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ABSTRACT
Finding the occurrences of structural patterns in XML data is a
key operation in XML query processing. Existing algorithms for
this operation focus almost exclusively on path-patterns or tree-
patterns. Requirements in flexible querying of XML data have mo-
tivated recently the introduction of query languages that allow a
partial specification of path-patterns in a query. In this paper, we
focus on the efficient evaluation of partial path queries, a general-
ization of path pattern queries. Our approach explicitly deals with
repeated labels (that is, multiple occurrences of the same label in a
query).

We show that partial path queries can be represented as rooted
dags for which a topological ordering of the nodes exists. We
present three algorithms for the efficient evaluation of these queries
under the indexed streaming evaluation model. The first one ex-
ploits a structural summary of data to generate a set of path-patterns
that together are equivalent to a partial path query. To evaluate
these path-patterns, we extend PathStack so that it can work on
path-patterns with repeated labels. The second one extracts a span-
ning tree from the query dag, uses a stack-based algorithm to find
the matches of the root-to-leaf paths in the tree, and merge-joins
the matches to compute the answer. Finally, the third one exploits
multiple pointers of stack entries and a topological ordering of the
query dag to apply a stack-based holistic technique. An analysis
of the algorithms and extensive experimental evaluation shows that
the holistic algorithm outperforms the other ones.
Categories and Subject Descriptors: H.2.4 [Database Manage-
ment]: Systems−query processing, textual databases
General Terms: Algorithms.
Keywords: XPath query evaluation, XML

1. INTRODUCTION
Since XML gained wide acceptance as the standard for repre-

senting web data, it became increasingly important to have a lan-
guage that provides flexible query capabilities for extracting pat-
terns from XML documents. Traditionally, a structured query lan-
guage, such as XPath [1] and XQuery [2], is used to specify path-
patterns or tree-patterns against XML data. A distinguishing char-
acteristic of these patterns is that they require a total order for the
elements in every path of the pattern. Recent applications of XML
require querying data where the structure is not fully known to the
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user, or integrating XML data sources with different structures [11,
15, 19, 27]. In order to deal with these problems, query languages
are adopted that relax the structure of a path in a tree pattern. Pop-
ular solutions are keyword-based languages for XML [11, 15] or
structured query languages for XML extended with keyword search
capabilities [4, 19]. However, the first solution has important lim-
itations: (1) structural restrictions cannot be specified in keyword-
based queries, and (2) keyword-based queries return many mean-
ingless answers [29, 20]. The drawback of the second solution is
that it cannot avoid having a syntax which is complex for the sim-
ple user [15, 11, 23]. In any case, in order for all these languages to
be useful in practice, they have to be complemented with efficient
evaluation techniques.

In this paper we consider a query language that allows a partial
specification of path patterns. The queries of this language are not
restricted by a total order for the nodes in the path pattern. This
language is flexible enough to allow on the one side keyword-style
queries with no path structure, and on the other side fully specified
path pattern queries. The language is general enough since in the
general case, queries can be represented only as graphs and not
mere trees. It is important to know that partial path queries can
not be expressed by path-patterns or tree-patterns. Leaving apart
the query answer form question, these queries can be expressed in
XPath with reverse axes (such as parent axis and ancestor axis).

Figure 1: A partial path query

EXAMPLE 1.1. Consider an XML bibliography which contains
several book datasets. These book datasets organize books differ-
ently, grouped either by publisher, or by year, or by author, or by
subject. Suppose that we want to find the authors of a book on the
subject XML, published by O’Reilly in 2007. In addition, we have
the following structural restrictions: (1) author is the child of book;
and (2) book has subject, year, and publisher as its ancestors. Such
query can be easily specified by a partial path query and it is shown
as a directed graph in Fig. 1. For simplicity, we omit value pred-
icates in the query. Using reverse axes, we can specify the query
in XPath as: //book[ancestor :: publisher and ancestor ::
subject and ancestor :: year]/author. However, it is not dif-
ficult to see that this query can not be expressed by a tree-pattern
query.
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Partial path queries constitute an important subclass of XPath
queries, where previous evaluation algorithms for tree-pattern
queries cannot be applied. Note that Olteanu et al. [24, 23] showed
that XPath queries with reverse axes can be equivalently rewritten
as sets of tree-pattern queries. However, this transformation may
lead to a number of tree-pattern queries which is exponential on
the query size. Clearly, it is inefficient to evaluate a partial path
query by evaluating an exponential number of tree-pattern queries.

Finding all the occurrences of structural patterns in an XML tree
is a key operation in XML query processing. A recent approach for
evaluating queries on XML data assumes that the data is prepro-
cessed and the position of every node in the XML tree is encoded
[32, 3, 5, 18]. Further, the nodes are partitioned, and an index of
inverted lists called streams is built on this partition. In order to
evaluate a query, the nodes of the relevant streams are read in the
pre-order of their appearance in the XML tree. Every node in a
stream can be read only once. We refer to this evaluation model as
indexed streaming model. Agorithms in this model [32, 3, 5, 9, 17,
18, 21, 31, 6, 7] are based on stacks that allow encoding an expo-
nential number of pattern matches in polynomial space. However,
these existing algorithms focus almost exclusively on path-patterns
or tree-patterns, therefore they cannot be used directly for partial
path queries.
The problem. We address the problem of evaluating partial path
queries that may contain repeated labels. This problem is com-
plex because the queries in the general case can be directed acyclic
graphs (dags). A straightforward approach for dealing with this
problem would be to produce for a given partial path query Q,
a set of path queries that together compute Q. Such an attempt
faces two obstacles: (a) as mentioned above the number of path
queries may be exponential on the number of query nodes, and
(b) the best known algorithm for evaluating path queries under the
indexed streaming model (PathStack [5]) does not account for re-
peated labels in a path query. To the best of our knowledge, there
are no previous algorithms for this class of queries in the indexed
streaming model.
Contribution. The main contributions of this paper are the follow-
ing:
• We develop an approach, called IndexPaths-R, for evaluating

a partial path query Q. IndexPaths-R generates a set of path
queries P which is equivalent to Q. In order to minimize the
number of queries in P , we exploit a structural summary of data,
called Index Tree, which is similar to a 1-index [22] without ex-
tents. This approach guarantees that every path query in P cor-
responds to an existing pattern in the XML tree and therefore,
returns a non-empty answer when evaluated on the XML tree.

