¢ \(ZJIPN

Beldl = (g5 O FlO) (13)

A proof of the algorithm’s correctness is given in AppenBjpwhere the errofEy[p]| is shown to
be reduced by a factor af— ¢ on each iteration.
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Note that although thd’,[+] values help us to see the correctness of the algorithm, they are
not used here in the computation Bf[+] and can be omitted in an implementation (although
they will be used to compute partial quantities in Sectio8). The sizes ofDy[p] and Ex[p]
grow with the number of iterations, and in the limit they can be up to the sizg,ofhich is the
number of pages reachable frgmintermediate scorgDy[*], Ex[*]) will likely be much larger
than available main memory, and in an implementatibi[*], Ex[*]) could be read off disk and
(Dgy1[*], Exy1[*]) written to disk on each iteration. When the data for one iteration has been
computed, data from the previous iteration may be deleted. Specific details of our implementation
are discussed in Secti@n

5.2.2 Selective Expansion Algorithm

The selective expansion algorithia essentially a version of the naive algorithm that can readily
be modified to compute partial vectors, as we will see in Se&i8rl

We derive(Dy1[p], Ext1[p]) by “distributing” the error at each page(that is, Ex[p|(q))
to its out-neighbors via the Decomposition Theorem. Precisely, we compute results on itération-
using the equations:

Dyoya[pl = Di[pl + Y cEilpl(g)aq (14)
9€Qx(p)
1—¢ 10(a)l
Eppalpl = Eulpl — ) Eipl(@mg+ Y 00 > EBl(@)To; (15)
q€Qk(p) q€Qk(p) =1

for a subset)(p) C V. If Qr(p) = V for all k, then the error is reduced by a factorlof- ¢

on each iteration, as in the basic dynamic programming algorithm. However, it is often useful to
choose a selected subsetlofasQ,(p). For example, i), (p) contains then pages; for which

the errorEy[p|(q) is highest, then thisop-m scheme limits the number of expansions and delays
the growth in size of the intermediate results while still reducing much of the error. In Section
5.3.1, we will compute the hub vectors by choosigg(p) = H. The correctness of selective
expansion is proven in Appendix

5.2.3 Repeated Squaring Algorithm

Therepeated squaring algorithms similar to the selective expansion algorithm, except that instead
of extending(Dg.1[*], Ex+1[*]) One step using equation$4) and (L5), we compute what are
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essentially iteratior2% results using the equations

Dak[p] = Di[p] + ) Eilpl(q) Dild] (16)
9€Qx(p)

E>[p] = Ex[p] - Z Eylpl(9)mq + Z Ex[pl(q) Exlq] (17)
9€Qk(p) q€Qk(p)

whereQ,(p) € V. For now we can assume th@,(p) = V for all p; we will setQr(p) = H

to compute the hubs skeleton in Sectid3.2 The correctness of these equations is proven in
AppendixG, where it is shown that repeated squaring reduces the error much faster than the basic
dynamic programming or selective expansion algorithm&),lfp) = V/, the error is squared on

each iteration, as equatiohq) reduces to:

Exlp] = ) | Exlp)(g)Exla] (18)
qeV
As an alternative to takin@(p) = V/, we can also use the top-scheme of Sectioh.2.2
Note that while all three algorithms presented can be used to compute the set of all basis

vectors, they differ in their requirements on the computation of other vectors when computing
rp. the basic dynamic programming algorithm requires the vectors of out-neighbprgodfe
computed as well, repeated squaring requires resiidq|, Ex[q]) to be computed foy such
that £ [p](¢) > 0, and selective expansion compuigsndependently.

5.3 Computing Partial Quantities

In Section5.2we presented iterative algorithms for computing full basis vectors to arbitrary preci-
sion. Here we present modifications to these algorithms to compute the partial quantities:

e Partial vectorgr, — r2f),p € H.

e The hubs skeletos’ = {r,(H)|p € H} (which can be computed more efficiently by itself
than as part of the entire web skeleton).

e The web skeletoml” = {r,(H) |p € V'}.

Each partial quantity can be computed in time no greater than its size, which is far less than the
size of the hub vectors.

5.3.1 Partial Vectors

Partial vectors can be computed using a simple specialization of the selective expansion algorithm
(Section5.2.2: we takeQo(p) = V andQ(p) =V — H for k > 0, for all p € V. That is,

we never “expand” hub pages after the first step, so tours passing through a huth pegeever
considered. Under this choice 6% (p), Di[p] + cEx[p] converges tqr, — rT) forallp € V.
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Of course, only the intermediate resul®y[p], Ex[p]) for p € H should be computed. A proof
is presented in AppendiA.
This algorithm makes it clear why using high-PageRank pages as hub pages improves perfor-
mance: from a page we expect to reach a high-PageRank pageoner than a random page, so
the expansion from will stop sooner and result in a shorter partial vector.

5.3.2 Hubs Skeleton

While the hubs skeleton is a subset of the complete web skeleton and can be computed as such
using the technique to be presented in Secddi@3 it can be computed much faster by itself if we

are not interested in the entire web skeleton, or if higher precision is desired for the hubs skeleton
than can be computed for the entire web skeleton.

