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ABSTRACT
The rapid growth of the number of videos in YouTube pro-
vides enormous potential for users to find content of inter-
est to them. Unfortunately, given the difficulty of searching
videos, the size of the video repository also makes the dis-
covery of new content a daunting task. In this paper, we
present a novel method based upon the analysis of the en-
tire user–video graph to provide personalized video sugges-
tions for users. The resulting algorithm, termed Adsorption,
provides a simple method to efficiently propagate preference
information through a variety of graphs. We extensively
test the results of the recommendations on a three month
snapshot of live data from YouTube.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Storage and
Retrieval—Information Search and Retrieval

General Terms
Algorithms

Keywords
Recommendation systems, label propagation, collaborative
filtering, random walks, video search

1. INTRODUCTION
Since the launch of YouTube in 2005, it has become a

popular destination site for users to find videos as well as
share their own videos. It is estimated that there are over
45,000,000 videos in the repository [14], and that the collec-
tion is growing at an astounding rate of seven hours of video
being uploaded every minute [6]. This enormous repository
of video information has the potential to contain videos of
interest for many users. The downside to the quantity of
videos is that exploration and discovery of new, interesting,
videos becomes a daunting task. Standard approaches for
recommendations that have been used in text domains, such
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as newsgroup, news story or web pages, are not easily ap-
plied in this domain. The primary difficulty is that although
some labels can be reliably inferred through computer-vision
based-techniques, there does not currently exist any satis-
factory mechanism to label videos with the majority of their
content [12]. To exacerbate the difficulty, the tags that ex-
ist on YouTube videos are generally quite small; they only
capture a small sample of the content.

The task of providing valuable suggestions of non-text
content has been explored in a variety of contexts. The
closest related studies have come from the Netflix challenge,
in which a system must recommend DVDs to subscribers
based on their previous ratings [11]. The Netflix domain
has under 100,000 DVDs, and Netflix users provide a large
number of explicitly given ratings on the videos. In contrast,
for our task, the number of videos is significantly larger, and
the ratings are sparse. Our approach to addressing this task
is to utilize the large number of users and video views that
YouTube has amassed. By studying the viewing patterns
and video discoveries of YouTube users in aggregate, we can
create an effective video suggestion system that does not rely
on the analysis of the underlying videos. The goal is to cre-
ate a personalized page of video recommendations that not
only shows the latest and most popular videos, but also pro-
vides users with recommendations tailored to their viewing
habits.

In the remainder of this section, we introduce one of the
principal data-sources used in this study — co-view statis-
tics. In Section 2, we present the adsorption algorithm, and
describe several related studies that have been proposed in
the machine learning literature. The adsorption algorithm
is a very general framework for classification and learning
when we have some labeled objects and a rich graph struc-
ture that underlies the universe of labeled and unlabeled ob-
jects. The algorithm is also robust in the mathematical sense
that it has three different but equivalent interpretations, and
has appeared in various guises in applied mathematics and
machine learning. In Section 3, we present the data used
for this study. The evaluation of the proposed systems is
itself a challenging task; each system must be thoroughly
vetted before being deployed into live production. Section
3.1 explores the use of historic data to provide the neces-
sary insights into algorithm performance, before live-service
launches. The results of the experiments are given in Section
4. Section 5 closes the paper with conclusions and directions
for future research.
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Figure 1: Video-Video Co-View Graph. Each video
is a vertex in the graph that is linked to other videos
often co-viewed. Often, only links with some mini-
mum number of views are instantiated.

1.1 The Video Co-View Graph
YouTube has a large number of users who view multiple

videos. One of the fundamental set of statistics to compute
with this data are the video co-view numbers. In the sim-
plest form, the co-view data gives, for any pair of videos, the
number of people who viewed both videos. After this statis-
tic is computed for all sets of videos, there are numerous
ways to encode this into a graph. Two that are used in this
study are shown here. In Figure 1, we show the “video-video
co-view graph,” which has a connection between videos that
are most commonly watched by the same users. In Figure
2, we show the user-view graph, from which co-views can be
inferred 1.

Co-view information provides a simple basis for video rec-
ommendations. A straightforward system, often used as the
basis of item-based collaborative filtering systems [5, 1], can
be built as follows. Imagine that User U watches two videos,
J and K. From our co-view statistics, we know that many
other users who saw video J also saw videos L, M, N. Simi-
larly, for video K, we know that many other users saw videos
N, O, P, Q. Therefore, the videos we may recommend to U ,
based on his watches of J and K can simply be the union
of the two co-view sets: L, M, N, O, P, Q. For ranking the
recommendations, we may look at the number of views of a
video (this will recommend popular videos), number of co-
views for each video (this will recommend popular videos,
given what users have seen), or take into account the num-
ber of times each video was recommended for U (notice that
Video N was recommended twice), or combinations of any
of these heuristics.

It should be noted that there are many versions of co-view
statistics and graphs that can be used in place of the ones
described above. A stronger notion of similarity can be cap-
tured by restricting the co-views to those that have occurred
within the same web session. This alternate view may be
useful if it is believed that a user will be more likely to view

1It is interesting to examine the large changes in subject
matter that occur by traversing, even a short distance, along
the edges in either of the graphs. For example, in Figure
1, Left-Most: Videos about Sumi Drawing are related to
other Sumi-Drawing demonstrations and a video of a com-
mon subject matter from the videos: leaves, flowers, etc.
From the red-leaf video, other videos about exploring nature
and road-trips are found. Following the road-trip co-views,
we find videos about road-trips on motorcycles. Following a
co-view from a motorcycle road-trip, we are led to a video
purely about motorcycles (right-most).