• The path queries produced by the previous approach may contain
repeated labels. To account for repeated labels in the
partial query, we design a new stack-based algorithm, called
PathStack-R for path queries with repeated labels.

• We also develop another algorithm for partial path queries, called
PartialMJ-R. PartialMJ-R extracts a spanning tree from the query
dag. It populates the stacks for all the nodes in the query. How-
ever, it evaluates the path queries defined by every root-to-leaf
path of the query separately. The results are joined together to
produce the final answer. PartialMJ-R in general, has lower com-
plexity than IndexPaths-R. However, it may produce intermedi-
ate solutions, that is, partial solutions that do not make it to the
final answer.

• We present a holistic stack-based algorithm for partial path queries,
called PartialPathStack-R. PartialPathStack-R exploits multiple
pointers of stack entries and a topological ordering of the nodes

in the query dag to match dag patterns directly to the XML tree.
PartialPathStack-R avoids the problem of intermediate solutions.
We provide an analysis of PartialPathStack-R, and identify cases
when it is asymptotically optimal.

• We implemented all three algorithms, and conducted experiments
in benchmark and synthetic data to compare their performance.
The experimental results showed that for partial path queries that
are not mere path patterns, PartialPathStack-R always outper-
forms the other two, while for path queries, its performance is
comparable to PathStack-R

Paper outline. The next section discusses related work. Section 2
overviews the XML data model and the partial path query language
and its properties. In Section 3, we present our three evaluation al-
gorithms. Section 4 presents and analyses our experimental results.
We conclude and discuss future work in the last section.

2. RELATED WORK
In this paper, we focus on the indexed streaming model for the

evaluation of queries. Next, we provide an overview on the relevant
evaluation techniques on XML data.

Previous papers focused on finding matches of binary structural
relationships (a.k.a. structural joins). In [32], the authors presented
the Multi-Predicate Merge Join algorithm (MPMGJN) for finding
such matches. Al-Khalifa et al. [3] introduced a family of stack-
based join algorithms. These algorithms are more efficient com-
pared to MPMGJN, as they do not scan the XML data multiple
times. Algorithms for structural join order optimization were intro-
duced in [30]. Structural join techniques can be further improved
using various types of indexes [9, 17, 31].

The techniques above can be exploited to evaluate a path-pattern
or a tree-pattern query. This task involves the following phases: (a)
decomposing the query into binary structural relationships,
(b) finding their matches, and (c) stitching together these matches.
This approach is inefficient because it generates a large number of
intermediate solutions (that is, solutions do not make it to the an-
swer). To deal with this problem, [5] presented two stack-based
join algorithms (PathStack and TwigStack) for the evaluation of
path-pattern queries and tree-pattern queries without multiple oc-
currences of the same node label in the same query path. Path-
Stack is shown optimal for path-pattern queries, while TwigStack is
shown optimal for tree-pattern queries without child relationships.
Further, [10] shows that without relaxing the indexed streaming
model, it is not possible to develop optimal algorithms for the eval-
uation of tree-pattern queries.

Several papers focused on extending TwigStack. For example,
in [21], algorithm TwigStackList evaluates efficiently tree-pattern
queries in the presence of child relationships. Chen et al. [6] pro-
posed algorithms that handle queries over graph-structured data.
Evaluation methods of tree-pattern queries with OR predicates are
developed in [16]. In [18], the XR-tree index [17] is used to avoid
processing input that does not participate in the answer of the query.

Recently, algorithm Twig2Stack [7] is suggested to evaluate tree-
pattern queries on XML data without decomposing a query into
root-to-leaf path patterns, and it can handle queries with repeated
labels. Nevertheless, Twig2Stack requires multiple visits to stream
nodes, thus, it does not comply with the index streaming model
requirements.

Considerable work has been done on the processing of XPath
queries when the XML data is not encoded and indexed. For ex-
ample, [13] suggested polynomial main memory algorithms for
answering full XPath queries. Under the XML streaming model,
evaluation algorithms for different fragments of XPath, which es-
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sentially represent tree-pattern queries, are presented among others
in [25, 8, 14].

Partial tree-pattern queries were initially introduced in [27]. Their
containment problem was addressed in [28] and semantic issues
were studied in [29]. These papers did not focus on the evaluation
of these queries. Evaluation algorithms are provided in [26] but for
a restricted class of partial path queries that do not allow multiple
occurrences of nodes with the same label. In this paper, we show
how to efficiently evaluate partial path queries with repeated labels
under the index streaming model.

3. PARTIAL PATH QUERY LANGUAGE
In this section, we briefly present the XML data model and the

partial path query language.

