
Scaling Personalized Web Search

Glen Jeh
glenj@db.stanford.edu

Jennifer Widom
widom@db.stanford.edu

Abstract

Recent web search techniques augment traditional text matching with a global notion of

“importance” based on the linkage structure of the web, such as in Google’sPageRankalgo-

rithm. For more refined searches, this global notion of importance can be specialized to create

personalized views of importance—for example, importance scores can be biased according

to a user-specified set of initially-interesting pages. Computing and storing all possible per-

sonalized views in advance is impractical, as is computing personalized views at query time,

since the computation of each view requires an iterative computation over the web graph. We

present new graph-theoretical results, and a new technique based on these results, that encode

personalized views aspartial vectors. Partial vectors are shared across multiple personalized

views, and their computation and storage costs scale well with the number of views. Our ap-

proach enables incremental computation, so that the construction of personalized views from

partial vectors is practical at query time. We present efficient dynamic programming algo-

rithms for computing partial vectors, an algorithm for constructing personalized views from

partial vectors, and experimental results demonstrating the effectiveness and scalability of our

techniques.

1 Introduction and Motivation

General web search is performed predominantly through text queries to search engines. Because of

the enormous size of the web, text alone is usually not selective enough to limit the number of query

results to a manageable size. ThePageRankalgorithm [10], among others [8], has been proposed

(and implemented inGoogle[1]) to exploit the linkage structure of the web to compute global

“importance” scores that can be used to influence the ranking of search results. To encompass

different notions of importance for different users and queries, the basic PageRank algorithm can

be modified to create “personalized views” of the web, redefining importance according to user

preference. For example, a user may wish to specify his bookmarks as a set of preferred pages, so

that any query results that are important with respect to his bookmarked pages would be ranked

higher. While experimentation with the use of personalized PageRank has shown its utility and

This work was supported by the National Science Foundation under grant IIS-9817799.

1

promise [5, 10], the size of the web makes its practical realization extremely difficult. To see why,

let us review the intuition behind the PageRank algorithm and its extension for personalization.

The fundamental motivation underlying PageRank is the recursive notion that important pages

are those linked-to by many important pages. A page with only two in-links, for example, may

seem unlikely to be an important page, but it may be important if the two referencing pages are

Yahoo!andNetscape, which themselves are important pages because they have numerous in-links.

One way to formalize this recursive notion is to use the “random surfer” model introduced in [10].

Imagine that trillions ofrandom surfersare browsing the web: if at a certain time step a surfer is

looking at pagep, at the next time step he looks at a random out-neighbor ofp. As time goes on,

the expected percentage of surfers at each pagep converges (under certain conditions) to a limit

r(p) that is independent of the distribution of starting points. Intuitively, this limit is the PageRank

of p, and is taken to be an importance score forp, since it reflects the number of people expected

to be looking atp at any one time.

The PageRank scorer(p) reflects a “democratic” importance that has no preference for any

particular pages. In reality, a user may have a setP of preferred pages (such as his bookmarks)

which he considers more interesting. We can account for preferred pages in the random surfer

model by introducing a “teleportation” probabilityc: at each step, a surfer jumps back to a random

page inP with probability c, and with probability1 − c continues forth along a hyperlink. The

limit distribution of surfers in this model would favor pages inP , pages linked-to byP , pages

linked-to in turn, etc. We represent this distribution as apersonalized PageRank vector(PPV)

personalized on the setP . Informally, a PPV is a personalized view of the importance of pages on

the web. Rankings of a user’s text-based query results can be biased according to a PPV instead of

the global importance distribution.

Each PPV is of lengthn, wheren is the number of pages on the web. Computing a PPV

naively using a fixed-point iteration requires multiple scans of the web graph [10], which makes

it impossible to carry out online in response to a user query. On the other hand, PPV’s for all

preference sets, of which there are2n, is far too large to compute and store offline. We present

a method for encoding PPV’s as partially-computed, shared vectors that are practical to compute

and store offline, and from which PPV’s can be computed quickly at query time.

In our approach we restrict preference setsP to subsets of a set ofhub pagesH, selected as

those of greater interest for personalization. In practice, we expectH to be a set of pages with

high PageRank (“important pages”), pages in a human-constructed directory such asYahoo! or

Open Directory[2], or pages important to a particular enterprise or application. The size ofH

can be thought of as the available degree of personalization. We present algorithms that, unlike

previous work [5, 10], scale well with the size ofH. Moreover, the same techniques we introduce

can yield approximations on the much broader set of all PPV’s, allowing at least some level of

personalization on arbitrary preference sets.

2

The main contributions of this paper are as follows.

• A method, based on new graph-theoretical results (listed next), of encoding PPV’s aspartial

quantities, enabling an efficient, scalable computation that can be divided between precom-

putation time and query time, in a customized fashion according to available resources and

application requirements.

• Three main theorems: TheLinearity Theoremallows every PPV to be represented as a linear

combination ofbasis vectors, yielding a natural way to construct PPV’s from shared compo-

nents. TheHubs Theoremallows basis vectors to be encoded aspartial vectorsand ahubs

skeleton, enabling basis vectors themselves to be constructed from common components.

TheDecomposition Theoremestablishes a linear relationship among basis vectors, which is

exploited to minimize redundant computation.

• Several algorithms for computing basis vectors, specializations of these algorithms for com-

puting partial vectors and the hubs skeleton, and an algorithm for constructing PPV’s from

partial vectors using the hubs skeleton.

• Experimental results on real web data demonstrating the effectiveness and scalability of our

techniques.

In Section2 we introduce the notation used in this paper and formalize personalized PageRank

mathematically. Section3 presents basis vectors, the first step towards encoding PPV’s as shared

components. The full encoding is presented in Section4. Section5 discusses the computation of

partial quantities. Experimental results are presented in Section6. Related work is discussed in

Section7. Section8 summarizes the contributions of this paper. Additional material, primarily

proofs of theorems, appears in a set of appendices.

2 Preliminaries

LetG = (V, E) denote theweb graph, whereV is the set of all web pages andE contains a directed

edge〈p, q〉 iff page p links to pageq. For a pagep, we denote byI(p) andO(p) the set of in-

neighbors and out-neighbors ofp, respectively. Individual in-neighbors are denoted asIi(p) (1 ≤
i ≤ |I(p)|), and individual out-neighbors are denoted analogously. For convenience, pages are

numbered from1 to n, and we refer to a pagep and its associated numberi interchangeably. For a

vectorv, v(p) denotesentryp, thep-th component ofv. We always typeset vectors in boldface and

scalars (e.g.,v(p)) in normal font. All vectors in this paper aren-dimensional and have nonnegative

entries. They should be thought of as distributions rather than arrows. Themagnitudeof a vectorv

is defined to be
∑n

i=1 v(i) and is written|v|. In this paper, vector magnitudes are always in[0, 1].

3

In an implementation, a vector may be represented as a list of its nonzero entries, so another useful

measure is thesizeof v, the number of nonzero entries inv.

We generalize the preference setP discussed in Section1 to a preference vectoru, where

|u| = 1 andu(p) denotes the amount of preference for pagep. For example, a user who wants to

personalize on his bookmarked pagesP uniformly would have au whereu(p) = 1
|P | if p ∈ P , and

u(p) = 0 if p /∈ P . We formalize personalized PageRank scoring using matrix-vector equations.

Let A be the matrix corresponding to the web graphG, whereAij = 1
|O(j)| if page j links to

pagei, andAij = 0 otherwise. For simplicity of presentation, we assume that every page has at

least one out-neighbor, as can be enforced by adding self-links to pages without out-links. The

resulting scores can be adjusted to account for the (minor) effects of this modification, as specified

in AppendixC.2.

For a givenu, the personalized PageRank equation can be written as

v = (1− c)Av + cu (1)

wherec ∈ (0, 1) is the “teleportation” constant discussed in Section1. Typically c ≈ 0.15, and

experiments have shown that small changes inc have little effect in practice [10]. A solutionv to

equation (1) is a steady-state distribution of random surfers under the model discussed in Section

1, where at each step a surfer teleports to pagep with probabilityc·u(p), or moves to a random out-

neighbor otherwise [10]. By a theorem of Markov Theory, a solutionv with |v| = 1 always exists

and is unique [9].1 The solutionv is thepersonalized PageRank vector(PPV) for preference vector

u. If u is the uniform distribution vectoru = [1/n, . . . , 1/n], then the corresponding solutionv is

theglobal PageRank vector[10], which gives no preference to any pages.

For the reader’s convenience, Table 1 on the next page lists terminology that will be used

extensively in the coming sections.

3 Basis Vectors

We present the first step towards encoding PPV’s as shared components. The motivation behind

the encoding is a simple observation about the linearity2 of PPV’s, formalized by the following

theorem.

Theorem (Linearity). For any preference vectorsu1 andu2, if v1 andv2 are the two correspond-

ing PPV’s, then for any constantsα1, α2 ≥ 0 such thatα1 + α2 = 1,

α1v1 + α2v2 = (1− c)A(α1v1 + α2v2) + c(α1u1 + α2u2) (2)

1Specifically,v corresponds to the steady-state distribution of anergodic, aperiodic Markov chain.
2More precisely, the transformation from personalization vectorsu to their corresponding solution vectorsv is

linear.

4

Term Description Section

Hub SetH A subset of web pages. 1

Preference SetP Set of pages on which to personalize 1

(restricted in this paper to subsets ofH).

Preference Vectoru Preference set with weights. 2

Personalized PageRank VectorImportance distribution induced by a preference vector. 2

(PPV)

Basis Vectorrp (or ri) PPV for a preference vector with a single nonzero entry 3

atp (or i).