Figure 2: User-Video Graph. An alternate way of
representing the co-view information is implicitly
through the user-video bipartite graph. The number
of co-views is computed by examining the number of
paths of length 2 that exist between any two videos.

videos on the same topic within a short period of time (for
example, watching multiple instructional videos on how to
draw in the sumi-style, etc). Other potential co-view varia-
tions include encoding ordering information through the use
of directed edges. The drawback of using any of the many
variations is that they often result in smaller amounts of
data per video/user. Given the large number of videos for
which we need to compute co-view statistics, we attempt to
use the broadest definition of co-view whenever possible.

2. THE ADSORPTION ALGORITHM
The genesis of the family of algorithms that we will collec-

tively call adsorption is the following question: assuming we
wish to classify a node in a graph in terms of (class) labels
present on some of the other nodes, what is a principled way
to do it? Perhaps the easiest answer to this question is to im-
pose a metric on the underlying graph and classify the label
by adopting the labels present on its nearest neighbor. There
is a variety of metrics one could choose from (e.g., shortest
distance, commute time or electrical resistance, etc.), but
most of these are expensive to compute, especially for large
graphs. Furthermore, conceptually simple ones like shortest
distance have certain undesirable properties in the context
of recommendation systems. Based on the user–video view
graph, if we recommend to user u a video v that she has not
watched and that is closest in terms of graph distance, we
may end up recommending a node that can only be reached
via high-degree nodes (for example, if users u1 and u2 both
watched a popular video, even though they have no interests
in common, we will end up recommending videos watched
by u2 to user u1, since there will be length-3 paths from u1

to those videos, and this is the shortest possible distance to
any of u1’s unwatched videos. More sophisticated methods
like commute distance avoid this problem, but require ex-
pensive computations; furthermore, these methods do not
lead to algorithms that admit incremental updates, another
factor important for large recommendation systems.

The idea of recommending videos commonly co-viewed
with a user’s watched videos nevertheless can be meaning-
fully abstracted as finding labeled nodes that have multiple
short paths from the user node. In doing so, one must be
careful to not veer too far off from the node, for if the only
paths connecting a user to a video are long, there is a con-
siderable chance of drift of interest and relevance.
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Thus our desiderata for our recommendation system in-
clude the ideas that a video v is relevant to a user u if:

(1) u and v have a short path between them;
(2) u and v have several paths between them;
(3) u and v have paths that avoid high-degree nodes.

2.1 Adsorption via Averaging
The first view of our algorithm that we present has the

following idea. In a general graph where some nodes have la-
bels, the nodes that carry some labels, forward the labels to
their neighbors, who, in turn, forward them to their neigh-
bors, and so on, and all nodes collect the labels they receive.
Thus each node has two roles, forwarding labels and collect-
ing labels. In the “full-information” model, let us imagine
that each node keeps track of the history of all labels it re-
ceives — how often it received it, in which rounds it received
it, etc. This would enable each node to make an informed
choice of which labels it wishes to retain. The crucial detail
in the algorithm is the choice of how to retain a synopsis
that will both preserve the essential parts of this informa-
tion as well as guarantee a stable (or convergent) set of label
assignments.

A formal description follows. We are given a graph G =
(V, E, w), where V denotes the set of vertices (nodes), E
denotes the set of edges, and w : E → R denotes a non-
negative weight function on the edges. Let L denote a set
of labels, and assume that each node v in a subset VL ⊆ V
carries a probability distribution Lv on the label set L. We
often refer to VL as the set of labeled nodes. For the sake
of exposition, we will introduce a pre-processing step, where
for each vertex v ∈ VL, we create a “shadow” vertex ev with
exactly one out-neighbor, namely v, connected via an edge
(ev, v) of weight 1; furthermore, for each v ∈ VL, we will
re-locate the label distribution Lv from v to ev, leaving v

with no label distribution. Let eV denote the set of shadow
vertices, eV = {ev | v ∈ VL}. From now on, we will assume

that at the beginning of the algorithm, only vertices in eV
have non-vacuous label distributions.

Algorithm Adsorption:

Input: G = (V, E, w), L, VL.
repeat

for each v ∈ V ∪ eV do:
Let Lv =

P
u w(u, v)Lu

end-for
Normalize Lv to have unit L1 norm

until convergence
Output: Distributions {Lv | v ∈ V }

Comments.
(1) In the summation, u varies over all vertices in V ∪ eV

that have a non-vacuous label distribution Lu.
(2) In the algorithm, we say that convergence has occurred

if the label distribution of none of the nodes changes in a
round. It can be shown that the algorithm converges to a
unique set of label distributions. In practice, we will impose
a small threshold so that if none of the distributions under-
goes a change of magnitude greater than this threshold, we
will say that the algorithm has converged.

(3) Upon convergence, each node v ∈ V ∪ eV carries a label
distribution, provided there is a path from v to some node
u ∈ VL.

(4) The choice of unit weight on the edge (ev, v) for each
v ∈ VL is entirely arbitrary, and may be replaced by other
interesting choices; this will turn out to be a very useful
feature.

(5) The astute reader might have noticed that we do not
update the label distribution in each round; rather, we re-
compute it entirely from scratch, based on the distributions
delivered by the neighbors. It turns out that the algorithms
are entirely equivalent, and the memoryless property of the
algorithm as presented makes it easier to analyze mathemat-
ically.

(6) The Adsorption algorithm admits a very efficient iter-
ative computation (similar to PageRank [3]), where, in each
iteration, a label distribution is passed along every edge.
This is also an operation that is efficient to implement in
the MapReduce model/infrastructure for parallel program-
ming [8].
End of comments.