3.1 Data Model
An XML database is commonly modelled by a tree structure.

Tree nodes represent and are labelled by elements, attributes, or
values. Tree edges represent element-subelement, element-attribute,
and element-value relationships. We denote by L the set of XML
tree node labels. Without loss of generality, we assume that only
the root node of every XML tree is labeled by r ∈ L. Figure
2(a) shows an XML tree. We denote XML tree labels by lower
case letters. We use subscripts to distinguish nodes with the same
label. The triplets by the nodes in the figure will be explained be-
low. For XML trees, we adopt the region encoding widely used
for XML query processing [32, 3, 5, 18]. The region encoding
associates with every node a triplet (begin, end, level). The be-
gin and end values of a node are integers which can be determined
through a depth-first traversal of the XML tree, by sequentially as-
signing numbers to the first and the last visit of the node. The
level value represents the level of the node in the XML tree. The
utility of the region encoding is that it allows efficiently checking
structural relationships between two nodes in the XML tree. For
instance, given two nodes n1 and n2, n1 is an ancestor of n2 iff
n1.begin < n2.begin, and n2.end < n1.end. Node n1 is the
parent of n2 iff n1.begin < n2.begin,n2.end < n1.end, and
n1.level = n2.level − 1.

(a) (b)

Figure 2: (a) An XML tree T , (b) the index tree of T

3.2 Partial Path Queries
A partial path query specifies a path pattern where the structure

(an order among the nodes) may not be fully defined.
Syntax. In order to define these queries, paths or even trees are not
sufficient, and we need to employ directed graphs.

DEFINITION 3.1. A partial path query is a directed graph whose
nodes are labeled by labels in L, and every node is incident to at

least one edge. There is at most one node labeled by r and this
node does not have incoming edges. Edges between nodes can be
of two types: child and descendant. �

In the rest of the paper, unless stated differently, “query” refers
to “partial path query”. Query nodes denote XML tree nodes but
we use capital letters for their labels. Therefore, a query node la-
beled by A denotes XML tree nodes labeled by a. In order to
distinguish between distinct query nodes with the same label, we
use subscripts. For instance, A3 and A4 denote two distinct nodes
labeled by A. If Q is a query, and X and Y are nodes in Q, the ex-
pressions X/Y and X//Y are called structural relationships and
denote respectively a child and descendant edge from X to Y in Q.

Figure 3 shows four queries. Child (resp. descendant) edges are
shown with single (resp. double) arrows. Query Q1 is a partial path
query which is also a path query since the structural relationships
in the query induce a total order for the query nodes. Notice that
a query graph can be disconnected, e.g. query Q4 in Figure 3(d).
Notice also that no order may be defined between two nodes in a
query, e.g. between nodes A and C in Q3, or between nodes A1

and A2 in Q4.

(a) (b) (c) (d)

Figure 3: Queries (a) Q1, (b) Q2, (c) Q3, (d) Q4

Semantics. The answer of a partial path query on an XML tree
is a set of tuples. Each tuple consists of tree nodes that lie on the
same path and preserve the child and descendant relationships of
the query. More formally:

An embedding of a partial path query Q into an XML tree T is
a mapping M from the nodes of Q to nodes of T such that: (a) a
node in Q labeled by A is mapped by M to a node of T labeled
by a; (b) the nodes of Q are mapped by M to nodes that lie on the
same path in T ; (c) ∀ X/Y (resp. X//Y ) in Q, M(Y ) is a child
(resp. descendant) of M(X) in T .

We call image of Q under an embedding M , denoted M(Q), a
tuple that comprises all the images of the nodes of Q under M .
Such a tuple is also called solution of Q on T . The answer of Q on
T is the set of solutions of Q under all possible embeddings of Q
to T .

Consider query Q2 of Figure 3. Notice that Q2 is syntactically
similar to a tree-pattern query (twig). However, the semantics of
partial path queries is different: when query Q2 is a partial path
query, the images of the query nodes R, A1 and C1 should lie on
the same path on the XML tree.

Clearly, we can add a descendant edge from node R to every
node that does not have incoming edges in a query without altering
its meaning. Therefore, without loss of generality, we assume that
a query is a connected directed graph rooted at R. Figure 4 shows
the queries of Figure 3 in that form.

Obviously, if a query has a cycle, it is unsatisfiable (that is, it
does not have a non-empty answer on any database). Detecting the
existence of cycle in a directed graph can be done in linear time on
the size of the graph. In the following, we assume that a query is a
dag rooted at node R.
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(a) (b) (c) (d)

Figure 4: Queries (a) Q1, (b) Q2, (c) Q3, (d) Q4

4. QUERY EVALUATION ALGORITHMS
In this section, we present three difference approaches for evalu-

ating partial path queries.

4.1 IndexPaths-R: Leveraging Structural In-
dexes and Path Query Algorithms

Our first approach, called IndexPaths-R, endeavors to leverage
existing algorithms for path queries [5]. It exploits a structural sum-
mary of data, called index tree, to generate a set of path queries that
together are equivalent to a partial path query. In order to evaluate
these queries, it extends Algorithm PathStack of [5] so that it can
work on path queries with repeated labels.

4.1.1 Generating Path Queries from Index Trees
Given an XML tree T , an index tree I for T is an 1-index 1 [22]

without pointers to the XML data (i.e., without extents). Because I
has no extents, its size is usually insignicant compared to the data
size. Fig. 2(b) shows the index tree for the XML tree of Fig. 2(a).

Given a query Q and an index tree I , we can generate a set P of
path queries that is equivalent to Q by finding all the embeddings
of Q into I . For example, Fig. 5 shows all the possible mappings
of the query Q3 of Fig. 4(c) on the index tree of Fig. 2(b) (there are
two of them) and the corresponding path queries. There is a one
to one correspondence between the nodes of a path query and the
nodes of Q.

PROPOSITION 4.1. Let T be an XML tree and I be its index
tree. Let also Q be a partial path query and P = {P1, . . . , Pn} be
the set of path queries generated for Q on I . Then, the answer of
Q on T is the union of the answers of all the Pis on T .

The proof is straightforward. Any of the two algorithms pre-
sented later in this paper can be used to find the embeddings of a
query to an index tree. However, even a naive approach would be
satisfactory given the size of an index tree.