Hub Vectorrp Basis vector for a hub pagep ∈ H. 3

Partial Vector(rp − rH
p) Used with the hubs skeleton to construct a hub vector. 4.2

Hubs SkeletonS Used with partial vectors to construct a hub vector. 4.3

Web Skeleton Extension of the hubs skeleton to include pages not inH. 4.4.3

Partial Quantities Partial vectors and the hubs, web skeletons.

Intermediate Results Maintained during iterative computations. 5.2

Table 1: Summary of terms.

Informally, the Linearity Theorem says that the solution to a linear combination of preference

vectorsu1 andu2 is the same linear combination of the corresponding PPV’sv1 andv2. The

proof is in AppendixA.

Let x1, . . . ,xn be the unit vectors in each dimension, so that for eachi, xi has value1 at entry

i and0 everywhere else. Letri be the PPV corresponding toxi. Eachbasis vectorri gives the

distribution of random surfers under the model that at each step, surfers teleport back to pagei

with probability c. It can be thought of as representing pagei’s view of the web, where entryj

of ri is j’s importance ini’s view. Note that the global PageRank vector is1
n
(r1 + · · · + rn), the

average of every page’s view.

An arbitrary personalization vectoru can be written as a weighted sum of the unit vectorsxi:

u =
n∑

i=1

αixi (3)

for some constantsα1, . . . , αn. By the Linearity Theorem,

v =
n∑

i=1

αiri (4)

is the corresponding PPV, expressed as a linear combination of the basis vectorsri.

Recall from Section1 that preference sets (now preference vectors) are restricted to subsets

of a set of hub pagesH. If a basis hub vector(or hereafterhub vector) for eachp ∈ H were

5

computed and stored, then any PPV corresponding to a preference setP of sizek (a preference

vector withk nonzero entries) can be computed by adding up thek corresponding hub vectorsrp

with the appropriate weightsαp.

Each hub vector can be computed naively using the fixed-point computation in [10]. However,

each fixed-point computation is expensive, requiring multiple scans of the web graph, and the

computation time (as well as storage cost) grows linearly with the number of hub vectors|H|. In

the next section, we enable a more scalable computation by constructing hub vectors from shared

components.

4 Decomposition of Basis Vectors

In Section3 we represented PPV’s as a linear combination of|H| hub vectorsrp, one for each

p ∈ H. Any PPV based on hub pages can be constructed quickly from the set of precomputed

hub vectors, but computing and storing all hub vectors is impractical. To compute a large number

of hub vectors efficiently, we further decompose them intopartial vectorsand thehubs skeleton,

components from which hub vectors can be constructed quickly at query time. The representation

of hub vectors as partial vectors and the hubs skeleton saves both computation time and storage due

to sharing of components among hub vectors. Note, however, that depending on available resources

and application requirements, hub vectors can be constructed offline as well. Thus “query time”

can be thought of more generally as “construction time”.

We compute one partial vector for each hub pagep, which essentially encodes the part of the

hub vectorrp unique top, so that components shared among hub vectors are not computed and

stored redundantly. The complement to the partial vectors is the hubs skeleton, which succinctly

captures the interrelationships among hub vectors. It is the “blueprint” by which partial vectors are

assembled to form a hub vector, as we will see in Section4.3.

The mathematical tools used in the formalization of this decomposition are presented next.3

4.1 Inverse P-distance

To formalize the relationship among hub vectors, we relate the personalized PageRank scores

represented by PPV’s toinverse P-distancesin the web graph, a concept based onexpected-f

distancesas introduced in [7].

3Note that while the mathematics and computation strategies in this paper are presented in the specific context of

the web graph, they are general graph-theoretical results that may be applicable in other scenarios involving stochastic

processes, of which PageRank is one example.

6

Let p, q ∈ V . We define theinverse P-distancer′p(q) from p to q as

r′p(q) =
∑
t:p q

P [t]c(1− c)l(t) (5)

where the summation is taken over alltours t (paths that may contain cycles) starting atp and

ending atq, possibly touchingp or q multiple times. For a tourt = 〈w1, . . . , wk〉, the lengthl(t) is

k − 1, the number of edges int. The termP [t], which should be interpreted as “the probability of

travelingt”, is defined as
∏k−1

i=1
1

|O(wi)| , or1 if l(t) = 0. If there is no tour fromp to q, the summation

is taken to be0.4 Note thatr′p(q) measures distances inversely: it is higher for nodesq “closer” to

p. As suggested by the notation and proven in AppendixC, r′p(q) = rp(q) for all p, q ∈ V , so we

will use rp(q) to denote both the inverse P-distance and the personalized PageRank score. Thus

PageRank scores can be viewed as an inverse measure of distance.

Let H ⊆ V be some nonempty set of pages. Forp, q ∈ V , we definerH
p (q) as a restriction of

rp(q) that considers only tours which pass through some pageh ∈ H in equation (5). That is, a

pageh ∈ H must occur ont somewhere other than the endpoints. Precisely,rH
p (q) is written as

rH
p (q) =

∑
t:p H q

P [t]c(1− c)l(t) (6)

where the notationt : p H q reminds us thatt passes through some page inH. Note thatt

must be of length at least2. In this paper,H is always the set of hub pages, andp is usually a hub

page (until we discuss the web skeleton in Section4.4.3).

4.2 Partial Vectors

Intuitively, rH
p (q), defined in equation (6), is the influence ofp on q throughH. In particular, if

all paths fromp to q pass through a page inH, thenH separatesp andq, andrH
p (q) = rp(q). For

well-chosen setsH (discussed in Section4.4.2), it will be true thatrp(q) − rH
p (q) = 0 for many

pagesp, q. Our strategy is to take advantage of this property by breakingrp into two components:

(rp − rH
p) andrH

p , using the equation

rp = (rp − rH
p) + rH

p (7)

We first precompute and store thepartial vector(rp−rH
p) instead of the full hub vectorrp. Partial

vectors are cheaper to compute and store than full hub vectors, assuming they are represented as a

list of their nonzero entries. Moreover, the size of each partial vector decreases as|H| increases,

making this approach particularly scalable. We then addrH
p back at query time to compute the full

hub vector. However, computing and storingrH
p explicitly could be as expensive asrp itself. In

the next section we show how to encoderH
p so it can be computed and stored efficiently.

4The definition here of inverse P-distance differs slightly from the concept of expected-f distance in [7], where

tours are not allowed to visitq multiple times. Note that general expected-f distances have the form
∑

t P [t]f(l(t));
in our definition,f(x) = c(1− c)x.

7

4.3 Hubs Skeleton

Let us briefly review where we are: In Section3 we represented PPV’s as linear combinations

of hub vectorsrp, one for eachp ∈ H, so that we can construct PPV’s quickly at query time if

we have precomputed the hub vectors, a relatively small subset of PPV’s. To encode hub vectors

efficiently, in Section4.2 we said that instead of full hub vectorsrp, we first compute and store

only partial vectors(rp − rH
p), which intuitively account only for paths that do not pass through a

page ofH (i.e., the distribution is “blocked” byH). Computing and storing the difference vector

rH
p efficiently is the topic of this section.

It turns out that the vectorrH
p can be be expressed in terms of the partial vectors(rh − rH

h),

for h ∈ H, as shown by the following theorem. Recall from Section3 thatxh has value1 ath and

0 everywhere else.

Theorem (Hubs). For anyp ∈ V , H ⊆ V ,

rH
p =

1

c

∑
h∈H

(rp(h)− cxp(h))
(
rh − rH

h − cxh

)
(8)

In terms of inverse P-distances (Section4.1), the Hubs Theorem says roughly that the distance

from pagep to any pageq ∈ V throughH is the distancerp(h) from p to eachh ∈ H times the

distancerh(q) from h to q, correcting for the paths among hubs byrH
h (q). The termscxp(h) and

cxh deal with the special cases whenp or q is itself inH. The proof, which is quite involved, is in

AppendixD.

The quantity
(
rh − rH

h

)
appearing on the right-hand side of (8) is exactly the partial vectors

discussed in Section4.2. Suppose we have computedrp(H) = {(h, rp(h)) |h ∈ H} for a hub

pagep. Substituting the Hubs Theorem into equation7, we have the followingHubs Equationfor

constructing the hub vectorrp from partial vectors:

rp = (rp − rH
p) +

1

c

∑
h∈H

(rp(h)− cxp(h))
[(

rh − rH
h

)
− cxh

]
(9)

This equation is central to the construction of hub vectors from partial vectors.

The setrp(H) has size at most|H|, much smaller than the full hub vectorrp, which can have

up ton nonzero entries. Furthermore, the contribution of each entryrp(h) to the sum is no greater

thanrp(h) (and usually much smaller), so that small values ofrp(h) can be omitted with minimal

loss of precision (Section6). The setS = {rp(H) | p ∈ H} forms thehubs skeleton, giving the

interrelationships among partial vectors.

An intuitive view of the encoding and construction suggested by the Hubs Equation (9) is

shown in Figure1. At the top, each partial vector(rh − rH
h), including(rp − rH

p), is depicted as

a notched triangle labeledh at the tip. The triangle can be thought of as representing paths starting

ath, although, more accurately, it represents the distribution of importance scores computed based

8

h 1

2h

h 3

h 4

2h

h 1
h 3

h 4

h 5

h 5

Hub Vector

p

p

p

Hubs Skeleton

Partial Vectors

0.03

0.16

0.06

0.003

0.001

0.0002

+

=

Figure 1: Intuitive view of the construction of hub vectors from partial vectors and the hubs skele-

ton.

on the paths, as discussed in Section4.1. A notch in the triangle shows where the computation of

a partial vector “stopped” at another hub page. At the center, a partrp(H) of the hubs skeleton

is depicted as a tree so the “assembly” of the hub vector can be visualized. The hub vector is

constructed by logically assembling the partial vectors using the corresponding weights in the

hubs skeleton, as shown at the bottom.