2.1.1 Related work
Recalling that our goal was to maintain a synopsis of the

labels that are reachable from a vertex, let us remark that
the normalization step following the step of computing the
weighted sum of the neighbors’ label distribution is crucial
to our algorithm. Labels that are received from multiple (or
highly-weighted neighbors) will tend to have higher mass af-
ter this step, so this step renders the adsorption algorithm
as a classifier in the traditional machine learning sense. In-
deed, the algorithm, as presented is a modification of the
label propagation algorithm of Zhu and Ghahrahmani [16,
15], one of the first papers in the machine learning literature
to consider the problem of semi-supervised classifier design
using graphical models. Zhu and Ghahrahmani also note
that their algorithm is different from a random-walk model
proposed by Szummer and Jaakkola [13]; as we shall see,
there is a very different random walk algorithm that coin-
cides exactly with the adsorption algorithm. The latter fact
has also been noticed independently by Azran [2].

From a scientific standpoint, however, this family of “re-
peated averaging”algorithms have a long history in the math-
ematical literature of differential equations, specifically in
the context of boundary value problems. An archetypal
problem in these areas is to estimate the heat at various
points of a laminar surface superimposed on a 2-d grid, given
its temperature at the boundaries; the most common al-
gorithm here is to repeatedly average the values from the
grid neighbors until the temperatures converge. Indeed, the
natural generalization of this is to replace a grid by an ar-
bitrary graph, with the labeled nodes being the analogue
of the boundary points. However, a graph, in general, is
not a continuous structure and one has to deal with various
anomalies that arise because of this.

2.2 Adsorption via Random Walks
The memoryless property of the adsorption algorithm that

we alluded to earlier immediately leads to a closely related
interpretation. Let us “unwind” the execution of the algo-
rithm from the final round, tracing it backwards.

For a vertex v ∈ V , denote by Nv the probability distri-
bution on the set of neighbors of v described by Nv(u) =
w(u, v)/(

P
u w(u, v)), that is, the probability of u is propor-

tional to the weight on the edge (u, v). The label distribution
of a vertex v is simply a convex combination of the label
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distributions at its neighbors, that is, Lv =
P

u Nv(u)Lu;
therefore, if we pick an in-neighbor u of v at random accord-
ing to Nv and sample a label according to the distribution
Lu, then for each label ` ∈ L, Lv(`) is precisely equal to
Expu[Lu(`)], where the expectation arises from the process
of picking a neighbor u according to Nv. Extending this to
neighbors at distance 2, it is easy to see that for each label
` ∈ L, Lv(`) = ExpwExpu[Lw(`)], where an in-neighbor u
of v is chosen according to Nv and an in-neighbor w of u is
chosen according to Nu. Expanding this out, we see that

Lv(`) =
X
w

X
u

Nv(u)Nu(w)Lw(`).

Notice that Nv(u) is the probability of reaching u from v
in one step of a random walk starting from v and picking a
neighbor according to Nv, and similarly, Nu(w) is the prob-
ability of picking a neighbor w of u according to Nu. Notice
also the crucial use of the Markov property (memoryless-
ness) here, that is, conditioned on the random walk having
reached u, the only information used in picking w is Nu,
which depends only on u, and not on where we initiated the
random walk from.

Finally, note that if the random walk ever reaches one of
the shadow vertices ez, where z ∈ VL, then there is no in-

edge into z, so the random walks stops. Thus vertices in eV
are “absorbing states” of the Markov chain defined by the
random walk. A simple induction now establishes that the
adsorption algorithm is equivalent to the following variation,
described in terms of random walks on the reverse of the
graph G together with the edges from eV to V .

In our exposition below, the algorithm takes a starting
vertex v for the random walk, and outputs a label distribu-
tion Lv for it when it reaches an absorbing state. Thus the
label distribution for each node is a random variable, whose
expectation yields the final label distribution for that vertex.
To obtain label distributions for all vertices, this procedure
needs to be repeated several times for every vertex, and the
average distributions calculated. Clearly, this yields a very
inefficient algorithm; therefore, in practice, we exploit the
equivalence of this algorithm to the averaging Adsorption
algorithm in Section 2.2, which has a very efficient imple-
mentation, especially in parallel computing models.

Algorithm Adsorption-RW

Input: G = (V, E, w), L, VL, distinguished vertex v.

Let eG = (V ∪ eV , E ∪ {(v, ev) | v ∈ VL}, w).
Define w(v, ev) = 1 for all v ∈ VL.
done := false
vertex := v
while (not done) do:

vertex := pick-neighbor(v, E, w)

if (neighbor ∈ eV )
done := true

end-while
u := vertex
Output label according to Lu.

Here, pick-neighbor(v, E, w) returns a node u such that
(u, v) ∈ E (so that there is an edge from v to u in the
reversed graph) with probability w(u, v)/(

P
u w(u, v)).

It is instructive to compare algorithm Adsorption-RW with
typical uses of stationary distributions of random walks on

graphs, such as the PageRank algorithm [3]. In cases like
PageRank, a fixed Markov random walk is considered, there-
fore the stationary probability distribution gives, for each
node of the graph, the probability that the walk visits that
node. In the absence of any absorbing node (and assum-
ing the walk is ergodic), the initial choice of the node from
which the random walk starts is completely irrelevant in de-
termining the probability of reaching any particular node
in the long run. Consequently, these methods do not allow
us to measure the influence of nodes on each other. In our
situation, by contrast, labeled nodes are absorbing states of
the random walk; therefore, the starting point of the walk
crucially determines the probability with which we will stop
the walk at any of the absorbing states. This implies that
we may use these probabilities as a measure of the influence
of nodes on each other.

2.3 Adsorption via Linear Systems
A third view of the algorithm emerges by observing that

the averaging algorithm automatically implies that at each
node v, the final distribution Lv on the label set L is a
convex combination of the Lu’s, where u ∈ VL (transferred
to its shadow eu).