In practice, the number of the path queries for the query Q is
expected to be small. However, in extreme cases, it can be expo-
nential on the number of nodes in Q. Nevertheless, any one of the
path queries represents a pattern that appears in T . Therefore, it
will return a non-empty answer when evaluated on T .

4.1.2 An Algorithm for Path Queries with Repeated
Labels

Algorithm PathStack [5] optimally computes answers for path
pattern queries under the indexed streaming model (cf. Section 1).
However, the class of queries considered is restricted in that nodes
in a query are assumed to have unique labels. The PathStack algo-
rithm associates every query node with one stack and one stream
11-indexes coincide with strong DataGuides [12] when the data is
a tree.

(a) embedding 1 (b) embedding 2

Figure 5: Two embeddings of query Q3 of Fig. 4(c) on the index
tree of Fig. 2(b) and the corresponding path queries

of tree nodes. For a path query with repeated labels, extending
PathStack with multiple streams for each query label (one for each
query node with this label) would violate the indexed streaming
model requirements, since one stream node might be visited multi-
ple times during the evaluation. Therefore, we designed Algorithm
PathStack-R, which extends PathStack by allowing nodes with the
same label to share the same stream.
Notation. Let Q be a path query, q be a node in Q, and l be a label
in Q. Function nodes(Q) returns all nodes of Q; label(q) returns
the label of q in Q. Boolean function isLeaf(q) returns true iff q is
a leaf node in Q. Function parent(q) returns the parent of q in Q;
occur(l) returns all nodes in Q labeled by l; label(Q) returns the set
of node labels in Q.

With every distinct node label l in Q, we associate a stream Tl of
all nodes (positional representation) labeled by l in the XML tree.
The nodes in the stream are ordered by the their begin field (cf.
Section 3.1). To access sequentially the nodes in Tl, we maintain
a cursor Cl, initially pointing to the first node in Tl. For simplic-
ity, Cl may alternatively refer to the node pointed by cursor Cl in
Tl. Operation advance(Cl) moves Cl to the next node in Tl. Func-
tion eos(Cl) returns true if Cl has reached the end of Tl. Cl.begin
denotes the begin field in the positional representation of node Cl.

We associate a stack Sq with every query node q in Q. A stack
entry in Sq consists of a pair: (positional representation of node
from Tlabel(q), pointer to an entry in the stack of q’s parent). The
expression Sq.k denotes the entry at position k of stack Sq. We
use the following stack operations: push(Sq ,entry) pushes entry
on Sq ; pop(Sq) pops the top entry from Sq; and top(Sq) returns the
position of the top entry of Sq.
PathStack-R. Algorithm PathStack-R is presented in Algorithm 1.
PathStack-R gradually constructs matchings to Q and compactly
encodes them in stacks, by iterating through stream nodes in as-
cending order of the begin values. Thus, the query nodes are matched
from the query root to the query leaf.

In line 2, PathStack-R identifies the stream node to be processed.
Line 3 calls cleanStacks to remove partial matchings that cannot
become final solutions.

Line 5 (moveStreamToStack) is an important step, which is also
the key difference from PathStack. It determines whether the iden-
tified stream node Cl qualifies for being pushed on stack Sq, where
q is a query node labeled is L. The stream node Cl can be pushed
on stack Sq iff (1) q is the root, or (2) q is not the root and the struc-
tural relationship between Cl and the top stack entry of q’s parent
p satisfies the structural relationship between p and q in the query.
This ensures that stream nodes that do not contribute to answers
will not be stored in the stacks and processed. Since Q can contain
repeated labels, it is possible that l matches more than one node in
Q and thus Cl can be pushed to more than one stack. Note that the
order of pushing Cl to stacks is important. As discussed, in order
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Algorithm 1 PathStack-R
1 while ¬end() do
2 l = getNextQueryLabel()
3 cleanStacks(Cl )
4 for every q ∈ occur(l) in the descending order do
5 moveStreamToStack(l, q)
6 if isLeaf(q) then
7 showSolutions(Sq )
8 pop(Sq)
9 advance(Cl )

Function end()
1 return ∀ q ∈ nodes(Q): isLeaf(q) ⇒ eos(Clabel(q))

Function getNextQueryLabel()
1 return l ∈ labels(Q) such that Cl.begin is minimal

Procedure cleanStacks(Cl)
1 for (q in nodes(Q)) do
2 pop all entries in Sq whose nodes are not ancestors of Cl in the

XML tree
Procedure moveStreamToStack(l, q)

1 p = parent(q)
2 if (q is not the query root and empty(Sp)) then
3 return
4 if (q is the query root) or (p//q ∈ Q or Sp.top(Sp).level = Cl.level-1)

then
5 push(Sq , (Cl, pointer to Sp.top(Sp)))

to determine if Cl can be pushed on a stack, the parent stack will be
checked. In order to prevent Cl from ‘seeing’ its own copy in the
parent stack, moveStreamToStack should be called on the matched
nodes in their descending order in Q (line 4). We illustrate this by
an example below.

Whenever an incoming stream node Cl is pushed onto the stack
of the leaf node, procedure showSolutions iteratively produces so-
lutions encoded in stacks (line 6-8). The details are omitted here
and can be found in [5].

EXAMPLE 4.1. Consider a path query Q5 on the data path
shown in Fig. 6. The input streams for a and b are: Ta={a1, a2},
Tb = {b1, b2, b3}. Initially, the two cursors Ca and Cb point to
a1 and b1 respectively. When a1 is read, it is not pushed on SA2,
since the push condition (line 2 in moveStreamToStack) is not sat-
isfied: the stack SB2 is empty. When b2 is read, it is pushed first
on stack SB2 and then on SB1. If we do not follow this sequence
and push b2 on SB1 first, then b2 will not be pushed on SB2 any-
more (line 4 in moveStreamToStack). This would result in miss-
ing one solution for Q5. Finally, after a2 is read and pushed on
SA2, procedure showSolutions is invoked to output the query an-
swer {a1b1b2a2, a1b2b3a2}.