We use a specialization of the repeated squaring algorithm (Se&t#8 to compute the
hubs skeleton, using the intermediate results from the computation of partial vectors. Suppose
(Dg[p], Ex[p]), for & > 1, have been computed by the algorithm of Secto8.1, so that
>gen Ex[pl(q) < e, for some erroke. We apply the repeated squaring algorithm on these re-
sults usingly(p) = H for all successive iterations. As shown in Appentiafter: iterations of
repeated squaring, the total er{d;[p]| is bounded by1 — ¢)¥ + ¢/c. Thus, by varying: and;,
rp(H) can be computed to arbitrary precision.

Notice that only the intermediate result®[h|, Ex[h]) for h € H are ever needed to update
scores forDy[p], and of the former, only the entrid3,[h](q), Ex|h|(q), for ¢ € H, are used to
computeDy[p](q). Since we are only interested in the hub scdbe®|(q), we can simply drop all
non-hub entries from the intermediate results. The running time and storage would then depend
only on the size of-,(H) and not on the length of the entire hub vectogs If the restricted
intermediate results fit in main memory, it is possible to defer the computation of the hubs skeleton
to query time.

5.3.3 Web Skeleton

To compute the entire web skeleton, we modify the basic dynamic programming algorithm (Section
5.2.1) to compute only the hub scores(H), with corresponding savings in time and memory
usage. We restrict the computation by eliminating entgies H from the intermediate results
(Dg[p], Ex[p]), similar to the technique used in computing the hubs skeleton.

The justification for this modification is that the hub scére, [p|(h) is affected only by the
hub scores, [+|(h) of the previous iteration, so that, ., [p](h) in the modified algorithm is equal
to that in the basic algorithm. Sin¢#| is likely to be orders of magnitude less thanthe size of
the intermediate results is reduced significantly.
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5.4 Construction of PPV’s

Finally, let us see how a PPV for preference veatocan be constructed directly from partial
vectors and the hubs skeleton using the Hubs Equation. (Construction of a single hub vector is a
specialization of the algorithm outlined here.) ket= ayp; + - - - + a.p. be a preference vector,
wherep, € Hforl <i<z. Let@Q) C H, and let

Tu(h> - Z Qg (sz(h) - Cxpz(h)) (19)
=1
which can be computed from the hubs skeleton. Then the#fV u can be constructed as
- 1
v = Zai(rpi — rg) + - Z ru(h) [(rh — vil) — cap] (20)
i=1 he@
ru(h)>0

Both the termgr,,, — r}1) and(r), — r#!) are partial vectors, which we assume have been pre-
computed. The termx;, represents a simple subtraction frgm, — r#7). If Q@ = H, then(20)
represents a full construction ef However, for some applications, it may suffice to use only
parts of the hubs skeleton to computéo less precision. For example, we can tékeo be the

m hubsh for which r,(h) is highest. Experimentation with this scheme is discussed in Section
6.3 Alternatively, the result can be improved incrementally (e.g., as time permits) by using a small
subset) each time and accumulating the results.

6 Experiments

We performed experiments using real web data from StanfovdisBasg6], a crawl of the web
containing 120 million pages. Since the iterative computation of PageRank is unaffedesaf by
pages(i.e., those with no out-neighbors), they can be removed from the graph and added back in
after the computationl0]. After removing leaf pages, the graph consisted of 80 million pages
Both the web graph and the intermediate resild [*], Ex[*]) were too large to fit in main
memory, and a partitioning strategy, based on that presentdlj wds used to divide the computa-
tion into portions that can be carried out in memory. Specifically, the set of pages partitioned
into k£ arbitrary sets”,, ..., P, of equal size { = 10 in our experiments). The web graph, repre-
sented as an edge-ligt, is partitioned intd: chunksE; (1 < i < k), whereE; contains all edges
(p, q) for whichp € P,. Intermediate result®y[p] and Ey[p] were represented together as a list
Li[p] = {(q1,d1,€1), (q2,dz, €2),...) whereDy[p](q.) = d, andE[p|(q.) = e,,forz=1,2,....
Only pages;. for which eitherd, > 0 or e, > 0 were included. The set of intermediate results
L;[*] was partitioned intd:? chunksL®?[«], so thatL >’ [p] contains tripleq., d., e.) of Ly[p]
for whichp € P, andg. € P;. In each of the algorithms for computing partial quantities, only a
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single cquanZ’j[*] was kept in memory at any one time, and part of the next-iteration results
L, 1[*] were computed by successively reading in individual blocks of the graph or intermediate
results as appropriate. Each iteration requires only one linear scan of the intermediate results and
web graph, except for repeated squaring, which does not use the web graph explicitly.