Indeed, one may attempt to describe every node of a graph
as a convex combination of the other nodes in terms of how
similar they are (proximity, neighborhood overlap, etc.), re-
gardless of whether there any labels, etc. This is a very gen-
eral problem with potentially numerous applications (see,
e.g., [7], for some). In fact, doing so would give an embed-
ding of the vertices of the graph into L1 (since each convex
combination can be written as a vector of unit L1 norm in n
dimensions, where n = |V |); this is a topic of active research
in computer science (see [9]). The embeddings resulting from
adsorption are not intended to capture shortest distances
(which is a primary concern in the literature), but have very
closely related and useful properties. A useful side bene-
fit of the embeddings produced via adsorption is that there
is a very natural notion of “continuity” of the embedding:
the image of any node in L1 is a convex combination of its
neighbors’ images. To the best of our knowledge, such em-
beddings have not been studied in the literature, and might
be very useful in certain applications.

It can be shown that by casting the adsorption algorithm
as a system of linear equations, one can obtain precisely such
an embedding. Furthermore, the system of linear equations
has a unique solution if and only if the underlying graph
is connected. This leads us to the third algorithm for the
label propagation problem on graphs, described in this more
general framework. Once we express each vertex as a convex
combination of the other vertices, we may obtain a label
distribution for any vertex by taking a suitable (possibly
scaled) convex combination of the label distributions at the
labeled vertices.

Algorithm Adsorption-LS

Input: G = (V, E, w)
Let n := |V |
Define the linear system of equations in n2 variables Xuv,
for u, v ∈ V : X

v

Xuv = 1 ∀u ∈ V ;X
z:(z,u)∈E

w(z, u)Xzv = Xuv ∀u, v ∈ V.
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The linear system viewpoint offers another natural algorith-
mic approach for label propagation. In addition, it offers
very natural ideas for obtaining computationally efficient
versions of the algorithm. For example, we might restrict
Xuv = 0 if u and v do not have any path of length at most
t, for some parameter t. This has the effect of sparsifying
the linear system of equations, which helps solve it more
efficiently. For the video recommendation algorithm, this
also has a nice semantic interpretation: do not recommend
a video to a user if no other user in a ball of radius of t from
the user has watched it; this helps curb the propagation of
videos that are popular in communities distant to that of a
user, regardless of how popular they are.

Another benefit of the viewpoint in terms of linear sys-
tem of equations is that incremental updates to the label
distributions or addition or deletion of nodes can be easily
accommodated by quickly updating the information for the
relevant neighborhood of the graph.

We conclude this section with the main mathematical
statement, asserting the equivalence of the three adsorption
algorithms.

Theorem 1. Algorithms Adsorption, Adsorption-RW, and
Adsorption-LS are equivalent.

2.4 Injection and Dummy Probabilities
The three equivalent renditions of the algorithm lead to a

number of interesting variations that one may employ. As
already noted, the viewpoint of linear system of equations al-
lows us to restrict which labels are allowed for a given node.
We now point out other interesting variations one may ob-
tain by taking advantage of the alternative interpretations.

Recall the notion of“shadow”nodes ev that acts as a“label-
bearer” for v. A judicious choice of edge weight along the
edge (ev, v) (equivalently, a choice of transition probability
from v to ev in the reversed graph) helps us control precisely
how the random walk behaves; this has a very useful appli-
cation. Consider the application of video recommendation
— suppose we start a random walk at a user u, and trav-
eling along edges, arrive at a video node v. Now the prob-
ability with which we enter the absorbing state ev might be
determined as a function of various features of v — its popu-
larity, freshness, community interest (in terms of discussion,
tagging, etc.), reputation of the user who uploaded it, etc.
Thus, this parameter, which we call the injection probability
is usually a crucial design choice in deploying a live recom-
mendation system. Similarly, in other applications, we have
found that insightful choices of this probability often plays
a significant role in the quality of results.

The next parameter that is very useful in controlling the
behavior of the algorithm is another novel exploitation of
our equivalence theorem. Namely, instead of considering
the standard random walk on an edge-weighted graph, one
may consider a “hobbled walk,” where at each step, with
some probability, which we call the abandonment probabil-
ity or the dummy probability, the algorithm abandons the
random walk without producing any output label. This is
extremely useful, for example, when the random walk visits
a high-degree node. Consider, for instance, a random walk
originating at a user node u in the context of video recom-
mendations. Suppose the random walk, after a few steps,
arrives at a node z in the graph. If z is a video node of high

degree (extremely popular video), taking another step will
almost surely lead the random walk to users who are quite
likely very different from u (since popular videos tend to be
watched by users with no identifiable notion of shared inter-
est). Similarly, if z is a user node of high degree (voracious
user), taking another step might lead to a video that user
u does not care much about (considering that z likely has a
very broad spectrum of interests). To seamlessly integrate
this feature into the algorithm, we introduce the idea of a
“dummy” label, and modify the label distribution at each
node to include the “dummy” label with suitable probability
(usually reflecting the degree of the node).

Our experiments (in this paper and in other applications)
have confirmed that adding a dummy label (equivalently,
abandoning the random walk selectively) is indeed a very
useful feature. It has the interesting side effect of slowing
down the random walk in a quantifiable way: the influence
of a label ` on a node u falls off exponentially in the number
of labeled nodes along paths from nodes that carry ` to u.

3. EXPERIMENTAL SETUP
The raw data for our experiments was collected from live

user views of videos from youtube.com over 92-day period
from July 1, 2007, through September 30, 2007. We picked
a sample of approximately 5.4 million users from a specific
geographic area (so that language, broad subjects of interest,
etc., are likely to be similar). For each of the chosen users, we
collected the list of all videos they watched beyond the 33%
mark; this restriction was applied to approximately confirm
that the user actually liked the video. This resulted in nearly
29 million total views of a set of approximately 4.2 million
videos (some of which may be duplicates). All the data was
extracted in suitably anonymized form, so we were dealing
with a bipartite graph of users and videos (as in Figure 2).