Analysis of IndexPaths-R. Given a node q in a path query Q, we
call the path from the root of Q to q the prefix path of q. Given a
stream node x of an XML tree T , we say that x matches q iff x is
the image of q under an embedding of the prefix path of q to T .

PROPOSITION 4.2. Let q be a query node in Q and x be a
stream node with the same label. x is pushed on stack Sq by Algo-
rithm PathStack-R iff x matches q.

As a result of Proposition 4.2, Algorithm PathStack-R will find
and encode in stacks all the partial or complete (q is a leaf node
in Q) solutions involving x. When at least one complete solution
is encoded in the stacks, procedure showSolutions is invoked to
output them. Therefore, Algorithm PathStack-R correcly finds all
the solutions to Q.

Given a path query Q and an XML tree T , let input denote
the sum of sizes of the input streams, output denote the size of the

Figure 6: PathStack-R running example

answers of Q on T , height denote the height of T , and maxOccur
denote the maximum number of occurrences of a query label in Q.

The time complexity of PathStack-R depends mainly on the num-
ber of calls to moveStreamToStack, and the time to produce an-
swers. For each stream node, procedure moveStreamToStack is in-
voked at most maxOccur times, and each invocation takes O(1).
As Algorithm PathStack-R does not generate any intermediate so-
lutions, the time it spends on producing all the answers is pro-
portional to output. Therefore, PathStack-R has time complexity
O(input × maxOccur + output).

The space complexity of PathStack-R depends mainly on the
number of stack entries at any given point in time. Since the worst-
case size of any stack in PathStack-R is bounded by min(height,
input), PathStack-R has space complexity O(min(height, input)×
|Q|).

THEOREM 4.1. Algorithm PathStack-R correctly evaluates
path queries with repeated labels. It has time complexity
O(input × maxOccur + output) and space complexity
O(min(height, input) × |Q|).

The time complexity of IndexPaths-R is the product of the time
complexity of PathStack-R and the number of path queries in P .

4.2 PartialMJ-R: a Partial Path Merge Join
Algorithm

Given a partial path query Q, Algorithm PartialMJ-R extracts
a spanning tree of Q. Then, it finds matches for all root-to-leaf
paths of the spanning tree against the XML tree by using Algorithm
PathStack-R.

The solutions for each path of the spanning tree are merge-joined
by guaranteeing that (a) they lie on the same path in the XML tree,
and (b) they satisfy the structural relationships that appear in the
query graph and not in the spanning tree.

Fig. 7(b) shows the graph of a query Q6, and Fig. 7(c) shows a
spanning tree Qs of Q6. Edge B5//A6 of Q6 is missing from Qs.
Any two solutions from the two root-to-leaf paths of Qs that are on
the same path of the XML tree can be merged to produce a solution
for Q6, if they satisfy the identity conditions on R and A1 and the
structural condition B5//A6.

PartialMJ-R is shown in Algorithm 2. Compared to PathStack-
R, PartialMJ-R has two additional important steps: (1) Line 1 pro-
duces a spanning tree for the given partial path query and records
the set of structural relationships presented in the query but are
missing in the spanning tree; and (2) whenever a set of solutions
for a root-to-leaf path in the spanning tree is produced, they are
merge-joined with solutions produced earlier using Procedure join-
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(a) (b) (c)

Figure 7: (a) data path (b) query Q6 (c) Q6’s spanning tree Qs

Algorithm 2 PartialMJ-R
1 create a spanning tree Qs of Q. E denotes the set of edges in Q which

do not appear in Qs

2 while ¬end() do
3 l = getNextQueryLabel()
4 cleanStacks(Cl )
5 for every q ∈ occur(l) in the descending order do
6 moveStreamToStack(l, q)
7 if isLeaf(q) then
8 showSolutionsWithBlocking(Sq )
9 joinPathSolutions()

10 pop(Sq)
11 advance(Cl )

Procedure joinPathSolutions()
1 merge-join the solutions of the root-to-leaf paths of Qs that are pro-

duced in the current loop (lie on the same path of the XML tree) and
satisfy the structural relationships in E

PathSolutions (line 9). When Q is a path, Algorithm PartialMJ-R
reduces to PathStack-R.

Compared to the approach IndexPath-R, Algorithm PartialMJ-R
also evaluates the query by populating query stacks in one single
pass of input streams. Nevertheless, this approach may generate
many intermediate solutions that are not part of any final answer.
A solution is called intermediate, if either it cannot be merged with
any other solutions on a same data path or it does not satisfy struc-
tural conditions in Q that are not present in Qs.

Considering evaluating the query Q6 of Fig. 7(b) on the data of
Fig. 7(a), four partial solutions are produced: {ra1c2b3a4, ra1d5b6,
ra4d5b6, ra1c2b3a7} in order of their construction. Among them,
the first and fourth are solutions for the path RA1C2B4A6 and the
rest are solutions for the path RA1D3B5. The third solution can-
not be merged with the first and fourth solutions, since the identity
condition on R and A1 is not satisfied. The first cannot be merged
with the second, since the structural relationship between b6 and
a4 does not satisfy B5//A6. Therefore ra1c2b3a4 and ra4d5b6

are intermediate solutions. The answer of Q6 is {ra1c2d5b3b6a7}.
Clearly, the intermediate solutions affect negatively on the worst

case time and space complexity for PartialMJ-R.

4.3 PartialPathStack-R: a Holistic Algorithm
To overcome the problem of intermediate solutions of Algorithm

PartialMJ-R, we developed a holistic stack-based algorithm called
PartialPathStack-R for the evaluation of partial path queries. In
contrast to PartialMJ-R, PartialPathStack-R does not decompose
a query into paths, but tries to match the query graph to an XML
tree as a whole. Also, unlike PathStack-R, PartialPathStack-R ex-
ploits multiple pointers per stack entry to avoid redundantly storing
multiple copies of stream nodes in different stacks.