6.1 Computing Partial Vectors

For comparison, we computed both (full) hub vectors and partial vectors for various sizgs of
using the selective expansion algorithm with(p) = V (full hub vectors) and)x(p) = V —

H (partial vectors). As discussed in Sectib.2 we found the partial vectors approach to be
much more effective whe®d contains high-PageRank pages rather than random pages. In our
experimentsd ranged from the top000 to top 100, 000 pages with the highest PageRank. The
constant: was set td).15.

To evaluate the performance and scalability of our strategy independently of implementation
and platform, we focus on the size of the results rather than computation time, which is linear in the
size of the results. Because of the number of trials we had to perform and limitations on resources,
we computed results only up to 6 iterations, féf| up to 100,000. Figure2 plots the average
size of (full) hub vectors and partial vectors (recall that size is the number of nonzero entries),
as computed after 6 iterations of the selective expansion algorithm, which for computing full hub
vectors is equivalent to the basic dynamic programming algorithm. Note that the x-axisflots
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in logarithmic scale.

Experiments were run using a 1.4 gigahertz CPU on a machine with 3.5 gigabytes of mem-
ory. For|H| = 50,000, the computation of full hub vectors took abdug seconds per vector,
and about).33 seconds for each partial vector. We were unable to compute full hub vectors for
|H| = 100,000 due to the time required, although the average vector size is expected not to vary
significantly with| H | for full hub vectors. In Figur@ we see that the reduction in size from using
our technique becomes more significant/sincreases, suggesting that our technique scales well
with |H]|.

6.2 Computing the Hubs Skeleton

We computed the hubs skeleton féf| = 10, 000 by running the selective expansion algorithm for
6 iterations usingYx(p) = H, and then running the repeated squaring algorithm fiaterations
(Section5.3.2, whereQy(p) is chosen to be the top 50 entries under thertopeheme (Section
5.2.2. The average size of the hubs skeletodil entries. Each iteration of the repeated squaring
algorithm took about an hour, a cost that depends onlyfjrand is constant with respect to the
precision to which the partial vectors are computed.

6.3 Constructing Hub Vectors from Partial Vectors

Next we measured the construction of (full) hub vectors from partial vectors and the hubs skeleton.
Note that in practice we may construct PPV’s directly from partial vectors, as discussed in Section
5.4. However, performance of the construction would depend heavily on the user’s preference
vector. We consider hub vector computation because it better measures the performance benefits
of our partial vectors approach.

As suggested in Sectioh3, the precision of the hub vectors constructed from partial vectors
can be varied at query time according to application and performance demands. That is, instead
of using the entire set,(H) in the construction of-,, we can use only the highest entries, for
m < |H|. Figure3 plots the average size and time required to construct a full hub vector from
partial vectors in memory versus, for |H| = 10,000. Results are averaged ovgr randomly-
chosen hub vectors. Note that the x-axis is in logarithmic scale.

Recall from Sectio®.1that the partial vectors from which the hubs vector is constructed were
computed using 6 iterations, limiting the precision. Thus, the error values in R3ganeeroughly
16% (ranging from0.166 for m = 100 to 0.163 for m = 10, 000). Nonetheless, this error is much
smaller than that of the iteratigh{full hub vectors computed in Sectidghl, which have error
(1 — ¢)® = 38%. Note, however, that the size of a vector is a better indicator of precision than the
magnitude, since we are usually most interested in the number of pages with nonzero entries in the
distribution vector. An iteration-6 full hub vector (from Sectiéri) for pagep contains nonzero
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entries for pages at most 6 links away frend3, 993 pages on average. In contrast, from Figure
3 we see that a hub vector containing 14 million nonzero entries can be constructed from partial
vectors in 6 seconds.

7 Related Work

The use of personalized PageRank to enable personalized web search was first proddded in [
where it was suggested as a modification of the global PageRank algorithm, which computes a
universal notion of importance. The computation of (personalized) PageRank scores was not ad-
dressed beyond the naive algorithm.

In [5], personalized PageRank scores were used to enable “topic-sensitive” web search. Specif-
ically, precomputed hub vectors corresponding to broad categor@san Directorywere used to
bias importance scores, where the vectors and weights were selected according to the text query.
Experiments in $] concluded that the use of personalized PageRank scores can improve web
search, but the number of hub vectors used was limited to 16 due to the computational require-
ments, which were not addressed in that work. Scaling the number of hub pages beyond 16 for
finer-grained personalization is a direct application of our work.

Another technique for computing web-page importahtld,S was presented ir8]. In HITS,
an iterative computation similar in spirit to PageRank is applied at query time on a subgraph con-
sisting of pages matching a text query and those “nearby”. Personalizing based on user-specified
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web pages (and their linkage structure in the web graph) is not addressed by HITS. Moreover, the
number of pages in the subgraphs used by HITS (order of thousands) is much smaller than that we
consider in this paper (order of millions), and the computation from scratch at query time makes
the HITS approach difficult to scale.

Another algorithm that uses query-dependent importance scores to improve upon a global ver-
sion of importance was presented Ii]. Like HITS, it first restricts the computation to a subgraph
derived from text matching. (Personalizing based on user-specified web pages is not addressed.)
Unlike HITS, [11] suggested that importance scores be precomputed offline for every possible text
qguery, but the enormous number of possibilities makes this approach difficult to scale.