4.4 Discussion

4.4.1 Summary

In summary, hub vectors are building blocks for PPV’s corresponding to preference vectors based

on hub pages. Partial vectors, together with the hubs skeleton, are building blocks for hub vectors.

Transitively, partial vectors and the hubs skeleton are building blocks for PPV’s: they can be used

to construct PPV’s without first materializing hub vectors as an intermediate step (Section5.4).

Note that for preference vectors based on multiple hub pages, constructing the corresponding PPV

from partial vectors directly can result in significant savings versus constructing from hub vectors,

since partial vectors are shared across multiple hub vectors.

9

4.4.2 Choice ofH

So far we have made no assumptions about the set of hub pagesH. Not surprisingly, the choice of

hub pages can have a significant impact on performance, depending on the location of hub pages

within the overall graph structure. In particular, the size of partial vectors is smaller when pages

in H have higher PageRank, since high-PageRank pages are on average close to other pages in

terms of inverse P-distance (Section4.1), and the size of the partial vectors is related to the inverse

P-distance between hub pages and other pages according to the Hubs Theorem. Our intuition is

that high-PageRank pages are generally more interesting for personalization anyway, but in cases

where the intended hub pages do not have high PageRank, it may be beneficial to include some

high-PageRank pages inH to improve performance. We ran experiments confirming that the size

of partial vectors is much smaller using high-PageRank pages as hubs than using random pages.

4.4.3 Web Skeleton

The techniques used in the construction of hub vectors can be extended to enable at least approxi-

mate personalization on arbitrary preference vectors that are not necessarily based onH. Suppose

we want to personalize on a pagep /∈ H. The Hubs Equation can be used to constructrH
p from

partial vectors, given that we have computedrp(H). As discussed in Section4.3, the cost of com-

puting and storingrp(H) is orders of magnitude less thanrp. ThoughrH
p is only an approximation

to rp, it may still capture significant personalization information for a properly-chosen hub setH,

asrH
p can be thought of as a “projection” ofrp ontoH. For example, ifH contains pages from

Open Directory, rH
p can capture information about the broad topic ofrp. Exploring the utility of

theweb skeletonW = {rp(H) | p ∈ V } is an area of future work.

5 Computation

In Section4 we presented a way to construct hub vectors from partial vectors(rp − rH
p), for

p ∈ H, and the hubs skeletonS = {rp(H) | p ∈ H}. We also discussed the web skeleton

W = {rp(H) | p ∈ V }. Computing thesepartial quantitiesnaively using a fixed-point itera-

tion [10] for eachp would scale poorly with the number of hub pages. Here we present scalable

algorithms that compute these quantities efficiently by using dynamic programming to leverage

the interrelationships among them. We also show how PPV’s can be constructed from partial vec-

tors and the hubs skeleton at query time. All of our algorithms have the property that they can

be stopped at any time (e.g., when resources are depleted), so that the current “best results” can

be used as an approximation, or the computation can be resumed later for increased precision if

resources permit.

We begin in Section5.1by presenting a theorem underlying all of the algorithms presented (as

10

well as the connection between PageRank and inverse P-distance, as shown in AppendixC). In

Section5.2, we present three algorithms, based on this theorem, for computing general basis vec-

tors. The algorithms in Section5.2are not meant to be deployed, but are used as foundations for the

algorithms in Section5.3 for computing partial quantities. Section5.4 discusses the construction

of PPV’s from partial vectors and the hubs skeleton.

5.1 Decomposition Theorem

Recall the random surfer model of Section1, instantiated for preference vectoru = xp (for page

p’s view of the web). At each step, a surfers teleports to pagep with some probabilityc. If s is

at p, then at the next step,s with probability1 − c will be at a random out-neighbor ofp. That is,

a fraction(1 − c) 1
|O(p)| of the time, surfers will be at any given out-neighbor ofp one step after

teleporting top. This behavior is strikingly similar to the model instantiated for preference vector

u′ = 1
|O(p)|

∑|O(p)|
i=1 xOi(p), where surfers teleport directly to eachOi(p) with equal probability

1
|O(p)| . The similarity is formalized by the following theorem.

Theorem (Decomposition).For anyp ∈ V ,

rp =
(1− c)

|O(p)|

|O(p)|∑
i=1

rOi(p) + cxp (10)

The Decomposition Theorem says that the basis vectorrp for p is an average of the basis vectors

rOi(p) for its out-neighbors, plus a compensation factorcxp. The proof is in AppendixB.

The Decomposition Theorem gives another way to think about PPV’s. It says thatp’s view of

the web (rp) is the average of the views of its out-neighbors, but with extra importance given to

p itself. That is, pages important inp’s view are eitherp itself, or pages important in the view of

p’s out-neighbors, which are themselves “endorsed” byp. In fact, this recursive intuition yields

an equivalent way of formalizing personalized PageRank scoring: basis vectors can be defined as

vectors satisfying the Decomposition Theorem.

While the Decomposition Theorem identifies relationships among basis vectors, a division

of the computation of a basis vectorrp into related subproblems for dynamic programming is

not inherent in the relationships. For example, it is possible to compute some basis vectors first

and then to compute the rest using the former as solved subproblems. However, the presence of

cycles in the graph makes this approach ineffective. Instead, our approach is to consider as a

subproblem the computation of a vector to less precision. For example, having computedrOi(p) to

a certain precision, we can use the Decomposition Theorem to combine therOi(p)’s to computerp

to greater precision. This approach has the advantage that precision needs not be fixed in advance:

the process can be stopped at any time for the current best answer.

11

5.2 Algorithms for Computing Basis Vectors

We present three algorithms in the general context of computing full basis vectors. These algo-

rithms are presented primarily to develop our algorithms for computing partial quantities, presented

in Section5.3. All three algorithms are iterative fixed-point computations that maintain a set of

intermediate results(Dk[∗], Ek[∗]). For eachp, Dk[p] is a lower-approximation ofrp on iter-

ation k, i.e., Dk[p](q) ≤ rp(q) for all q ∈ V . We build solutionsDk[p] (k = 0, 1, 2, . . .) that

are successively better approximations torp, and simultaneously compute the error components

Ek[p], whereEk[p] is the “projection” of the vector(rp −Dk[p]) onto the (actual) basis vectors.

That is, we maintain the invariant that for allk ≥ 0 and allp ∈ V ,

Dk[p] +
∑
q∈V

Ek[p](q)rq = rp (11)

Thus,Dk[p] is a lower-approximation ofrp with error
∣∣∣∑q∈V Ek[p](q)rq

∣∣∣ = |Ek[p]|. We begin

with D0[p] = 0 andE0[p] = xp, so that logically, the approximation is initially0 and the error

is rp. To storeEk[p] andDk[p] efficiently, we can represent them in an implementation as a list

of their nonzero entries. While all three algorithms have in common the use of these intermediate

results, they differ in how they use the Decomposition Theorem to refine intermediate results on

successive iterations.

It is important to note that the algorithms presented in this section and their derivatives in

Section5.3 compute vectors to arbitrary precision; they are not approximations. In practice, the

precision desired may vary depending on the application. Our focus is on algorithms that are

efficient and scalable with the number of hub vectors, regardless of the precision to which vectors

are computed.

5.2.1 Basic Dynamic Programming Algorithm

In thebasic dynamic programming algorithm, a new basis vector for each pagep is computed on

each iteration using the vectors computed forp’s out-neighbors on the previous iteration, via the

Decomposition Theorem. On iterationk, we derive(Dk+1[p], Ek+1[p]) from (Dk[p], Ek[p])

using the equations:

Dk+1[p] =
1− c

|O(a)|

|O(p)|∑
i=1

Dk[Oi(p)] + cxp (12)

Ek+1[p] =
1− c

|O(a)|

|O(p)|∑
i=1

Ek[Oi(p)] (13)

A proof of the algorithm’s correctness is given in AppendixE, where the error|Ek[p]| is shown to

be reduced by a factor of1− c on each iteration.

12

Note that although theEk[∗] values help us to see the correctness of the algorithm, they are

not used here in the computation ofDk[∗] and can be omitted in an implementation (although

they will be used to compute partial quantities in Section5.3). The sizes ofDk[p] andEk[p]

grow with the number of iterations, and in the limit they can be up to the size ofrp, which is the

number of pages reachable fromp. Intermediate scores(Dk[∗], Ek[∗]) will likely be much larger

than available main memory, and in an implementation(Dk[∗], Ek[∗]) could be read off disk and

(Dk+1[∗], Ek+1[∗]) written to disk on each iteration. When the data for one iteration has been

computed, data from the previous iteration may be deleted. Specific details of our implementation

are discussed in Section6.

5.2.2 Selective Expansion Algorithm

Theselective expansion algorithmis essentially a version of the naive algorithm that can readily

be modified to compute partial vectors, as we will see in Section5.3.1.