We partitioned the data into two sets — a training set
consisting of all watches from the first 46 days of the eval-
uation period, and a test set consisting of all watches from
the remaining days in the evaluation period. The exact way
in which we used these, and the metrics we employed will
be outlined in Section 3.1. The training set was used to run
all of the recommendation algorithms and to derive the rec-
ommendations based on those watches; the effectiveness of
these recommendations is measured against the test set. We
consider a recommendation of video v to user u successful
if user u had not watched video v in the training period,
but did watch video v in the test period. As is usually done
in information retrieval applications, we will measure (vari-
ants of) precision and recall (respectively, whether the user
watched what the algorithm recommended, and whether the
algorithm recommended everything the user watched). Be-
fore we proceed to the details of the evaluation criteria, we
briefly present a summary of the data sets used.

First, we discarded users if they did not have views during
both the training and the testing periods. Our evaluation
mechanism allows access to the training data for each of
the algorithms, and restricts the algorithm to make recom-
mendations to users based only on this information. If a
user was not present during either of the periods, there is
no way to either make any recommendation or evaluate the
recommendations for that user. Similarly, unless a video was
present in the training period, it cannot be recommended,
and we removed such videos. If a video was present dur-
ing the training period but not during the testing period (it
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is possible that it had been removed from the system), we
do not penalize any algorithm, since this case is easily han-
dled outside the scope of the recommendation system, and
is not a reflection of algorithm performance. After these
operations, we kept approximately 1.1 million users and 1.3
million videos, with approximately 12.5 million watches.

Suppose a user watched a set W1 of videos during the
training period, and a set W of videos in the test period,
and further suppose that the recommendation algorithm,
after being given all data from the training period (for all
users and videos), recommends a ranked list R of videos to
the user. For t = 1, . . . , |R|, let Rt denote the set consisting
of the first t videos in R (in rank order). The following
definitions are standard in information retrieval:

Precision at t, given by precisiont(W, R) = |W ∩Rt|/|Rt|,
and

Recall at t, given by recall t(W, R) = |W ∩Rt|/|W |.
Thus, for each user u who was present in both the training
and testing periods, and legitimate value of t, we obtain a
pair (pu

t , ru
t ) of values2. Naturally, we may average these

across all users to obtain a pair (pt, rt) of values for thresh-
old t. These values form the basis of the in-depth analysis,
including ROC curves (Receiver Operating Characteristic),
Precision-Recall-Threshold curves, and top-rank quality as-
sessment. We will also analyze the coverage over the set of
videos by each recommendation procedure, see Section 4.

3.1 Backtesting Recommendations
We pause to critically analyze our evaluation methodology

via backtesting of the kind outlined, point out the subtleties
and caveats involved, and our rationale for adopting this
method.

When rankings are not available, and the goal of a rec-
ommendation system is to simply entice the user to view
the item of interest, the easiest method to evaluate a rec-
ommendation algorithm is to either run the system in live
service and measure the number of recommendations that
are viewed by users, or to have human raters manually eval-
uate the suggestions. However, both of these approaches
have severe pragmatic difficulties. In our studies, many pa-
rameters settings and algorithm variations were explored;
testing all of them in live service would have been impracti-
cal. The need for running each variation with enough users
for a long enough time to obtain statistically significant dif-
ferences conflicts with the need to ensure that all of our users
get a consistent, good, experience on YouTube. On the other
end of the spectrum, human rating cannot effectively scale
due to the number of videos and algorithm variations at-
tempted.

Perhaps one of the most interesting and challenging as-
pects of our study is the evaluation of the effectiveness of
the suggestions before allowing a live launch. To evaluate
the recommendation systems, we utilize historic log-data
collected on user-video watches. Recall that to train the
recommendations, we used anonymized log data for the first
46 days of the evaluation period. To test the recommenda-
tions, we employ similar log data from the latter half of the
evaluation period.

A seemingly simple method to evaluate an algorithm’s

2If Rt contains all of W (the procedure has recommended
all of the user’s views), then we drop user u in producing
(ps, rs) for s > t, since including them artificially deflates
the precision values without increasing the recall.

suggestions is to measure, for the video recommendations
that would have been made by a system at time T , how
many of the videos were actually seen by a user in the period
[T, . . . , T +E]. However, using historic log data for testing a
recommendation system (whether it is adsorption, or based
on any other technique) must be approached carefully. Some
of the difficulties, and how they are addressed are listed
below.

(1) Hindsight is not 20/20: If a suggestion is made to
a user that the user did not view in the evaluation pe-
riod, marking it incorrect is not necessarily appropriate. If
the recommendation had been shown, the user might have
watched it. The fact that it was not watched may simply be
indicate that it was not discovered by the user.

(2) The number of videos watched in the evaluation pe-
riod varies dramatically by user: in evaluating a recommen-
dation system, evaluation is commonly done at certain set-
tings (i.e. 100 recommendations presented). If the cases
of users watching more/less than the recommended videos
are not handled correctly, all evaluations may be artificially
pessimistic.

(3) Recommendations are made at a single point in time:
in this evaluation, every recommendation system is allowed
to make its recommendations at the beginning of the evalua-
tion period. Information during the evaluation period, such
as new trends, video seen during the evaluation period, and
emerging interests, are not allowed to be considered.

(4) New Videos: because of the rapid growth of the YouTube
repository, many videos will be uploaded in the evaluation
period that were not present in the training set.

(5) New Users: There will be new users who use YouTube
for the first time to view a video during the evaluation pe-
riod. These users will not have recommendations.

The easiest of the cases to handle are (4) New Videos and
(5) New Users. For simplicity in the evaluation of all algo-
rithms, we require that videos and users exist on YouTube
during the training and testing phases of the recommenda-
tion systems in order to be counted in the evaluation. In
deployment, this restriction will not be necessary; all mod-
els will be continuously updated. Note that this constant
retraining also handles problem (3) that recommendations
are made at a single point in time; new video watches and
new popular videos will be taken into account. Despite these
differences, the performance measurement at a single time
point provides valuable information, and at worst underes-
timates the performance levels3.