The concept of using “hub nodes” in a graph to enable partial computation of solutions to the
shortest-path problem was used 8} [n the context of database search. That work deals with
searches within databases, and on a scale far smaller than that of the web.

Some system aspects of (global) PageRank computation were addresdgd Tiné¢ disk-
based data-partitioning strategy used in the implementation of our algorithm is adopted from that
presented therein.

Finally, the concept of inverse P-distance used in this paper is based on the concept of expected-
f distance introduced irv], where it was presented as an intuitive model for a similarity measure
in graph structures.

8 Summary

We have addressed the problem of scaling personalized web search:

e We started by identifying a linear relationship that allows personalized PageRank vectors to
be expressed as a linear combinatiorbasis vectors Personalized vectors corresponding
to arbitrary preference sets drawn frorhib setH can be constructed quickly from the set
of precomputed basisub vectorsone for each hub € H.

e We laid the mathematical foundations for constructing hub vectors efficiently by relating
personalized PageRank scoregicerse P-distancesn intuitive notion of distance in arbi-
trary directed graphs. We used this notion of distance to identify interrelationships among
basis vectors.

e We presented a method of encoding hub vectorpaaal vectorsand thehubs skeleton
Redundancy is minimized under this representation: each partial vector for a hulp page
represents the part pfs hub vector unique to itself, while the skeleton specifies how patrtial
vectors are assembled into full vectors.
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e We presented algorithms for computing basis vectors, and showed how they can be modified
to compute partial vectors and the hubs skeleton efficiently.

e We ran experiments on real web data showing the effectiveness of our approach. Results
showed that our strategy results in significant resource reduction over full vectors, and scales
well with | H|, the degree of personalization.
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APPENDIX

A Proof: Linearity Theorem

Theorem (Linearity). For any preference vectous, andus, if v; andwv, are the two correspond-
ing PPV'’s, then for any constants, a, > 0 such thain; + a, = 1,

101 + aovs = (1 — ) A(av1 + apva) + c(ajug + asus)
Proof:
a1v1 + agvs = a1((1 — ¢)Avy + cuy) + as((1 — ¢) Avg + cus)
= (1l —c)Avy + ajcug + as(1 — ¢) Avs + ascus

= (1 — c)A(ozl'vl + 042’02) + c(a1u1 + aguz) OJ

B Proof: Decomposition Theorem

Theorem (Decomposition).For anyp € V,

(1 _ C) |O(p)‘
Ty = — T0o;(p) T CT
D |O(p)| ZZI (p) D

Proof: First we rewrite equationlj in an equivalent form. For a given preference veaipwe
define thederived matrixA,, as
A,=(1-c)A+cU (21)
whereU is then x n matrix with U;; = w; for all 4, j. If we require thajv| = 1, we can write
equation ) as
v=A,v

Without loss of generality, let the out-neighborspdde, . .., k. Let A, be the derived matrix

corresponding ta,,, and letA,, ..., A, be the derived matrices far = x4, . . ., x, respectively.
LetU, andU,, ..., Uy be the corresponding’’s in equation 21).
Let

k

Clearly, |v,| = 1. We need to show thad,v,, = v,, in which casev, = r,, since PPV’s are
unique (Sectioi). First we have that:

k
1
Apvp, = Ap( kCZri+cmp)
i=1

k
1—c
= 2 Z Apr; + cApxy
i=1

(-0
vy, = Zri+cwp
i=1
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Using the identity
A,=A;—cU; +cU,

we have:

k
1 —
Ap’Up = ¢ Z (Az - CU,’ + CUP)’I‘i + CAPCEP

=l

=1

1—c b 1—c b 1—c¢ F

= Z A;r; — ? CZ U;r; + k: CZ Upr; + cApz,
i=1 i=1 i=1

k k k
1—c¢ 1—c 1—c
= Eri— 2 cE x; + ? cg Tp + CApTy
i=1 i=1 i=1

k k
1— 1-—
= CZri— Cchi—l— (1 —c)cxp+c((1 —c)A+ cUp)x,
=1 =1
k

k

k

1—

= Z r; — —CCZmz + (1 = ¢)exp + (1 — ¢)cAz, + Cxp
i=1

k

k z
1—
= CZrﬁ— (1= c)exp + Ay + (1 — ) (Awp— E2m1>
i=1 =

1—c¢

k

k
Z r; + (1 — ¢)cxp + Pz
i=1

k
1 —
= A CZri+cwp
i=1

= vp O]

C Inverse P-distance

C.1 Relation to Personalized PageRank

The relationship between inverse P-distances and personalized PageRank scores is given by the
following theorem.

Theorem. Forall p,q € V,
(@) = 1,(q)
Proof: Writing the Decomposition Theorem in scalar form for page/e get a set of equations,
one for eachly € V, of the form
0()| _
(1—c¢) ; r0:(p)(4) (if p # q)
rp(9) = 00 |
(1-0) ; ro,p(a) +c  (if p=yq)
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Let us now fixq, and consider the set afequations, one for eaghe V, in the above form. By a
proof very similar to that given in7], it can be shown these equations have a unique solution, so
we need only show thaf (¢) satisfies these equations as well.