We derive(Dk+1[p], Ek+1[p]) by “distributing” the error at each pageq (that is,Ek[p](q))

to its out-neighbors via the Decomposition Theorem. Precisely, we compute results on iteration-k

using the equations:

Dk+1[p] = Dk[p] +
∑

q∈Qk(p)

cEk[p](q)xq (14)

Ek+1[p] = Ek[p]−
∑

q∈Qk(p)

Ek[p](q)xq +
∑

q∈Qk(p)

1− c

|O(q)|

|O(q)|∑
i=1

Ek[p](q)xOi(q) (15)

for a subsetQk(p) ⊆ V . If Qk(p) = V for all k, then the error is reduced by a factor of1 − c

on each iteration, as in the basic dynamic programming algorithm. However, it is often useful to

choose a selected subset ofV asQk(p). For example, ifQk(p) contains them pagesq for which

the errorEk[p](q) is highest, then thistop-m scheme limits the number of expansions and delays

the growth in size of the intermediate results while still reducing much of the error. In Section

5.3.1, we will compute the hub vectors by choosingQk(p) = H. The correctness of selective

expansion is proven in AppendixF.

5.2.3 Repeated Squaring Algorithm

Therepeated squaring algorithmis similar to the selective expansion algorithm, except that instead

of extending(Dk+1[∗], Ek+1[∗]) one step using equations (14) and (15), we compute what are

13

essentially iteration-2k results using the equations

D2k[p] = Dk[p] +
∑

q∈Qk(p)

Ek[p](q)Dk[q] (16)

E2k[p] = Ek[p]−
∑

q∈Qk(p)

Ek[p](q)xq +
∑

q∈Qk(p)

Ek[p](q)Ek[q] (17)

whereQk(p) ⊆ V . For now we can assume thatQk(p) = V for all p; we will setQk(p) = H

to compute the hubs skeleton in Section5.3.2. The correctness of these equations is proven in

AppendixG, where it is shown that repeated squaring reduces the error much faster than the basic

dynamic programming or selective expansion algorithms. IfQk(p) = V , the error is squared on

each iteration, as equation (17) reduces to:

E2k[p] =
∑
q∈V

Ek[p](q)Ek[q] (18)

As an alternative to takingQk(p) = V , we can also use the top-m scheme of Section5.2.2.

Note that while all three algorithms presented can be used to compute the set of all basis

vectors, they differ in their requirements on the computation of other vectors when computing

rp: the basic dynamic programming algorithm requires the vectors of out-neighbors ofp to be

computed as well, repeated squaring requires results(Dk[q], Ek[q]) to be computed forq such

thatEk[p](q) > 0, and selective expansion computesrp independently.

5.3 Computing Partial Quantities

In Section5.2we presented iterative algorithms for computing full basis vectors to arbitrary preci-

sion. Here we present modifications to these algorithms to compute the partial quantities:

• Partial vectors(rp − rH
p), p ∈ H.

• The hubs skeletonS = {rp(H) | p ∈ H} (which can be computed more efficiently by itself

than as part of the entire web skeleton).

• The web skeletonW = {rp(H) | p ∈ V }.
Each partial quantity can be computed in time no greater than its size, which is far less than the

size of the hub vectors.

5.3.1 Partial Vectors

Partial vectors can be computed using a simple specialization of the selective expansion algorithm

(Section5.2.2): we takeQ0(p) = V andQk(p) = V − H for k > 0, for all p ∈ V . That is,

we never “expand” hub pages after the first step, so tours passing through a hub pageH are never

considered. Under this choice ofQk(p), Dk[p] + cEk[p] converges to(rp − rH
p) for all p ∈ V .

14

Of course, only the intermediate results(Dk[p], Ek[p]) for p ∈ H should be computed. A proof

is presented in AppendixH.

This algorithm makes it clear why using high-PageRank pages as hub pages improves perfor-

mance: from a pagep we expect to reach a high-PageRank pageq sooner than a random page, so

the expansion fromp will stop sooner and result in a shorter partial vector.

5.3.2 Hubs Skeleton

While the hubs skeleton is a subset of the complete web skeleton and can be computed as such

using the technique to be presented in Section5.3.3, it can be computed much faster by itself if we

are not interested in the entire web skeleton, or if higher precision is desired for the hubs skeleton

than can be computed for the entire web skeleton.

We use a specialization of the repeated squaring algorithm (Section5.2.3) to compute the

hubs skeleton, using the intermediate results from the computation of partial vectors. Suppose

(Dk[p], Ek[p]), for k ≥ 1, have been computed by the algorithm of Section5.3.1, so that∑
q /∈H Ek[p](q) < ε, for some errorε. We apply the repeated squaring algorithm on these re-

sults usingQk(p) = H for all successive iterations. As shown in AppendixI, afteri iterations of

repeated squaring, the total error|Ei[p]| is bounded by(1− c)2i
+ ε/c. Thus, by varyingk andi,

rp(H) can be computed to arbitrary precision.

Notice that only the intermediate results(Dk[h], Ek[h]) for h ∈ H are ever needed to update

scores forDk[p], and of the former, only the entriesDk[h](q), Ek[h](q), for q ∈ H, are used to

computeDk[p](q). Since we are only interested in the hub scoresDk[p](q), we can simply drop all

non-hub entries from the intermediate results. The running time and storage would then depend

only on the size ofrp(H) and not on the length of the entire hub vectorsrp. If the restricted

intermediate results fit in main memory, it is possible to defer the computation of the hubs skeleton

to query time.

5.3.3 Web Skeleton

To compute the entire web skeleton, we modify the basic dynamic programming algorithm (Section

5.2.1) to compute only the hub scoresrp(H), with corresponding savings in time and memory

usage. We restrict the computation by eliminating entriesq /∈ H from the intermediate results

(Dk[p], Ek[p]), similar to the technique used in computing the hubs skeleton.

The justification for this modification is that the hub scoreDk+1[p](h) is affected only by the

hub scoresDk[∗](h) of the previous iteration, so thatDk+1[p](h) in the modified algorithm is equal

to that in the basic algorithm. Since|H| is likely to be orders of magnitude less thann, the size of

the intermediate results is reduced significantly.

15

5.4 Construction of PPV’s

Finally, let us see how a PPV for preference vectoru can be constructed directly from partial

vectors and the hubs skeleton using the Hubs Equation. (Construction of a single hub vector is a

specialization of the algorithm outlined here.) Letu = α1p1 + · · · + αzpz be a preference vector,

wherepi ∈ H for 1 ≤ i ≤ z. Let Q ⊆ H, and let

ru(h) =
z∑

i=1

αi (rpi
(h)− cxpi

(h)) (19)

which can be computed from the hubs skeleton. Then the PPVv for u can be constructed as

v =
z∑

i=1

αi(rpi
− rH

pi
) +

1

c

∑
h∈Q

ru(h)>0

ru(h)
[
(rh − rH

h)− cxh

]
(20)

Both the terms(rpi
− rH

pi
) and(rh − rH

h) are partial vectors, which we assume have been pre-

computed. The termcxh represents a simple subtraction from(rh − rH
h). If Q = H, then(20)

represents a full construction ofv. However, for some applications, it may suffice to use only

parts of the hubs skeleton to computev to less precision. For example, we can takeQ to be the

m hubsh for which ru(h) is highest. Experimentation with this scheme is discussed in Section

6.3. Alternatively, the result can be improved incrementally (e.g., as time permits) by using a small

subsetQ each time and accumulating the results.

6 Experiments

We performed experiments using real web data from Stanford’sWebBase[6], a crawl of the web

containing 120 million pages. Since the iterative computation of PageRank is unaffected byleaf

pages(i.e., those with no out-neighbors), they can be removed from the graph and added back in

after the computation [10]. After removing leaf pages, the graph consisted of 80 million pages

Both the web graph and the intermediate results(Dk[∗], Ek[∗]) were too large to fit in main

memory, and a partitioning strategy, based on that presented in [4], was used to divide the computa-

tion into portions that can be carried out in memory. Specifically, the set of pagesV was partitioned

into k arbitrary setsP1, . . . , Pk of equal size (k = 10 in our experiments). The web graph, repre-

sented as an edge-listE, is partitioned intok chunksEi (1 ≤ i ≤ k), whereEi contains all edges

〈p, q〉 for which p ∈ Pi. Intermediate resultsDk[p] andEk[p] were represented together as a list

Lk[p] = 〈(q1, d1, e1), (q2, d2, e2), . . . 〉 whereDk[p](qz) = dz andEk[p](qz) = ez, for z = 1, 2,

Only pagesqz for which eitherdz > 0 or ez > 0 were included. The set of intermediate results

Lk[∗] was partitioned intok2 chunksLi,j
k [∗], so thatLi,j

k [p] contains triples(qz, dz, ez) of Lk[p]

for which p ∈ Pi andqz ∈ Pj. In each of the algorithms for computing partial quantities, only a

16

0

20000

40000

60000

80000

100000

120000

1000 2000 5000 10000 20000 50000 100000

Number of Hubs (log scale)

A
ve

ra
ge

 V
ec

to
r

S
iz

e

Partial Vectors Full Hub Vectors

Figure 2: Average Vector Size vs. Number of Hubs

single columnL∗,j
k [∗] was kept in memory at any one time, and part of the next-iteration results

Lk+1[∗] were computed by successively reading in individual blocks of the graph or intermediate

results as appropriate. Each iteration requires only one linear scan of the intermediate results and

web graph, except for repeated squaring, which does not use the web graph explicitly.

6.1 Computing Partial Vectors

For comparison, we computed both (full) hub vectors and partial vectors for various sizes ofH,

using the selective expansion algorithm withQk(p) = V (full hub vectors) andQk(p) = V −
H (partial vectors). As discussed in Section4.4.2, we found the partial vectors approach to be

much more effective whenH contains high-PageRank pages rather than random pages. In our

experimentsH ranged from the top1000 to top100, 000 pages with the highest PageRank. The

constantc was set to0.15.