The problem (2) of users having different number of watched
videos can be addressed in variety of ways, as illustrated in
the following example. User U has watched two videos in
the evaluation period; the Watch set W is {a, b}. Imag-
ine that recommendation system R1 is designed to recom-
mend 5 videos, and it recommends (in the order shown)
{a, c, b, e, f}. A second system, R2, recommends (in the or-
der shown) {a, c, e, f, b}. Let us attempt to evaluate which
recommendation system is better for user U .

It is intuitively tempting to limit the size of the recom-
mended list to at most |W |; if the user watches |W | videos

3Many of the issues associated with recommending new con-
tent are explicitly handled in YouTube through the separate
sections for “New”, “Popular” and “Recommended” videos.
With respect to how soon new users will start receiving ef-
fective recommendations, as will be shown, this can start as
soon as 2-3 videos are watched
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then perhaps we should test our recommendations with |W |
videos. Note that with this size restriction, both R1 and R2

have the same precision and recall (a correct, b incorrect).
If we do not limit the size of the recommended list to |W |,
both have the same recall at 5 recommendations. However,
the performance at the intermediate recommended-list sizes
will differ. Therefore, when displaying the ROC curves for
each algorithm, R1 will appear better for the user than R2

since it ranked U ’s second watch b higher than R2 did. Be-
cause of this added insight into algorithm performance, we
do not scale the size of the recommendations based on |W |
4.

Finally, we need to address issue (1) of hindsight not giv-
ing perfect answers — even looking at historic logs, we do
not know what action a user would have taken had a partic-
ular recommendation been made. Unfortunately, there is no
way to overcome this problem; the precision/recall numbers
that we obtain will not capture the full benefits of any sys-
tem. Nonetheless, they provide meaningful numbers with
which to compare the approaches relative to each other.
They measure which approach better captures the known
actions of the user — even when the user may not have had
perfect information about all of the available videos.

In summary, backtesting provides a way to rank the ex-
pected performance of the suggestions system relative to
each other, given that the users may not ever have full knowl-
edge of the options (videos) available to them. Most impor-
tantly, this ranking can be conducted without subjecting
users to multiple evaluation tests and the associated poten-
tially inconsistent results.

3.2 Algorithms and Variants Tested
We briefly outline the three algorithms that we consid-

ered as good reference points for YouTube recommendations.
While the literature is replete with recommendation algo-
rithms, see for example [10], we have attempted to capture
the fundamental insights of many of them and present a
representative, easily analyzable, and functionally diverse,
set.

The first, most basic, reference algorithm is called GP,
for global popularity . This algorithm first sorts all videos by
their popularity during the training period. When we need
recommendations for a user u, we proceed in order of this
popularity measure, and output top videos that the user has
not watched during the training period. Overall popularity
of a video is an extremely important piece of information
in choosing videos to show users. As a reference, it ensure
that any proposed algorithm gracefully handles the reality
that for most users, many of their video watches correspond
simply to globally popular videos (because they are often
written about in blogs, linked to from emails, featured on the
YouTube homepage, or are otherwise universally appealing).

The second algorithm, called LP (for local popularity)
takes into account the fact that what is globally popular
is poorly personalized for many users. The idea behind
this algorithm is another very commonly employed item-
based-recommendation heuristic, and is based on co-views.
For each video v, compute the list C(v) of videos z that

4Note that analogous arguments can be made for the case in
which |W | > |R|. However, given the time spans used, this
rarely happens in practice, and those cases do not change
the overall results presented. Therefore, we also do make
any special adjustments to handle this scenario.

it was co-viewed with, that is, users who watched v also
watched z (during the training period). Furthermore, for
each video v and video z co-viewed with v, assign a score
c(v, z) given by the number of users who co-viewed v and z.
When we need recommendations for user u, look at the set
W (u) of all videos watched by u during the training period,
and consider the set C(W (u))

.
= {z ∈ C(v) | v ∈ W (u)}

of videos co-viewed with the videos watched by u. For each
z ∈ C(W (u)), assign a score c(u, z)

.
=

P
v∈W (u) c(v, z); sort

this set by total score, and output the first (or the first few)
from this sorted list that user u has not watched already.
This is also easy to implement, and captures a social phe-
nomenon common in many popular recommendation sys-
tems (e.g., Amazon.com’s “users who bought X also bought
Y”).

Even though LP is somewhat personalized for users, it
still suffers from the drawback that it tends to be biased
in favor of generally popular videos. For example, for a
user who has watched videos of a certain soccer player, it
might offer popular soccer videos rather than rarely watched
videos of the soccer player that the user cares more about.
The third and final reference algorithm rectifies this: rather
than define the “co-view score” c(v, z) between videos v and
z to be the number of users who co-viewed v and z, we define
c(v, z) by

c(v, z) = |U(v)∩U(z)|
|U(v)∪U(z)| ,

where U(v) denotes the set of users who watched v during
the training period. As before, we define c(u, z) for user
u and video z to be

P
v∈W (u) c(v, z). We call the resulting

algorithm LR (for local rare). It is easy to see that this algo-
rithm is biased against popular videos, and can be expected
to produce highly personalized suggestions. The scoring for-
mula is the standard Jaccard coefficient, a very commonly
employed similarity function for two sets.

We compare two variants of the adsorption algorithm (with
and without a dummy node) with the reference approaches.
Both variants were implemented using the “averaging ver-
sion” of the adsorption algorithm in the MapReduce pro-
gramming model (Section 2.2) for 20 iterations, at which
time the set of recommendations had largely converged.

Adsorption-N: At each user node, injection probability
and dummy probability are 0; probability of continuing the
random walk is 1. At each video node, injection probability
is 1/4, dummy probability is 0, and probability of continuing
the random walk is 1/2.