4.3.1 Preliminaries
A partial path query Q can be represented as a dag rooted at R.

Let q be a node and l be a label in Q. Since now we are dealing with
graphs, we replace the functions isLeaf(q) and parent(q) of Section
4.1.2 with the functions isSink(q) and parents(q) respectively. An
additional function children(q) returns the set of child nodes of q
in Q. The rest of the functions are similar to those defined for
Algorithm PathStack-R.

As with PathStack-R, we associate every distinct node label l
with a stream Tl and maintain a cursor Cl for that stream. Unlike
PathStack-R, we now associate a stack Sl with every distinct node
label l. The structures of a stack entry are now more complex in
order to record additional information.

Before describing the data structures used by stack entries, we
define an important concept, which is key to the understanding of
the PartialPathStack-R algorithm.

DEFINITION 4.1. Let Q be a partial path query, q be a node in
Q, and T be an XML tree. The sub-dag of Q that comprises q and
all its ancestor nodes is called prefix query of q and is denoted as
Qq. We say that a node x in T plays the role of q if x is the image
of q under an embedding of Qq to T .

For every role that a stream node can play, we maintain a chain
of pointers and record in the chain the nodes that play this role.

Let p1, . . . , pk be the parent nodes of all nodes labeled by l in Q.
Note that it is possible that for some or all of these pis, label(pi) =
l. An entry e in stack Sl has the following three fields:
(1) nl: the positional representation of a node from Tl.
(2) ptrs: a set of k pointers labeled by p1, . . . pk. Each pointer
denotes a position in a stack. A pointer labeled by pi points to an
entry in stack Slabel(pi). It is possible that a pointer is null. It is
also possible that an entry has multiple pointers to the same stack.
In this case, these pointers are labeled by different query nodes.
(3) prevPos: an array of size |occur(l)|. Given a node q ∈
occur(l), prevPos[q] records the position of the highest entry in
Sl below e that plays the role of q (i.e., prevPos[q] points to the
previous entry in the chain). If q is the only node labeled with l,
prevPos[q] refers to the entry just below e.

The bottom of each stack has position 1. The expression Sl.k
denotes the entry at position k of stack Sl. The expression Sl.k.pi

refers to the position of the entry in stack Slabel(pi) pointed to by
the pointer labeled pi in the entry Sl.k.

With every stack Sl, we associate an array lastPosl of size
|occur(l)|. The field lastPosl[q] records the position of the high-
est stack entry in Sl that plays the role of node q (the beginning of
the chain). If q is the only node labeled with l, lastPosl[q] refers
to the top entry in stack Sl.
4.3.2 PartialPathStack-R

Algorithm PartialPathStack-R is presented in Algorithm 3. A
key feature of PartialPathStack-R is that it employs a topological
order of the query nodes, i.e., a linear ordering of nodes which
respects the partial order induced by the structural relationships of
the query. This order is exploited when producing query answers.
In the algorithm, query nodes of Q are indexed from 1 to |Q| based
on their position in the topological order.

Algorithm PartialPathStack-R calls in line 5 procedure getRoles(l).
For a stream node Cl under consideration, getRoles(l) finds all the
roles that Cl can play and records the information in an object
which is finally returned to the algorithm. More specifically, for
each query node q in occur(l), Cl plays the role of q iff for each q’s
parent p, there exists an entry e in the stack Slabel(p) such that the
structural relationship between e and Cl satisfies the structural rela-
tionship between p and q in the query (line 8-17). Note that we can
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Algorithm 3 PartialPathStack-R
1 create a topological order 1..n of the query nodes in Q, and identify

each node by its topological order.
2 while ¬end() do
3 l = getNextQueryLabel()
4 cleanStacks(Cl )
5 e = getRoles(l)
6 if (R == l or e.ptrs �= ∅) then
7 push(Sl, e)
8 O = ∅
9 for (q ∈ occur(l)) do

10 if (isSink(q) and lastPosl[q] �= 0) then
11 O += {q}
12 if (O �= ∅ and ∀ q ∈ nodes(Q): isSink(q) ⇒ lastPoslabel(q)[q]

�= 0) then
13 if (n ∈ O) then
14 outputSolutions(O, n, lastPoslabel(n)[n])
15 else
16 i = lastPoslabel(n)[n]
17 repeat
18 outputSolutions(O, n, i)
19 i = Slabel(n).i.prevPos[n]
20 until (i==0)
21 advance(Cl )

Function 4 getRoles(l)
1 e = newStackObject(l)
2 if (R == l ) then
3 lastPosR[1]=1 /*we are at the root node*/
4 else
5 for (q ∈ occur(l)) do
6 pptrs = ∅
7 hasRole = true
8 for ( p ∈ parents(q)) do
9 i = lastPoslabel(p)[p]

10 entry = Slabel(p) .i
11 if (i �= 0) then
12 if (p/q ∈ Q) and (entry.level �= Cl.level+1) then
13 hasRole = false
14 else
15 hasRole = false
16 if (hasRole) then
17 pptrs += {pointer labeled by p to entry}
18 if (hasRole) then
19 e.ptrs += pptrs
20 e.prevPos[q] = lastPosl[q]
21 lastPosl[q] = top(Sl)+1
22 return e

efficiently find the entry e through the value of lastPoslabel(p)[p]
(line 10) without exhaustively visting the stack entries. If Cl plays
the role of q, a set of labeled pointers to all q’s parents is generated
and recorded (line 19). The values of lastPosl[q] and prevPos[q]
are accordingly updated as well (line 20-21).