Clearly, if there is no path from to ¢, thenr,(q) = r,(¢) = 0, S0 suppose can be reached
from p. Consider the tours starting atp and ending at; in which the first step is to the out-
neighborO. (p). If p # ¢, there is a one-to-one correspondence betweentsat tours’ from
O.(p) to ¢: for eacht’ we may derive a correspondindy appending the edge, O.(p)) at the
beginning. Letl" be the bijection that takes eatho the corresponding If the length oft’ isl,
then the length of = 7'(¢') is [ 4+ 1. Moreover, the probability of travelingis P[t| = Plt].

We can now split the sum irb] according to the first step of the touto write

\O( )|

lO(p)|

i) = Y. Y PIT())e(l - )T

=1 1: 0:(p)~q
0(p)]

1 —c
= ol >y P[t’] (1—¢)'®
z=1 t": O,(p)~
IO )|

If p = ¢, then the same correspondence holds except that there is an exttdrtoarmp to g = p
which does not correspond to any talstarting from arO. (p): the zero length touf = (p). The
length of this tour i®), and in this casé[t]c(1 — ¢)') = c. Thus

whenp = g. ]

C.2 Loop Factor

The use of inverse P-distances yields further insight into the fairness of PageRank scoring. Since
the global PageRank for a pageés just the uniform sunz;‘:1 r,(q)/n, we see that the PageRank

of a pagey is the average, over all paggsof the inverse P-distance fromto ¢. The intuition

is that high-PageRank pages are on average “close” to other pages under this distance measure.
However, note that the summation &) {s taken over tours that may toughmultiple times. The

effect is that a pagecan influence its own PageRank (by a factor less thiapsimply by changing

its out-links. In particular, if a page with PageRanlPR(q) links to every page for which there

is a path tog (as are logically created for pages without out-links3n10)), then its PageRank

would be a factor: + (1 — ¢)PR(q) less than if it had linked to itself and no other page. This “loop
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factor” can be quantified as(¢): under the definition that toursfrom p to ¢ may touchg only
once,r,(q) can be written as

rp(@) = r4(g) Y PI(1 =)'
tip~>q
where the summation is independengsfout-links. This is the expectefldistance 7] from p to
g, for f(z) = (1 — ¢)*. Thus eliminating the loop factor (dividing by,(¢) to get the expected-
distance) may result in a fairer scoring.

D Proof: Hubs Theorem

Theorem (Hubs). Foranyp e V, H C V,

a) frf = %hél(rp(h) — czp(h)) (rh —ril — ca:h)

b) rf = % 3 (rp(h) — rf(h) — cxp(h)) (rp, — cxp)

heH

Proof of (a): The idea is to separate tourgoing through/ into two parts, everything up to the
last occurrence of a padee H, and the rest. Lef(¢), for tourst : p ~~ H ~~ ¢, denote the
beginning oft to the last occurrence of a pagec H whicht passes through, st{t) = (p,..., h).
Lety(t) be the rest, sq(t) = (h,...,q). Letm(t) = P[t]c(1 — ¢)'®) for short. Lets(t) be the set
of pages that passes through, so thgf (¢) can be written as

ril@)= Y Plte(1—¢)'"
t:p~>q
s(t)NH#D

Let us first partition the summation iB)(according ta3(t):

o= Y Y Pll-o )

t1 |t1 :ﬁ(t) t:p~~>H~>q
tip~H~sq B(t)=t1

For each, 3(t) is itself a tourt’ : p ~~ h; conversely, eacH : p ~ his af(t) for somet, with the
exception of the zero-length totir= (p) in the special case whepec H. Thus we can group the
tourst by h and3(t) ending ath to rewrite 2) as:

@= > > Pll-o®

h€H t1:p~h t:p~H~+q
I(t1)>0 B(t)=t1
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But P[1] = P(t)]Ply(1)], andi(t) = 1(5(1)) +1(+(1)), S0
@=3 > Y PBOIPH@)1 - o0

h€H ty:p~sh t:p~~H~~q
I(t1)>0 B(t)=t1

1Y Y ) X rt)

h€H ti:a~h t:p~~H~>q
1(12)>0 B(t)=t:

There is a canonical bijection, between tours : p ~~ H ~~» g with 3(t) = t; andtourg’ : h ~ ¢
which do not pass through (for which s(¢') N H = ()), with the exception of the zero-length tour
(g) wheng € H. Thatis,y, (t) = ~(t) = t', so we can write each tourast = v;,' (t'). Replacing
7(t) in the previous equation with(t) = ~(v;,'(¢)) = ¢’ and accounting for the possible zero-
length tour, we have

1
ril(q) = p Z Z m(t1) Z (') — zn(q) Z m(t)
h€eH ty:p~h t':h~sq t'=(q)
I(t1)>0 s(t")NH=0
—IY Y| X w) - o
c
heH ty:p~h t’:hwq
1(t1)>0 s(tNH=0