Adsorption-D: At each user node, injection probability
is 0, dummy probability is 1/4, and probability of continuing
the random walk is 3/4. At each video node, injection prob-
ability is 1/4, dummy probability is 1/4, and probability of
continuing the random walk is 1/2.

Finally, we point out how the adsorption algorithm is used
for the video recommendation problem. One way to use the
algorithm is to run the algorithm on the user–video view
graph, and use the label distribution derived for each user
as the recommendations; the labels will be the most relevant
videos for that user. An equivalent mechanism is one where
for each user, we collect the distributions computed for each
of her watched videos and take their average. Although
this yields equivalent answers, it has an important benefit:
we can use this procedure to make recommendation to new
users (those that were not in the training set), as soon as
they watch even a single video.
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Due to space restrictions, we do not delve into detail on
the uses of the video–video co-view graph. However, a full
set of experiments were conducted using this graph also; the
results were very close to those presented with the user–
video view graph presented in the next section.

4. EMPIRICAL RESULTS
We now summarize the performance of our algorithm on

the data set harvested from YouTube logs. We ran each al-
gorithm (the reference algorithms and the two variants of
the adsorption algorithm) to produce a list of related videos
for each video node, and for each user, up to 100 recom-
mendations were made, ensuring that the algorithms never
recommended videos already watched during the training
period.

4.1 Reference Algorithms
We begin by presenting the ROC curves — (precision,

recall) pairs obtained for various number of recommended
videos — for the three reference algorithms, see Figure 3.
Let us first note that points with higher precision and lower
recall values correspond to picking the top few (unwatched)
recommendations from the output of an algorithm (the right
hand side of the figure), while points with higher recall and
lower precision values (left hand side of the figure) corre-
spond to using a large number of recommendations from
the output of the algorithm.

Figure 3: ROC for the Reference Algorithms

The first observation, one that is not at all obvious a pri-
ori , is that trends exist at collective and individual video
watches by the YouTube user community. Considering the
relative young age of YouTube, it would not have been sur-
prising if most of the YouTube viewers were casual “one-
off/occasional” viewers, for which anything other than the
most simple models (always predicting the most popular)
would not have yielded improvements. This, coupled with
the fact that our evaluation mechanism is extremely strin-
gent (across two 46-day periods), it is somewhat surprising
that successful recommendations could be made at all.

One may wonder why overall, the precision values appear
quite small. However, this value is deceptive for two rea-
sons. One is that our evaluation is based on the backtesting
paradigm, which is very conservative (it is possible that real
users might have liked a recommendation if they had seen it,

but that cannot be quantitatively evaluated). Secondly, even
a precision value of 1% at top-100 is quite impressive, for
this means that even for users with a very small number of
watches in the test set, we manage to successfully produce at
least one of their videos in the 100 recommendations we pro-
duced. Considering that the distribution of watch frequency
is a typical power-law distribution with mean roughly 5, with
most users watching below average, this is quite surprising.

With its top one recommendation, Algorithm GP achieves
roughly 8.4% precision at 3.2% recall, and with its top 100
recommendations, a recall of 10.6% at a precision of 0.6%.
The success of this simple heuristic with just one recommen-
dation is quite impressive, and sets a strong baseline for our
algorithms to measure against.

The next interesting phenomenon we observe from this
plot is the cross-over of the ROC curves for GP and LR,
which achieves higher recall at lower values of precision.
This suggests that LR can tailor results better for each user,
when it is allowed to make a large number of recommenda-
tions. The conclusion is that if we would like to make a small
number of recommendations, it is better to make suggestions
that are globally popular; and if we are allowed to make a
larger number of recommendations (over time, say), there is
opportunity to take full advantage of co-view statistics, an
encouraging trend.

Finally, LP, which effectively combines these two, dom-
inates both of these reference algorithms nearly uniformly
(except at top-1 position, see Section 4.3), and the gains are
significant.

4.2 Adsorption Algorithms
We now turn to the performance of the adsorption algo-

rithms. For simplicity, we restrict the comparison to LP,
since it is clearly the strongest of the reference algorithms
across nearly the entire spectrum of trade-offs. The ROC
curves for the two variants of the adsorption algorithm,
along with that of LP, are presented in Figure 4.

Figure 4: ROC for the Adsorption Algorithms

First, we note that the performance of Adsorption-D
and Adsorption-N are nearly identical, with slight gains
for the former in the higher precision regime (fewer rec-
ommendations) and slight gains for Adsorption-N in the
higher recall regime (more recommendations). This is con-
sistent with our general intuition that hobbling a random
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walk keeps it closer to the source node, so there is a smaller
chance of topic drift, and hence higher precision. Conversely,
a less inhibited random walk reaches farther, and is able to
achieve a higher recall. The one exception to this general
rule is at position 1, where Adsorption-N has better recall
than Adsorption-D. However, as we shall see shortly (in
the analysis of Figure 5), the picture is more intricate than
would seem at first.

The second clear conclusion from Figure 4 is that at all
operating regions, the adsorption algorithms perform better
than the best baseline. For most values of precision, we
observe a gain of 17% in recall over LP, and for most values
of recall, we observe 21% improvement in precision over LP.
Gains of these magnitudes often translate into several tens
or hundreds of millions of clicks on a system of the scale of
YouTube, and are very valuable.

4.3 Top-1 performance
In recommendation systems, it is natural to expect that

the more information the system has about a user, the better
targeted the recommendations will be. We seek to quanti-
tatively understand the influence of the users’ viewing fre-
quency on the performance of our algorithms. To keep the
discussion rooted to one control parameter (view frequency),
we focus on the performance of the algorithms with respect
to their top recommendation for each user. As we shall see,
this turns out to be an excellent microcosm of the complex
relative behavior of the various algorithms.