PartialPathStack-R uses the information returned by getRoles(l)
to determine if the stream node Cl is qualified for being pushed on
its stack Sl. The stream node Cl can be pushed on its stack iff it
plays at least one role w.r.t a query node in occur(l) (line 6-7). By
populating stacks in this way, we ensure that at any given point in
time, the nodes in stacks represent partial solutions that could be
further extended to final solutions as the algorithm goes on.

The timing for producing solutions is important in order to avoid
generating duplicate solutions. Whenever node Cl that plays the
role of a sink node in the query (lines 9-11) is pushed on a stack,
and for every sink node in the query there is an entry in the stacks
that plays this role (line 12), it is guaranteed that the stacks con-
tain at least one solution to the query. Subsequently, procedure

Procedure 5 outputSolutions(outputSinkNodes, curNode,
stackPos)

1 solution[curNode] = stackPos
2 m = curNode-1
3 if (curNode = 1) then
4 output(Slabel(1) .solution[1],...,Slabel(n) .solution[n])
5 else if (m ∈ outputSinkNodes) then
6 outputSolutions(outputSinkNodes, m, lastPoslabel(m)[m])
7 else if (isSink(m)) then
8 i = lastPoslabel(m) [m]
9 repeat

10 outputSolutions(outputSinkNodes, m, i)
11 i = Slabel(m) .i.prevPos[m]
12 until (i==0)
13 else
14 i = minargc {Slabel(c).solution[c].m}, c ∈ children(m)
15 repeat
16 outputSolutions(outputSinkNodes, m, i)
17 i = Slabel(m) .i.prevPos[m]
18 until (i==0)

outputSolutions (Procedure 5) is invoked to output all the solu-
tions that involve Cl (lines 14 and 18). Note that since every time
solutions are produced, they involve the newly pushed node Cl,
PartialPathStack-R does not generate duplicate solutions.

Procedure outputSolutions gradually produces the nodes in each
solution in an order that corresponds to the reverse topological or-
der of the query nodes. This way, the image of a query node is
produced in a solution after the images of all its descendant nodes
in the query are produced. Procedure outputSolutions takes three
parameters: outputSinkNodes, curNode, and stackPos. A solu-
tion under construction by outputSolutions is recorded in an ar-
ray solution indexed by the query nodes. The image of curNode
recorded in solution[curNode] is the position of an entry in stack
Slabel(curNode). WHen recursively processing the next query node
curNode-1, denoted as m, we consider three cases:
(1) If m is in outputSinkNodes (which implies m is a sink node),
we output solutions that involve the last qualified entry in stack
Slabel(m) (line 6).
(2) If m is a sink node not in outputSinkNodes, we output solutions
that involve all the qualified entries in stack Slabel(m) (line 7-12).
(3) If node m is an internal query node, the highest entry e in stack
Slabel(m) that can be used in a solution as an image of m is the
lowest ancestor in the XML tree of the images of the child nodes
of m in the query. Since the child nodes of m have already been
processed, their images are recorded in solution. Entry e is identi-
fied by the lowest position in stack Slabel(m) pointed to by pointers
from stack entries that are images of the child nodes of m in the
solution under construction (line 14). The chain of entries that play
the role of m in stack Slabel(m) starting with e are used as images
of m for constructing solutions (lines 15-18).

Note that if there is a child relationship from m to another node,
only a single recursive call to outputSolutions needs to be invoked.
We omit the details in the algorithm for the interest of space.

EXAMPLE 4.2. Fig. 8 shows a running example for Partial-
PathStack-R, where the stack for the query root R is not shown for
simplicity. We do not show the lastPos and prevPos of query
nodes with a single occurrence in the query. We use for Q6 the
topological order: R, A1, C2, D3, B4, B5, A6. The input streams
are Ta: {a1, a4, a7}, Tb: {b3, b6}, Tc: {c2}, and Td: {d5}. The
initial value for the input stream cursors Ca, Cb, Cc, and Cd in that
order is a1, b3, c2, d5. Fig. 6(a) shows the state of the stacks after
a4 is read. At this point, there is no entry in stack Sa that plays the
role of A6. Therefore lastPosa[A6] is 0. Similarly, lastPosb[B5]
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Figure 8: PartialPathStack-R on Q6 and data in Fig. 7(a)

for stack Sb is 0, since the entry b3 can only play the role of B4.
Since a4 plays the role of A1, its prevPos[A1] field points to the
lower entry a1 in Sa that plays the role of A1. Fig. 6(b) shows the
state of stacks after a7 is read. As a7 plays the role of A6, the entry
for a7 has two outgoing pointers which respectively point to b3 and
b4 in stack Sb, and its stack position is recorded in lastPosa[A6].
Since A6 is a sink node of Q6, a7 triggers the generation of so-
lutions. Note that when A1 is processed by outputSolutions, a1 is
chosen as a value for A1 in the solution under construction, since
a1 has lower position than a4 in stack Sa (line 13 in outputSolu-
tions). The final answer for Q6 is {ra1c2d5b3b6a7}.

4.3.3 Analysis of PartialPathStack-R.
PROPOSITION 4.3. A stream node x is pushed on stack Sl iff x

plays the role of a query node labeled by L.
It is easy to see that for each stream node x stored in stack Sl, the

above proposition along with Definition 4.1 ensures that Algorithm
partialPathStack-R will find all solutions in which x matches one
of its roles.

Given a query Q and an XML tree T , let indegree denote the
maximum number of incoming edges to a query node and outdegree
denote the maximum number of outgoing edges from a query node.
Other parameters are the same for the analysis of IndexPaths-R.