To evaluate the performance and scalability of our strategy independently of implementation

and platform, we focus on the size of the results rather than computation time, which is linear in the

size of the results. Because of the number of trials we had to perform and limitations on resources,

we computed results only up to 6 iterations, for|H| up to 100, 000. Figure2 plots the average

size of (full) hub vectors and partial vectors (recall that size is the number of nonzero entries),

as computed after 6 iterations of the selective expansion algorithm, which for computing full hub

vectors is equivalent to the basic dynamic programming algorithm. Note that the x-axis plots|H|

17

in logarithmic scale.

Experiments were run using a 1.4 gigahertz CPU on a machine with 3.5 gigabytes of mem-

ory. For |H| = 50, 000, the computation of full hub vectors took about2.8 seconds per vector,

and about0.33 seconds for each partial vector. We were unable to compute full hub vectors for

|H| = 100, 000 due to the time required, although the average vector size is expected not to vary

significantly with|H| for full hub vectors. In Figure2 we see that the reduction in size from using

our technique becomes more significant as|H| increases, suggesting that our technique scales well

with |H|.

6.2 Computing the Hubs Skeleton

We computed the hubs skeleton for|H| = 10, 000 by running the selective expansion algorithm for

6 iterations usingQk(p) = H, and then running the repeated squaring algorithm for10 iterations

(Section5.3.2), whereQk(p) is chosen to be the top 50 entries under the top-m scheme (Section

5.2.2). The average size of the hubs skeleton is9021 entries. Each iteration of the repeated squaring

algorithm took about an hour, a cost that depends only on|H| and is constant with respect to the

precision to which the partial vectors are computed.

6.3 Constructing Hub Vectors from Partial Vectors

Next we measured the construction of (full) hub vectors from partial vectors and the hubs skeleton.

Note that in practice we may construct PPV’s directly from partial vectors, as discussed in Section

5.4. However, performance of the construction would depend heavily on the user’s preference

vector. We consider hub vector computation because it better measures the performance benefits

of our partial vectors approach.

As suggested in Section4.3, the precision of the hub vectors constructed from partial vectors

can be varied at query time according to application and performance demands. That is, instead

of using the entire setrp(H) in the construction ofrp, we can use only the highestm entries, for

m ≤ |H|. Figure3 plots the average size and time required to construct a full hub vector from

partial vectors in memory versusm, for |H| = 10, 000. Results are averaged over50 randomly-

chosen hub vectors. Note that the x-axis is in logarithmic scale.

Recall from Section6.1that the partial vectors from which the hubs vector is constructed were

computed using 6 iterations, limiting the precision. Thus, the error values in Figure3 are roughly

16% (ranging from0.166 for m = 100 to 0.163 for m = 10, 000). Nonetheless, this error is much

smaller than that of the iteration-6 full hub vectors computed in Section6.1, which have error

(1− c)6 = 38%. Note, however, that the size of a vector is a better indicator of precision than the

magnitude, since we are usually most interested in the number of pages with nonzero entries in the

distribution vector. An iteration-6 full hub vector (from Section6.1) for pagep contains nonzero

18

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

100 200 500 1000 2000 5000 10000

m (log scale)

A
ve

ra
ge

 C
on

st
ru

ct
ed

 V
ec

to
r

S
iz

e

0

10

20

30

40

50

60

70

A
ve

ra
ge

 C
on

st
ru

ct
io

n
Ti

m
e

(s
ec

on
ds

)

Constructed Vector Size Construction Time

Figure 3: Construction Time and Size vs. Hubs Skeleton Portion (m)

entries for pages at most 6 links away fromp, 93, 993 pages on average. In contrast, from Figure

3 we see that a hub vector containing 14 million nonzero entries can be constructed from partial

vectors in 6 seconds.

7 Related Work

The use of personalized PageRank to enable personalized web search was first proposed in [10],

where it was suggested as a modification of the global PageRank algorithm, which computes a

universal notion of importance. The computation of (personalized) PageRank scores was not ad-

dressed beyond the naive algorithm.

In [5], personalized PageRank scores were used to enable “topic-sensitive” web search. Specif-

ically, precomputed hub vectors corresponding to broad categories inOpen Directorywere used to

bias importance scores, where the vectors and weights were selected according to the text query.

Experiments in [5] concluded that the use of personalized PageRank scores can improve web

search, but the number of hub vectors used was limited to 16 due to the computational require-

ments, which were not addressed in that work. Scaling the number of hub pages beyond 16 for

finer-grained personalization is a direct application of our work.

Another technique for computing web-page importance,HITS, was presented in [8]. In HITS,

an iterative computation similar in spirit to PageRank is applied at query time on a subgraph con-

sisting of pages matching a text query and those “nearby”. Personalizing based on user-specified

19

web pages (and their linkage structure in the web graph) is not addressed by HITS. Moreover, the

number of pages in the subgraphs used by HITS (order of thousands) is much smaller than that we

consider in this paper (order of millions), and the computation from scratch at query time makes

the HITS approach difficult to scale.

Another algorithm that uses query-dependent importance scores to improve upon a global ver-

sion of importance was presented in [11]. Like HITS, it first restricts the computation to a subgraph

derived from text matching. (Personalizing based on user-specified web pages is not addressed.)

Unlike HITS, [11] suggested that importance scores be precomputed offline for every possible text

query, but the enormous number of possibilities makes this approach difficult to scale.

The concept of using “hub nodes” in a graph to enable partial computation of solutions to the

shortest-path problem was used in [3] in the context of database search. That work deals with

searches within databases, and on a scale far smaller than that of the web.

Some system aspects of (global) PageRank computation were addressed in [4]. The disk-

based data-partitioning strategy used in the implementation of our algorithm is adopted from that

presented therein.

Finally, the concept of inverse P-distance used in this paper is based on the concept of expected-

f distance introduced in [7], where it was presented as an intuitive model for a similarity measure

in graph structures.

8 Summary

We have addressed the problem of scaling personalized web search:

• We started by identifying a linear relationship that allows personalized PageRank vectors to

be expressed as a linear combination ofbasis vectors. Personalized vectors corresponding

to arbitrary preference sets drawn from ahub setH can be constructed quickly from the set

of precomputed basishub vectors, one for each hubh ∈ H.

• We laid the mathematical foundations for constructing hub vectors efficiently by relating

personalized PageRank scores toinverse P-distances, an intuitive notion of distance in arbi-

trary directed graphs. We used this notion of distance to identify interrelationships among

basis vectors.

• We presented a method of encoding hub vectors aspartial vectorsand thehubs skeleton.

Redundancy is minimized under this representation: each partial vector for a hub pagep

represents the part ofp’s hub vector unique to itself, while the skeleton specifies how partial

vectors are assembled into full vectors.

20

• We presented algorithms for computing basis vectors, and showed how they can be modified

to compute partial vectors and the hubs skeleton efficiently.

• We ran experiments on real web data showing the effectiveness of our approach. Results

showed that our strategy results in significant resource reduction over full vectors, and scales

well with |H|, the degree of personalization.

9 Acknowledgment

The authors thank Taher Haveliwala for many useful discussions and extensive help with imple-

mentation.

References

[1] http://www.google.com .

[2] http://dmoz.org .

[3] Roy Goldman, Narayanan Shivakumar, Suresh Venkatasubramanian, and Hector Garcia-

Molina. Proximity search in databases. InProceedings of the Twenty-Fourth International

Conference on Very Large Databases, New York, New York, August 1998.

[4] Taher H. Haveliwala. Efficient computation of PageRank. Technical report, Stanford Univer-

sity Database Group, 1999.http://dbpubs.stanford.edu/pub/1999-31 .

[5] Taher H. Haveliwala. Topic-sensitive PageRank. InProceedings of the Eleventh International

World Wide Web Conference, Honolulu, Hawaii, May 2002.

[6] Jun Hirai, Sriram Raghavan, Andreas Paepcke, and Hector Garcia-Molina. WebBase: A

repository of web pages. InProceedings of the Ninth International World Wide Web Confer-

ence, Amsterdam, Netherlands, May 2000.http://www-diglib.stanford.edu/

˜testbed/doc2/WebBase/ .

[7] Glen Jeh and Jennifer Widom. SimRank: A measure of structural-context similarity. In

Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, Edmonton, Alberta, Canada, July 2002.

[8] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. InProceedings of

the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, California,

January 1998.

21

http://www.google.com
http://dmoz.org
http://dbpubs.stanford.edu/pub/1999-31
http://www-diglib.stanford.edu/~testbed/doc2/WebBase/
http://www-diglib.stanford.edu/~testbed/doc2/WebBase/

[9] Rajeev Motwani and Prabhakar Raghavan.Randomized Algorithms. Cambridge University

Press, United Kingdom, 1995.

[10] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank citation

ranking: Bringing order to the Web. Technical report, Stanford University Database Group,

1998.http://citeseer.nj.nec.com/368196.html .

[11] Matthew Richardson and Pedro Domingos. The intelligent surfer: Probabilistic combina-

tion of link and content information in PageRank. InProceedings of Advances in Neural

Information Processing Systems 14, Cambridge, Massachusetts, December 2002.