But the set of tours from & to ¢ which do not pass through is the set of tours from to ¢ minus
the set of tours fronk to ¢ which pass througli/. Thus,

0= 1T X ) (3 w)- 3wl enio)

heH ty:p~h t':h~>q t':h~~H~~q
I(t1)>0

- %Z > w(ta) (rale) = ri(q) — cxal(q))

h€eH ty:p~h
1(t1)>0

Finally,
> w(t) =rp(h) = cay(h)

t1:p~h
l(t1)>0

wherecz,(h) accounts for the possible totir= (p) whenp = h, for which P[t;]c(1 — ¢)'®) = ¢,
and we have

1(a) = = 37 (1) ey (1) (ra) — (@) — eanl0)

heH
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This equation written in vector form is the Hubs Theorem (a). O

Proof of (b): The idea is to separate tourgoing through# differently: everything up to the first
(instead of last) occurrence of a pagec H, and the rest. Lef(¢), for tourst : p ~~ H ~» ¢,
denote the beginning of to the first occurrence of a pade € H which ¢ passes through, so
B(t) = (p,...,h). Lety(¢t) be therest, sq(t) = (h,...,q).

Let us first partition the summation iB)according toy(¢):

o= Y Y Plla-o )

to ‘t2 :"/(t) t:pwqu
tpsH g ()=t

For each, ~(t) is itself a tourt’ : h ~ ¢; conversely, eacti : h ~~ ¢ is a~y(t) for somet, with the
exception of the zero-length totir= (¢) in the special case whegec H. Thus we can group the
tourst by h and~(¢) beginning at: to rewrite @3) as:

@= > > Pl-o®

h€H to:h~q t:p~~H~>q
I(t2)>0 ~(t)=t2

But P[t] = P[5(1)|Ply(t)], andi(t) = I(5(1)) + I(~(t)), SO

@ =33 Y PBOIPHE)](1 =)W

h€H to:h~>q t:p~~H~~q
1(t2)>0 ~(t)=t2

D DRI SR

h€EH ta:h~>q t:p~>H~~q
I(t2)>0 y(t)=t2

There is a canonical bijectiof;,, between tours : p ~~ H ~~ ¢ with v(¢) = t, and tours
t' : a ~ h which do not pass througH (for which s(¢) N H = (), with the exception of the
zero-length tourp) whenp € H. Thatis,(,,(t) = ((t) = ¢/, so we can write each todras

t = 3, (t'). Replacings(t) in the previous equation with(t) = 3(3;,'(t')) = ¢’ and accounting
for the possible zero-length tour, we have

1
' (q) = ;Z Yowlta) | D w) —wp(h) Y w()
h€H ta:h~q t/:ph t'=(p)
1(t2)>0 s(t" Y NH=0
_ lz Soalte) | Y wlt) —ap(h)e
c P
hE€H ta:h~>q t':p~~h
1(t2)>0 s(t ) NH=0
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But the set of tourg from p to h which do not pass through is the set of tours fromp to ~ minus
the set of tours fronp to 4 which pass througl/. Thus,

IOEED DI SRS ( POEOEEDS w(t')—cxpw))

heH ta:h~q t':p~~h t':p~~>H~~h
1(t2)>0
1
= =37 3 () (ryh) = 1) (k) — ey ()
h€H to:h~>q
1(t2)>0

Finally,
> wlts) = rulq) — cxalq)

to:h~>q
l(t2)>0

wherecz,(¢) accounts for the possible toty = (q) wheng = h, for which P[ty]c(1 — ¢)!*2) = ¢,
and we have

() = L3 (rh) = r(h) — ey (1)) (rala) — can(a)

heH

This equation written in vector form is the Hubs Theorem (b). O

E Proof: Basic Dynamic Programming Algorithm

To prove correctness of the basic dynamic programming algorithm, we need to show that for all
k>0andp € V, Dg[p] +3_ oy Ex1[pl(q)Tq = Tp, and that the sequengdy [p] } converges to

0 ask tends towards infinity, which implies th@®, [p] converges ta,. In particular,| Eg[p]| =

(1 — ¢)*. The proof is by induction o#. The case fok = 0 is obvious, so suppose the claim is
true fork, for somek > 0. First we show thaDy11[p] + > oy Eri1[pl(q)rq = 75!