When we fix a user, and ask each algorithm to make one
recommendation to this user (that they have not already
watched in the training period), the single bit of information
that determines both precision and recall is whether the user
watched this video during the test period. Therefore, we will
plot the average of this Boolean variable across all users with
a given number of views in the training period. For visual
simplicity, the number of views is rounded to the nearest
power of 10 (so it corresponds to a precisely marked point in
log-scale), and simple smoothing of the graph is performed;
the results are shown in Figure 5.

Figure 5: Precision/Recall at Rank 1

A number of interesting facts emerge from this plot. For
convenience of exposition, we will denote the x-axis param-
eter of this plot consistently as view frequency .

First, note that GP has the best performance for users

who viewed just one video during the training period, but it
quickly degrades as the view frequency increases, becoming
the worst among all the algorithms! This suggests that for
very casual users (who visit a system infrequently), recom-
mending the most popular videos is a useful strategy. How-
ever, for users with very high view frequency, the idea of the
“popular but unwatched” videos is a somewhat questionable
notion (since if something is globally very popular yet they
haven’t watched it, it suggests that they are likely not in-
terested in that genre/topic). Importantly, it also suggests
that as the amount of information about a user increases,
and we are given more chances to recommend videos, we
can do much better than simply recommending the most
popular videos.

Algorithm Adsorption-N has a behavior similar to GP,
and has the best performance among all algorithms for small
values of view frequency. We shall say more on this shortly.

Algorithm LP quite strongly takes into account what the
users have seen, and outperforms GP for users with as few as
5 views. At this range, this algorithm tends to recommend
popular videos that are related to what the user has watched,
for example, popular ones in the same genre (music, sports,
etc.) that the user has exhibited an interest in. The success
of this algorithm continues as the view frequency increases,
but is somewhat modest. On the other hand, it should also
be noted that LP is quite poor for users with a very small
number of views (nearly 20–25% worse than GP).

Algorithm Adsorption-D performs significantly better
as the view frequency increases beyond 5, and the gains be-
come much larger as the view frequency increases further
(nearly 50% better than the nearest competitor at view fre-
quency 100, and over 30% better at view frequency 10).
This algorithm also handles the phase transition from popu-
lar recommendations (view frequency under 5) to personal-
ized recommendations (view frequency between 10 and 100)
better than the others in that it quickly recovers its peak
performance and continues to increase strongly beyond that.

The other interesting fact that emerges from Figure 5 con-
cerns the contrast between the adsorption algorithms with
and without dummy label injection. Going back to Fig-
ure 4, we saw that Adsorption-N performs better than
Adsorption-D with respect to the top recommendation
(highest precision point); what is missing from the aggre-
gate statistic there is the fact that the relative performance
between these two algorithms, even for their top recommen-
dation, depends crucially on what type of user we consider,
as is clear from Figure 5. Most users watch a small num-
ber of videos, so the overall precision-recall point for the al-
gorithms for their top recommendation depends heavily on
the behavior at the lower values of view frequency. In this
regime, algorithms that recommend globally popular videos
tend to do better, but for the heavy tail of the user base —
the significant number of users who watch much more be-
yond the casual user (and the set of users for whom recom-
mendations actually matter) — the more refined algorithm
Adsorption-D has tremendous advantages.

A plot of the form Figure 5 may be considered a “guid-
ance plot” to select among algorithms depending on individ-
ual users’ usage pattern. In the machine learning literature
many methods of combining different models have been pro-
posed [4]. This plot makes selecting between models a triv-
ial process, one based on an easily measurable and intuitive
number: the number of videos a user has seen in the training
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period. The more videos seen, the more confidence we have
in suggesting less common, more specialized-interest videos.

There is another interesting insight into the behavior of
the adsorption algorithm that we may glean from Figure 5,
and this concerns the reason why algorithm Adsorption-N
recommends popular videos for users with a small number of
views, compared to Adsorption-D. Recall that Adsorption-
N performs a less constrained random walk than Adsorption-
D so it reaches a wider set of video nodes — however, since
we only maintain the top 100 labels at each node, the only
ones that survive are those that are encountered frequently
in the random walk, in other words, the popular ones in
the vicinity of the user node. Algorithm Adsorption-D,
by contrast, prunes several paths in the walk, so is able to
explore further along the more relevant paths, leading to
less popular videos. In conclusion, while recommending the
most popular available choice makes sense for users with
just one view, anything beyond one view allows us to do
better than recommending the most popular video (as evi-
denced by Adsorption-N, which does better than GP for
view frequency 2).

Finally, Figure 6 plots precision and recall for Adsorption-
D as a function of the number of recommendations.

Figure 6: PRT for Adsorption Algorithm with
Dummy

Finally, due to space constraints, we omit discussion of
the coverage of the algorithm, namely how much of the set
of videos each of the algorithms has in its bag of all recom-
mendations. These are available in the full version of this
paper, available from the authors.

5. CONCLUSIONS
By using the adsorption algorithm, we were able to im-

prove the expected efficacy of suggestions in YouTube. The
most commonly used heuristics, recommending the overall
most popular videos and/or the most co-watched videos did
not perform as well. Because of the short half-life of videos
on YouTube, the large number of uploads, and the exposure
that users have to new and popular videos, recommend-
ing anything other than commonly viewed videos was not
guaranteed to provide improvement. However, the fact that
trends can be found provides strong evidence not only in
favor of a graph-based algorithm, but that there is indeed

interesting usage information to be mined from YouTube be-
yond the casual viewing of popular videos. Additionally, we
presented a method by which to backtest recommendation
systems through historical log-analysis.

In standard machine learning parlance, we have presented
a simple algorithm that is able to use an underlying graph,
which contains potentially noisy data, unlabeled nodes, and
non-uniform connectivity, to propagate a very large number
of labels to each node. We are currently exploring the use
of this procedure in numerous domains, including advertiser
targeting, product recommendations, labeling web-images,
and detecting threads and story-lines in news stories.
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