22

http://citeseer.nj.nec.com/368196.html

APPENDIX

A Proof: Linearity Theorem

Theorem (Linearity). For any preference vectorsu1 andu2, if v1 andv2 are the two correspond-

ing PPV’s, then for any constantsα1, α2 ≥ 0 such thatα1 + α2 = 1,

α1v1 + α2v2 = (1− c)A(α1v1 + α2v2) + c(α1u1 + α2u2)

Proof:

α1v1 + α2v2 = α1((1− c)Av1 + cu1) + α2((1− c)Av2 + cu2)

= α1(1− c)Av1 + α1cu1 + α2(1− c)Av2 + α2cu2

= (1− c)A(α1v1 + α2v2) + c(α1u1 + α2u2)

B Proof: Decomposition Theorem

Theorem (Decomposition).For anyp ∈ V ,

rp =
(1− c)

|O(p)|

|O(p)|∑
i=1

rOi(p) + cxp

Proof: First we rewrite equation (1) in an equivalent form. For a given preference vectoru, we

define thederived matrixAu as

Au = (1− c)A + cU (21)

whereU is then × n matrix with Uij = ui for all i, j. If we require that|v| = 1, we can write

equation (1) as

v = Auv

Without loss of generality, let the out-neighbors ofp be1, . . . , k. Let Ap be the derived matrix

corresponding toxp, and letA1, . . . ,Ak be the derived matrices foru = x1, . . . ,xk, respectively.

Let Up andU1, . . . ,Uk be the correspondingU ’s in equation (21).

Let

vp =
(1− c)

k

k∑
i=1

ri + cxp

Clearly, |vp| = 1. We need to show thatApvp = vp, in which casevp = rp, since PPV’s are

unique (Section1). First we have that:

Apvp = Ap

(
1− c

k

k∑
i=1

ri + cxp

)

=
1− c

k

k∑
i=1

Apri + cApxp

23

Using the identity

Ap = Ai − cUi + cUp

we have:

Apvp =
1− c

k

k∑
i=1

(Ai − cUi + cUp)ri + cApxp

=
1− c

k

k∑
i=1

Airi −
1− c

k
c

k∑
i=1

Uiri +
1− c

k
c

k∑
i=1

Upri + cApxp

=
1− c

k

k∑
i=1

ri −
1− c

k
c

k∑
i=1

xi +
1− c

k
c

k∑
i=1

xp + cApxp

=
1− c

k

k∑
i=1

ri −
1− c

k
c

k∑
i=1

xi + (1− c)cxp + c((1− c)A + cUp)xp

=
1− c

k

k∑
i=1

ri −
1− c

k
c

k∑
i=1

xi + (1− c)cxp + (1− c)cAxp + c2xp

=
1− c

k

k∑
i=1

ri + (1− c)cxp + c2xp + (1− c)c

(
Axp −

1

k

k∑
i=1

xi

)

=
1− c

k

k∑
i=1

ri + (1− c)cxp + c2xp

=
1− c

k

k∑
i=1

ri + cxp

= vp

C Inverse P-distance

C.1 Relation to Personalized PageRank

The relationship between inverse P-distances and personalized PageRank scores is given by the

following theorem.

Theorem. For all p, q ∈ V ,

rp(q) = r′p(q)

Proof: Writing the Decomposition Theorem in scalar form for pagep, we get a set ofn equations,

one for eachq ∈ V , of the form

rp(q) =


(1− c)

|O(p)|∑
i=1

rOi(p)(q) (if p 6= q)

(1− c)
|O(p)|∑
i=1

rOi(p)(q) + c (if p = q)

24

Let us now fixq, and consider the set ofn equations, one for eachp ∈ V , in the above form. By a

proof very similar to that given in [7], it can be shown these equations have a unique solution, so

we need only show thatr′p(q) satisfies these equations as well.

Clearly, if there is no path fromp to q, thenrp(q) = r′p(q) = 0, so supposeq can be reached

from p. Consider the tourst starting atp and ending atq in which the first step is to the out-

neighborOz(p). If p 6= q, there is a one-to-one correspondence between sucht and tourst′ from

Oz(p) to q: for eacht′ we may derive a correspondingt by appending the edge〈p, Oz(p)〉 at the

beginning. LetT be the bijection that takes eacht′ to the correspondingt. If the length oft′ is l,

then the length oft = T (t′) is l + 1. Moreover, the probability of travelingt is P [t] = 1
|O(p)|P [t′].

We can now split the sum in (5) according to the first step of the tourt to write

r′p(q) =

|O(p)|∑
z=1

∑
t′: Oz(p) q

P [T (t′)]c(1− c)l(T (t′))

=
1− c

|O(p)|

|O(p)|∑
z=1

∑
t′: Oz(p) b

P [t′]c(1− c)l(t)

=
1− c

|O(p)|

|O(p)|∑
i=1

r′p(q)

If p = q, then the same correspondence holds except that there is an extra tourt from p to q = p

which does not correspond to any tourt′ starting from anOz(p): the zero length tourt′ = 〈p〉. The

length of this tour is0, and in this caseP [t]c(1− c)l(t) = c. Thus

r′p(q) =
1− c

|O(p)|

|O(p)|∑
i=1

r′Oi(p)(q) + c

whenp = q.

C.2 Loop Factor

The use of inverse P-distances yields further insight into the fairness of PageRank scoring. Since

the global PageRank for a pageq is just the uniform sum
∑n

p=1 rp(q)/n, we see that the PageRank

of a pageq is the average, over all pagesp, of the inverse P-distance fromp to q. The intuition

is that high-PageRank pages are on average “close” to other pages under this distance measure.

However, note that the summation in (5) is taken over tours that may touchq multiple times. The

effect is that a pageq can influence its own PageRank (by a factor less than1/c) simply by changing

its out-links. In particular, if a pageq with PageRankPR(q) links to every pagep for which there

is a path toq (as are logically created for pages without out-links in [5, 10]), then its PageRank

would be a factorc + (1− c)PR(q) less than if it had linked to itself and no other page. This “loop

25

factor” can be quantified asrq(q): under the definition that tourst from p to q may touchq only

once,rp(q) can be written as

rp(q) = rq(q)
∑
t:p q

P [t](1− c)l(t)

where the summation is independent ofq’s out-links. This is the expected-f distance [7] from p to

q, for f(x) = (1 − c)x. Thus eliminating the loop factor (dividing byrq(q) to get the expected-f

distance) may result in a fairer scoring.

D Proof: Hubs Theorem

Theorem (Hubs). For anyp ∈ V , H ⊆ V ,

a) rH
p = 1

c

∑
h∈H

(rp(h)− cxp(h))
(
rh − rH

h − cxh

)
b) rH

p = 1
c

∑
h∈H

(
rp(h)− rH

p (h)− cxp(h)
)
(rh − cxh)

Proof of (a): The idea is to separate tourst going throughH into two parts, everything up to the

last occurrence of a pageh ∈ H, and the rest. Letβ(t), for tourst : p H q, denote the

beginning oft to the last occurrence of a pageh ∈ H whicht passes through, soβ(t) = 〈p, . . . , h〉.
Let γ(t) be the rest, soγ(t) = 〈h, . . . , q〉. Let π(t) = P [t]c(1− c)l(t) for short. Lets(t) be the set

of pages thatt passes through, so thatrH
p (q) can be written as

rH
p (q) =

∑
t:p q

s(t)∩H 6=∅

P [t]c(1− c)l(t)

Let us first partition the summation in (6) according toβ(t):

rH
p (q) =

∑
t1|t1=β(t)
t:p H q

∑
t:p H q
β(t)=t1

P [t]c(1− c)l(t)

(22)

For eacht, β(t) is itself a tourt′ : p h; conversely, eacht′ : p h is aβ(t) for somet, with the

exception of the zero-length tourt′ = 〈p〉 in the special case wherep ∈ H. Thus we can group the

tourst by h andβ(t) ending ath to rewrite (22) as:

rH
p (q) =

∑
h∈H

∑
t1:p h
l(t1)>0

∑
t:p H q
β(t)=t1

P [t]c(1− c)l(t)

26

But P [t] = P [β(t)]P [γ(t)], andl(t) = l(β(t)) + l(γ(t)), so

rH
p (q) =

∑
h∈H

∑
t1:p h
l(t1)>0

∑
t:p H q
β(t)=t1

P [β(t)]P [γ(t)]c(1− c)l(β(t))+l(γ(t))

=
1

c

∑
h∈H

∑
t1:a h
l(t1)>0

π(t1)
∑

t:p H q
β(t)=t1

π(γ(t))

There is a canonical bijectionγt1 between tourst : p H q with β(t) = t1 and tourst′ : h q

which do not pass throughH (for whichs(t′)∩H = ∅), with the exception of the zero-length tour

〈q〉 whenq ∈ H. That is,γt1(t) = γ(t) = t′, so we can write each tourt ast = γ−1
t1 (t′). Replacing

γ(t) in the previous equation withγ(t) = γ(γ−1
t1 (t′)) = t′ and accounting for the possible zero-

length tour, we have

rH
p (q) =

1

c

∑
h∈H

∑
t1:p h
l(t1)>0

π(t1)

 ∑
t′:h q

s(t′)∩H=∅

π(t′)− xh(q)
∑

t′=〈q〉

π(t′)



=
1

c

∑
h∈H

∑
t1:p h
l(t1)>0

π(t1)

 ∑
t′:h q

s(t′)∩H=∅

π(t′)− xh(q)c



But the set of tourst from h to q which do not pass throughH is the set of tours fromh to q minus

the set of tours fromh to q which pass throughH. Thus,

rH
p (q) =

1

c

∑
h∈H

∑
t1:p h
l(t1)>0

π(t1)

(∑
t′:h q

π(t′)−
∑

t′:h H q

π(t′)− cxh(q)

)

=
1

c

∑
h∈H

∑
t1:p h
l(t1)>0

π(t1)
(
rh(q)− rH

h (q)− cxh(q)
)

Finally, ∑
t1:p h
l(t1)>0

π(t1) = rp(h)− cxp(h)

wherecxp(h) accounts for the possible tourt1 = 〈p〉 whenp = h, for whichP [t1]c(1− c)l(t1) = c,

and we have

rH
p (q) =

1

c

∑
h∈H

(rp(h)− cxp(h))
(
rh(q)− rH

h (q)− cxh(q)
)

27

This equation written in vector form is the Hubs Theorem (a).