Dialpl+ 3 Bunlbl@ra = g 3 DO +cap+ 3 50 > B0 @)
_, low)
= a1 (Dk oW+ Ek[oz<p>]<q>rq>
L, low) q
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where the last step is justified by the Decomposition Theorem. Now we showHRat [p]| =
(1 — )kt

O
Bualpll = |5 > B
1 _, low)
= Z |Ek z(p)
1 . oo
O(p)| Z (1-9"
|10pr| 0|1 - o)t
(1 . C)k+1 n

F Proof: Selective Expansion Algorithm

As in the proof of the basic dynamic programming algorithm, we first show at, [p] +
> gev Erilpl(q)rq = 7 for an arbitraryQy.(p) C V-

Dy11[p] + Z Ey1[p)(@)rq

= (Dk[P]+ > CEk[p](Q)fL’q)
q€Qr(p)
\O(q
+> (Ek[p] - > Epl(g)m, Z ‘ Z woi(q))(ff)rq'
qeV 9€Qx(p)
= (Dk[p] + ) Ek[F](Q’)’“q’) + ) cEpl(g)m,
qev q7€Qr(p)
IO(q)I
=Y. D Edl@z(d)re + ) E[p)(@)70,0)(d )7y
q'€V qeQxr(p) '€V qeQx(p) i=1

By the inductive hypothesis,
Di[p] + D Eilpl(d)rg =7
q eV
so we need only show that the latter terms cancel. Sipeg) = 1 if ¢ = ¢’ and0 otherwise, and
similarly for zo,(4)(¢'), we have

> > Eilp = 3 Ebl@)r,

q'€V qeQy(p) q€Qr(p)
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and

|O(q |O(q

> Y o Z Z Z 9o,

7'€V q€Qyx(p) =1 a€Qx( =1
By the Decomposition Theorem,

|O(Q)|
cEy[p)(q Z Ex[pl(9)ro;q) = Exlpl()Ts

for all ¢ € Qx(p), which shows that the terms indeed cancel.

Since| Dy [p]| increases by > . ) £x[p](¢) each iteration, the error decreases by
¢ qconp Erlpl(q) each iteration. Thus any choice @f.(p) containing a maximal paggsuch
that £y [p](¢) = max{Ex[p|(q) | ¢ € V' } ensures that the error tends towagdsn particular, such
is the case if)x(p) = V or Qx(p) is the topm > 0 pages; with the highest= [p](q). ]

G Proof: Repeated Squaring Algorithm

To verify the correctness of the repeated squaring algorithm, we show that

Dalpl+ Y Exlpl(q)rg =rq

9€Qk(p)
for an arbitraryQ(p) C V:
Dak[p] + ) Ex[pl(g)7q
= Dilpl + > Exlpl(q)Dilql+
9€Qx(p)
> (Ek[p](d) - Y Epl(@zgd) + Y Ek[p](Q)Ek[Q](Q')) Tq
qEV q€Qk(p) 9€Qx(p)
= Dilpl+ > Elpl(d)rg + Y Eilp (Dk[(I] g )rg + Ek[Q](q/>Tq’>
qev q€Qk(p) eV qev
=Tp T Z Exlp [(Dk[Q] + Z Ek[Q](q/)Tq’> - Tq]
9€Qxk(p) qev
=7p+ Z
9€Qx(p)

:’,‘p

31



As in the proof of the selective expansion algorithm, the error tends towardg,Q;if contains the
topm > 0 pages; with the highesty[p|(q). If Qx(p) = V, the error is squared on each iteration,
for if | Ex[*]| = ¢, using equationi8 we have:

|Eaxlp]| = ZEk q)Ex|q]

qev

— 3 Elpl(0)| Buld]l

qeV

= Y Eupl(9)e

qeV

= ¢|Ex[p]|

g 62

Clearly, for all but the first two iterations, repeated squaring reduces error much faster than the
decay factor ofl — ¢ (for both the basic dynamic programming and selective expansion algorithms)
whenQi(p) = V. O]

H Proof: Computation of Partial Vectors

We first show that the following hold for all > 1 andp,q € V:

Y Plte(l - o) (24)
L:p~~q
l(t)y<k

s'(t)NH=0

(Y PH(1-o®  (fq¢H)
o,

s(t)NH=0

E = 25
1<k

\ s(H)NH=0

wheres(t) is the set of pages appearingoother than at the endpoints (i.e., pages whiphsses
through), ands’(¢) is the set of pages appearing tother than at the beginning. Consider the
case fork = 1 (recall that all pages are expanded on iteratipnThe only tours in 24) are the
zero-length tours = (p) whenp = ¢ (which pass through no hubs), for whiéht]c(1 — ¢)!® =
¢ = Di[pl(q). The only tours in25) aret = (p,q) whengq is an out-neighbor of, for which
Plt)(1 - C)l(t) = |O( )‘ = Ex[pl(q).