Proof of (b): The idea is to separate tourst going throughH differently: everything up to the first

(instead of last) occurrence of a pageh ∈ H, and the rest. Letβ(t), for tourst : p H q,

denote the beginning oft to the first occurrence of a pageh ∈ H which t passes through, so

β(t) = 〈p, . . . , h〉. Let γ(t) be the rest, soγ(t) = 〈h, . . . , q〉.
Let us first partition the summation in (6) according toγ(t):

rH
p (q) =

∑
t2|t2=γ(t)
t:p H q

∑
t:p H q
γ(t)=t2

P [t]c(1− c)l(t)

(23)

For eacht, γ(t) is itself a tourt′ : h q; conversely, eacht′ : h q is aγ(t) for somet, with the

exception of the zero-length tourt′ = 〈q〉 in the special case whereq ∈ H. Thus we can group the

tourst by h andγ(t) beginning ath to rewrite (23) as:

rH
p (q) =

∑
h∈H

∑
t2:h q
l(t2)>0

∑
t:p H q
γ(t)=t2

P [t]c(1− c)l(t)

But P [t] = P [β(t)]P [γ(t)], andl(t) = l(β(t)) + l(γ(t)), so

rH
p (q) =

∑
h∈H

∑
t2:h q
l(t2)>0

∑
t:p H q
γ(t)=t2

P [β(t)]P [γ(t)]c(1− c)l(β(t))+l(γ(t))

=
1

c

∑
h∈H

∑
t2:h q
l(t2)>0

π(t2)
∑

t:p H q
γ(t)=t2

π(β(t))

There is a canonical bijectionβt2 between tourst : p H q with γ(t) = t2 and tours

t′ : a h which do not pass throughH (for which s(t′) ∩ H = ∅), with the exception of the

zero-length tour〈p〉 whenp ∈ H. That is,βt2(t) = β(t) = t′, so we can write each tourt as

t = β−1
t2 (t′). Replacingβ(t) in the previous equation withβ(t) = β(β−1

t1 (t′)) = t′ and accounting

for the possible zero-length tour, we have

rH
p (q) =

1

c

∑
h∈H

∑
t2:h q
l(t2)>0

π(t2)

 ∑
t′:p h

s(t′)∩H=∅

π(t′)− xp(h)
∑

t′=〈p〉

π(t′)



=
1

c

∑
h∈H

∑
t2:h q
l(t2)>0

π(t2)

 ∑
t′:p h

s(t′)∩H=∅

π(t′)− xp(h)c



28

But the set of tourst from p to h which do not pass throughH is the set of tours fromp to h minus

the set of tours fromp to h which pass throughH. Thus,

rH
p (q) =

1

c

∑
h∈H

∑
t2:h q
l(t2)>0

π(t2)

(∑
t′:p h

π(t′)−
∑

t′:p H h

π(t′)− cxp(h)

)

=
1

c

∑
h∈H

∑
t2:h q
l(t2)>0

π(t2)
(
rp(h)− rH

p (h)− cxp(h)
)

Finally, ∑
t2:h q
l(t2)>0

π(t2) = rh(q)− cxh(q)

wherecxh(q) accounts for the possible tourt2 = 〈q〉 whenq = h, for whichP [t2]c(1− c)l(t2) = c,

and we have

rH
p (q) =

1

c

∑
h∈H

(
rp(h)− rH

p (h)− cxp(h)
)
(rh(q)− cxh(q))

This equation written in vector form is the Hubs Theorem (b).

E Proof: Basic Dynamic Programming Algorithm

To prove correctness of the basic dynamic programming algorithm, we need to show that for all

k ≥ 0 andp ∈ V , Dk[p]+
∑

q∈V Ek+1[p](q)rq = rp, and that the sequence{Ek[p]} converges to

0 ask tends towards infinity, which implies thatDk[p] converges torp. In particular,|Ek[p]| =

(1 − c)k. The proof is by induction onk. The case fork = 0 is obvious, so suppose the claim is

true fork, for somek ≥ 0. First we show thatDk+1[p] +
∑

q∈V Ek+1[p](q)rq = rp:

Dk+1[p] +
∑
q∈V

Ek+1[p](q)rq =
1− c

|O(p)|

|O(p)|∑
i=1

Dk[Oi(p)] + cxp +
∑
q∈V

1− c

|O(p)|

|O(p)|∑
i=1

Ek[Oi(p)](q)rq

= cxp +
1− c

|O(p)|

|O(p)|∑
i=1

(
Dk[Oi(p)] +

∑
q∈V

Ek[Oi(p)](q)rq

)

=
1− c

|O(p)|

|O(p)|∑
i=1

rOi(p) + cxp

= rp

29

where the last step is justified by the Decomposition Theorem. Now we show that|Ek+1[p]| =

(1− c)k+1:

|Ek+1[p]| =

∣∣∣∣∣∣ 1− c

|O(p)|

|O(p)|∑
i=1

Ek[Oi(p)]

∣∣∣∣∣∣
=

1− c

|O(p)|

|O(p)|∑
i=1

|Ek[Oi(p)]|

=
1− c

|O(p)|

|O(p)|∑
i=1

(1− c)k

=
1− c

|O(p)|
|O(p)|(1− c)k

= (1− c)k+1

F Proof: Selective Expansion Algorithm

As in the proof of the basic dynamic programming algorithm, we first show thatDk+1[p] +∑
q∈V Ek+1[p](q)rq = rp for an arbitraryQk(p) ⊆ V :

Dk+1[p] +
∑
q∈V

Ek+1[p](q)rq

=

Dk[p] +
∑

q∈Qk(p)

cEk[p](q)xq


+
∑
q′∈V

(
Ek[p]−

∑
q∈Qk(p)

Ek[p](q)xq +
∑

q∈Qk(p)

1− c

|O(q)|

|O(q)|∑
i=1

Ek[p](q)xOi(q)

)
(q′)rq′

=

(
Dk[p] +

∑
q′∈V

Ek[p](q′)rq′

)
+

∑
q∈Qk(p)

cEk[p](q)xq

−
∑
q′∈V

∑
q∈Qk(p)

Ek[p](q)xq(q
′)rq′ +

∑
q′∈V

∑
q∈Qk(p)

1− c

|O(q)|

|O(q)|∑
i=1

Ek[p](q)xOi(q)(q
′)rq′

By the inductive hypothesis,

Dk[p] +
∑
q′∈V

Ek[p](q′)rq′ = rp

so we need only show that the latter terms cancel. Sincexq(q
′) = 1 if q = q′ and0 otherwise, and

similarly for xOi(q)(q
′), we have∑

q′∈V

∑
q∈Qk(p)

Ek[p](q)xq(q
′)rq′ =

∑
q∈Qk(p)

Ek[p](q)rq

30

and

∑
q′∈V

∑
q∈Qk(p)

1− c

|O(q)|

|O(q)|∑
i=1

Ek[p](q)xOi(q)(q
′)rq′ =

∑
q∈Qk(p)

1− c

|O(q)|

|O(q)|∑
i=1

Ek[p](q)rOi(q)

By the Decomposition Theorem,

cEk[p](q)xq +
1− c

|O(q)|

|O(q)|∑
i=1

Ek[p](q)rOi(q) = Ek[p](q)rb

for all q ∈ Qk(p), which shows that the terms indeed cancel.

Since|Dk[p]| increases byc
∑

q∈Qk(p) Ek[p](q) each iteration, the error decreases by

c
∑

q∈Qk(p) Ek[p](q) each iteration. Thus, any choice ofQk(p) containing a maximal pageq such

thatEk[p](q) = max{Ek[p](q) | q ∈ V } ensures that the error tends towards0. In particular, such

is the case ifQk(p) = V or Qk(p) is the topm > 0 pagesq with the highestEk[p](q).

G Proof: Repeated Squaring Algorithm

To verify the correctness of the repeated squaring algorithm, we show that

D2k[p] +
∑

q∈Qk(p)

E2k[p](q)rq = rq

for an arbitraryQk(p) ⊆ V :

D2k[p] +
∑
q∈V

E2k[p](q)rq

= Dk[p] +
∑

q∈Qk(p)

Ek[p](q)Dk[q]+

∑
q′∈V

Ek[p](q′)−
∑

q∈Qk(p)

Ek[p](q)xq(q
′) +

∑
q∈Qk(p)

Ek[p](q)Ek[q](q
′)

rq′

= Dk[p] +
∑
q′∈V

Ek[p](q′)rq′ +
∑

q∈Qk(p)

Ek[p](q)

(
Dk[q]−

∑
q′∈V

xq(q
′)rq′ +

∑
q′∈V

Ek[q](q
′)rq′

)

= rp +
∑

q∈Qk(p)

Ek[p](q)

[(
Dk[q] +

∑
q′∈V

Ek[q](q
′)rq′

)
− rq

]
= rp +

∑
q∈Qk(p)

[0]

= rp

31

As in the proof of the selective expansion algorithm, the error tends towards 0 ifQk(p) contains the

topm > 0 pagesq with the highestEk[p](q). If Qk(p) = V , the error is squared on each iteration,

for if |Ek[∗]| = ε, using equation18 we have:

|E2k[p]| =

∣∣∣∣∣∑
q∈V

Ek[p](q)Ek[q]

∣∣∣∣∣
=

∑
q∈V

Ek[p](q)|Ek[q]|

=
∑
q∈V

Ek[p](q)ε

= ε|Ek[p]|
= ε2

Clearly, for all but the first two iterations, repeated squaring reduces error much faster than the

decay factor of1−c (for both the basic dynamic programming and selective expansion algorithms)

whenQk(p) = V .