Now suppose for induction that equatio@4)and @5) hold for somet > 1. By equation {4)
with Qx(p) = V — H, the difference betweeb, [p](¢) andD[p|(q), forq ¢ H,is Dy, 1[p](q) —
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Dylpl(q) = cEr[p|(q). By the inductive hypothesis, this difference can be written as

cEilpl(q) = )Y Pltle(l—¢)'®

t:p~~q
I(t)=k
s(t)NH=0

Sinceq ¢ H, the restrictiors(t) N H = () is equivalent tos'(t) N H = (), so that

Dysa[pl(q) = Dilpl(q) + cEr[pl(q)
= 3 Pl -0+ 3 Plile(l — )

tip~q t:p~q
L)<k 1(t)=k
s'(t)NH=0 s (H)NH=0

= Z Plt]e(1 — ¢)'®

t:p~>q
I(t)<k+1
s’ () NH=0

If ¢ € H,

Dilpl(e) = Dilpl(9) = > Plie(t =)@ = " Pltle(1 - )@
t:p~~q t:p~>q
l(t)<k l(t)<k+1
s (HNH=0 s/ (H)NH=0

since there is no tour: p ~ ¢ with (t) > 0 for which s'(t) N H = 0.
Next we show that

Ejpl(q) = Z P[t](1 =)™

t:p~q
1(t)=k+1
s(t)NH=0

for ¢ ¢ H. By equation 15) with Qx(p) =V — H, we have
1—-c ,
Erialpl(q) = Z mEk p](¢) (26)
gewv-mnig) "~

since only the expansion of the in-neighbors;afan contribute td;. 1 [p](¢), and of these, only
the ones not irff are expanded. Expanditig.[p](¢’) using the inductive hypothesi2®) becomes

Bl = Y, e 3 P10

O /
vew g 100!

t':p~>g’
() =k
s'(tNH=0

where we have replacedt’) in the summation withy'(¢'), sinceq’ ¢ H. We want to show that
this is equal to

> P -e)® (27)
t:p~>q

I(t)y=k+1

s(tyNH=0
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Consider the set of tours: p ~» ¢, with I(t) = k + 1 ands(t) N H = (), for which the last
step is fromy’ € (V — H) N I(q) to q. There is a one-to-one correspondence betweentsaict
tourst’ : p ~ ¢ of lengthk with s'(t) N H = (): for eacht’ we may derive a correspondindy
appending the edgg’, ¢) at the end. Lef be the bijection that takes eatho the corresponding
t. If the length oft’ is [, then the length of = T'(#') isl + 1. Moreover, the probability of traveling

tis Plt] = |O(1q,)|P[t’]. Thus we can split the summation 27 according ta;’ to rewrite it as
Y. PlA-oW= >~ Y. P = ey
t:p~q de(V-—H)NI(q) t:p~q
1(t)=k+1 It =k
s(t)YNH=0 s'(t"NH=0
(28)

_ l—c 11 — o))
2 ol 2 T

q'e(V-H)NI(q)

which is what we wanted to show.
Now we show that

Ey1[p)(q) = Z P[t](1 o)™

t:p~>q
1<i(t)<k+1
s(t)NH=0

for ¢ € H. By equation 15) with Qr(p) =V — H,

Benll@) = Bpl@+ Y ﬁm}(q')
¢'e(V-H)NI(q)

Equation 28) still applies, and we have

Ewalpl(q) = Ex[pl(@) + D Pl(1—c)'®

t:p~>q
1(t)=k+1
s(t)NH=0
= Y PHI-0W+ > P10
t:p~q t:p~>g
1<I(t)<k I(t)=k+1
s(t)NH=0 s(t)NH=0
= >  Pia-o®
t:p~g
1<I(t)<k+1
s(t)yNH=0

which completes the proof of equatior&l and @5).
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Finally, we show that for alf € V', Dy [p](¢q)+cEx[p](q) converges te,(q) —r} (¢) ask — co.
If ¢ ¢ H, thenEy[p|(q) — 0 ask — oo, and

Dilpl(q) + cExlpl(q) = Dilpl(q) + > Pltle(1 =)' — ry(q) — i/ ()

t:p~q
I(t)<k
s () NH=0

sinces'(t) N H = s(t) N Hwheng ¢ H. If ¢ € H, then

Dilp)(@) + cEBilpl(@) = > Plle(l—o)@+ 3 Plte(1 — o)'®
t:p~>q t:p~>q
L)<k 1<I(t)<k
s'(H)NH=0 s(NH=0

Wheng € H, s'(t) N H # ) unlesyp = g andt = (p). Thus,

Dilp)(q) + cEulpl(q) = cxp(@) + Y Plt]e(1 —c)'®

t:p~>q
1<i(t)<k
s(HNH=0

= ) Pltle(1— o)

t:p~q
0<I(t)<k
s(t)NH=0

which converges to,(q) — ;' (q) ask — oc. O

| Proof: Computation of the Hubs Skeleton

Let (D;[p], E;[p]) denote the results afteiterations of repeated squaring, so that the intermediate
results left by selective expansion correspond+o0.

The error initially associated with hub pag®s,, ;; Eo[p](h), is bounded byt — ¢ because the
first step of selective expansion expands all pages (Sestibg. By equation 17) with Q;(p) =
H, the error assoc:|ated with hub pages on iteration1 of repeated squaring,_ . ; £i[pl(q), is
bounded by 1—c)*. Moreover, the error associated with non-hub pades,, £i[pl(q), increases
by at most(1 — ¢)* >_q¢n Ei-1[p](q) compared to the previous iteration. Using a geometric series
to boundy_ . ,; Eilpl(g), the total errof E;[p]| of iterationi is bounded by(1 — ¢)* +e¢/c. [
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