H Proof: Computation of Partial Vectors

We first show that the following hold for allk ≥ 1 andp, q ∈ V :

Dk[p](q) =
∑
t:p q
l(t)<k

s′(t)∩H=∅

P [t]c(1− c)l(t) (24)

Ek[p](q) =



∑
t:p q
l(t)=k

s(t)∩H=∅

P [t](1− c)l(t) (if q /∈ H)

∑
t:p q

1≤l(t)≤k
s(t)∩H=∅

P [t](1− c)l(t) (if q ∈ H)
(25)

wheres(t) is the set of pages appearing ont other than at the endpoints (i.e., pages whicht passes

through), ands′(t) is the set of pages appearing ont other than at the beginning. Consider the

case fork = 1 (recall that all pages are expanded on iteration0). The only tours in (24) are the

zero-length tourst = 〈p〉 whenp = q (which pass through no hubs), for whichP [t]c(1 − c)l(t) =

c = D1[p](q). The only tours in (25) are t = 〈p, q〉 whenq is an out-neighbor ofp, for which

P [t](1− c)l(t) = 1−c
|O(p)| = Ek[p](q).

Now suppose for induction that equations (24) and (25) hold for somek ≥ 1. By equation (14)

with Qk(p) = V −H, the difference betweenDk+1[p](q) andDk[p](q), for q /∈ H, isDk+1[p](q)−

32

Dk[p](q) = cE1[p](q). By the inductive hypothesis, this difference can be written as

cEk[p](q) =
∑
t:p q
l(t)=k

s(t)∩H=∅

P [t]c(1− c)l(t)

Sinceq /∈ H, the restrictions(t) ∩H = ∅ is equivalent tos′(t) ∩H = ∅, so that

Dk+1[p](q) = Dk[p](q) + cEk[p](q)

=
∑
t:p q
l(t)<k

s′(t)∩H=∅

P [t]c(1− c)l(t) +
∑
t:p q
l(t)=k

s′(t)∩H=∅

P [t]c(1− c)l(t)

=
∑
t:p q

l(t)<k+1
s′(t)∩H=∅

P [t]c(1− c)l(t)

If q ∈ H,

Dk+1[p](q) = Dk[p](q) =
∑
t:p q
l(t)<k

s′(t)∩H=∅

P [t]c(1− c)l(t) =
∑
t:p q

l(t)<k+1
s′(t)∩H=∅

P [t]c(1− c)l(t)

since there is no tourt : p q with l(t) > 0 for whichs′(t) ∩H = ∅.
Next we show that

Ek+1[p](q) =
∑
t:p q

l(t)=k+1
s(t)∩H=∅

P [t](1− c)l(t)

for q /∈ H. By equation (15) with Qk(p) = V −H, we have

Ek+1[p](q) =
∑

q′∈(V −H)∩I(q)

1− c

|O(q′)|
Ek[p](q′) (26)

since only the expansion of the in-neighbors ofq can contribute toEk+1[p](q), and of these, only

the ones not inH are expanded. ExpandingEk[p](q′) using the inductive hypothesis, (26) becomes

Ek+1[p](q) =
∑

q′∈(V −H)∩I(q)

1− c

|O(q′)|
∑

t′:p q′

l(t′)=k
s′(t′)∩H=∅

P [t′](1− c)l(t′)

where we have replaceds(t′) in the summation withs′(t′), sinceq′ /∈ H. We want to show that

this is equal to ∑
t:p q

l(t)=k+1
s(t)∩H=∅

P [t](1− c)l(t) (27)

33

Consider the set of tourst : p q, with l(t) = k + 1 ands(t) ∩ H = ∅, for which the last

step is fromq′ ∈ (V −H) ∩ I(q) to q. There is a one-to-one correspondence between sucht and

tourst′ : p q′ of lengthk with s′(t) ∩ H = ∅: for eacht′ we may derive a correspondingt by

appending the edge〈q′, q〉 at the end. LetT be the bijection that takes eacht′ to the corresponding

t. If the length oft′ is l, then the length oft = T (t′) is l + 1. Moreover, the probability of traveling

t is P [t] = 1
|O(q′)|P [t′]. Thus we can split the summation in (27) according toq′ to rewrite it as∑

t:p q
l(t)=k+1
s(t)∩H=∅

P [t](1− c)l(t) =
∑

q′∈(V −H)∩I(q)

∑
t′:p q′

l(t′)=k
s′(t′)∩H=∅

P [T (t′)](1− c)l(T (t′))

=
∑

q′∈(V −H)∩I(q)

1− c

|O(q′)|
∑

t′:p q′

l(t′)=k
s′(t′)∩H=∅

P [t′](1− c)l(t′)
(28)

which is what we wanted to show.

Now we show that

Ek+1[p](q) =
∑
t:p q

1≤l(t)≤k+1
s(t)∩H=∅

P [t](1− c)l(t)

for q ∈ H. By equation (15) with Qk(p) = V −H,

Ek+1[p](q) = Ek[p](q) +
∑

q′∈(V −H)∩I(q)

1− c

|O(q′)|
Ek[p](q′)

= Ek[p](q) +
∑

q′∈(V −H)∩I(q)

1− c

|O(q′)|
∑

t′:p q′

l(t′)=k
s(t′)∩H=∅

P [t′](1− c)l(t′)

Equation (28) still applies, and we have

Ek+1[p](q) = Ek[p](q) +
∑
t:p q

l(t)=k+1
s(t)∩H=∅

P [t](1− c)l(t)

=
∑
t:p q

1≤l(t)≤k
s(t)∩H=∅

P [t](1− c)l(t) +
∑
t:p q

l(t)=k+1
s(t)∩H=∅

P [t](1− c)l(t)

=
∑
t:p q

1≤l(t)≤k+1
s(t)∩H=∅

P [t](1− c)l(t)

which completes the proof of equations (24) and (25).

34

Finally, we show that for allq ∈ V , Dk[p](q)+cEk[p](q) converges torp(q)−rH
p (q) ask →∞.

If q /∈ H, thenEk[p](q) → 0 ask →∞, and

Dk[p](q) + cEk[p](q) = Dk[p](q) +
∑
t:p q
l(t)<k

s′(t)∩H=∅

P [t]c(1− c)l(t) → rp(q)− rH
p (q)

sinces′(t) ∩H = s(t) ∩H whenq /∈ H. If q ∈ H, then

Dk[p](q) + cEk[p](q) =
∑
t:p q
l(t)<k

s′(t)∩H=∅

P [t]c(1− c)l(t) +
∑
t:p q

1≤l(t)≤k
s(t)∩H=∅

P [t]c(1− c)l(t)

Whenq ∈ H, s′(t) ∩H 6= ∅ unlessp = q andt = 〈p〉. Thus,

Dk[p](q) + cEk[p](q) = cxp(q) +
∑
t:p q

1≤l(t)≤k
s(t)∩H=∅

P [t]c(1− c)l(t)

=
∑
t:p q

0≤l(t)≤k
s(t)∩H=∅

P [t]c(1− c)l(t)

which converges torp(q)− rH
p (q) ask →∞.

I Proof: Computation of the Hubs Skeleton

Let (Di[p], Ei[p]) denote the results afteri iterations of repeated squaring, so that the intermediate

results left by selective expansion correspond toi = 0.

The error initially associated with hub pages,
∑

h/∈H E0[p](h), is bounded by1− c because the

first step of selective expansion expands all pages (Section5.2.2). By equation (17) with Qi(p) =

H, the error associated with hub pages on iterationi ≥ 1 of repeated squaring,
∑

q∈H Ei[p](q), is

bounded by(1−c)2i
. Moreover, the error associated with non-hub pages,

∑
q /∈H Ei[p](q), increases

by at most(1− c)2i ∑
q /∈H Ei−1[p](q) compared to the previous iteration. Using a geometric series

to bound
∑

q /∈H Ei[p](q), the total error|Ei[p]| of iterationi is bounded by(1− c)2i
+ ε/c.

35

	Introduction and Motivation
	Preliminaries
	Basis Vectors
	Decomposition of Basis Vectors
	Inverse P-distance
	Partial Vectors
	Hubs Skeleton
	Discussion
	Summary
	Choice of H
	Web Skeleton

	Computation
	Decomposition Theorem
	Algorithms for Computing Basis Vectors
	Basic Dynamic Programming Algorithm
	Selective Expansion Algorithm
	Repeated Squaring Algorithm

	Computing Partial Quantities
	Partial Vectors
	Hubs Skeleton
	Web Skeleton

	Construction of PPV's

	Experiments
	Computing Partial Vectors
	Computing the Hubs Skeleton
	Constructing Hub Vectors from Partial Vectors

	Related Work
	Summary
	Acknowledgment
	Proof: Linearity Theorem
	Proof: Decomposition Theorem
	Inverse P-distance
	Relation to Personalized PageRank
	Loop Factor

	Proof: Hubs Theorem
	Proof: Basic Dynamic Programming Algorithm
	Proof: Selective Expansion Algorithm
	Proof: Repeated Squaring Algorithm
	Proof: Computation of Partial Vectors
	Proof: Computation of the Hubs Skeleton