Since PartialPathStack-R does not generate any intermediate so-
lutions, the time complexity of PartialPathStack-R depends mainly
on the number of calls to getRoles and outputSolutions. For each
stream node, getRoles takes time O(indegree×maxOccur). Pro-
cedure outputSolutions spends O(outdegree) on each query node,
since in line 13 it computes the lowest stack position among the en-
tries of the children of the query node. Thus it takes O(outdegree×
output) to produce all the solutions. Therefore, PartialPathStack-
R has time complexity O(input × indegree × maxOccur+
outdegree× output).

The space complexity depends mainly on how many entries are
stored in stacks at a given point in time and the number of point-
ers associated with these entries. The total number of stack en-
tries at any time is O(min(height, input)). For each stack en-
try, the maximum number of outgoing pointers is O(indegree ×
maxOccur). Therefore, the number of pointers in stacks is bounded
by min(height, input) × indegree × maxOccur.

THEOREM 4.2. Algorithm PartialPathStack-R correctly evalu-
ates a partial path query Q on an XML tree T . The algorithm

uses O(min(height, input)×indegree×maxOccur) space and
O(input× indegree×maxOccur+outdegree×output) time.

Based on the above theorem, PartialPathStack-R is asymptotically
optimal if the indegree, outdegree, and maxOccur of the query
are bounded by a constant. Clearly, for the case of a query whose
dag is a tree, only the outdegree and maxOccur need to be bounded
by some constants for PartialPathStack-R to be asymptotically op-
timal.

5. EXPERIMENTAL EVALUATION
We ran a comprehensive set of experiments to measure the per-

formance of IndexPaths-R, PartialMJ-R and PartialPathStack-R. In
this section, we report on their experimental evaluation.
Setup. We evaluated the performance of the algorithms on both
benchmark and synthetic data. For benchmark data, we used the
Treebank XML document2. The XML tree of Treebank consists of
around 2.5 million nodes having 250 distinct element tags, and its
depth is 36. For synthetic data, we generated random XML trees,
using IBM’s AlphaWorks XML generator3. The number of distinct
element tags used in all synthetic trees was fixed to 5. For each
measurement on synthetic data, five different XML trees with the
same number of nodes were used. Each value displayed in the plots
is averaged over these five measurements.

Fig. 9 shows the queries used in our experiments. Queries Q1 to
Q4 include only descendant relationships, while queries Q5 to Q8

include child relationships as well. Our query set comprises a full
spectrum of partial path queries, from simple path-pattern queries
to complex dag queries. The queries are appropriately modified for
the Treebank dataset, so that they can all produce solutions. Thus,
node d2 is removed, and node labels r, a, b, c and d are changed to
File, S, V P , NP and NN , respectively.

We implemented all algorithms in C++, and ran our experiments
on a dedicated Linux PC (AMD Sempron 2600+) with 2GB of
RAM.

r

a1

a2

c1

b1

b2

c2

( )

( )

( )
d1

d2

( )

(a) Q1(Q5)

r

a1

a2

c1

b1

b2

c2

( )

( )

d1

d2

( )( )

(b) Q2(Q6)

r

a1

a2 b1

c1

c2

b2

( )

( )

d1

d2

( )

( )

(c) Q3(Q7)

r

a1

c2a2

c1

( ) ( )
b1

b2

( )

d1

d2

( )

(d) Q4(Q8)

Figure 9: Partial path queries.

Execution time on fixed datasets. We measured the execution
time of IndexPaths-R, PartialMJ-R and PartialPathStack-R for eval-
uating all queries in Fig. 9 on Treebank and on two synthetic
2http://www.cis.upenn.edu/ treebank
3www.alphaworks.ibm.com/tech/xmlgenerator
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datasets, SD1 and SD2. All trees in SD1 have depth 12 and
consist of 1.5 million nodes. All trees in SD2 have depth 20 and
consist of 1 million nodes. For path-pattern queries Q1 and Q5, we
also measured the execution time of PathStack-R.

Fig. 10(a), 10(b) and 10(c) present the evaluation results. Fig.
10(d) shows the number of results obtained per query in each dataset.
Algorithm PartialPathStack-R is efficient for all types of queries.

As expected, IndexPaths-R, PartialMJ-R and PartialPathStack-R
perform almost as fast as PathStack-R in the case of the path-pattern
queries Q1 and Q5.

The execution time of algorithm IndexPaths-R is high for queries
with a large number of path queries generated from the index tree,
that is, for queries Q3, Q4, Q7 and Q8.

The performance of both PartialMJ-R and PartialPathStack-R in
all datasets is affected by the number of solutions. This confirms
our complexity results that show dependency of the execution time
on the input and output size. In the case of queries Q2 and Q4

on SD2 (Fig. 10(c)), where the number of solutions is high (Fig.
10(d)), the execution time of PartialMJ-R strongly increases.
Execution time varying the input size. We measured the execu-
tion time of IndexPaths-R, PartialMJ-R and PartialPathStack-R for
evaluating queries Q2, Q4 and Q8 of Fig. 9 on random XML trees
of various sizes. Fig. 11 presents the execution time and the results
obtained on XML trees whose node stream sizes vary from 0.5 to
2.5 million nodes. The depth of the XML trees is 12.

PartialPathStack-R clearly outperforms IndexPaths-R and Parti-
alMJ-R regarding queries Q2 and Q4 (IndexPaths-R is out of range
in Fig. 11(b)). For query Q8, the performance of PartialPathStack-
R is similar to that of PartialMJ-R. This is due to the small number
of results produced (Fig. 11(f)).

An increase in the input size results in an increase in the output
size (Figures 11(d), 11(e) and 11(f)). Also, when the input and the
output size go up, the execution time of all algorithms increases
(Figures 11(a), 11(b) and 11(c)). This confirms the complexity re-
sults that show dependency of the execution time on the input and
output size.

In the experimental evaluation of query Q4, the output size (Fig.
11(e)) increases sharper than in the evaluation of query Q2 (Fig.
11(d)). The execution time of PartialPathStack-R is only slightly
higher in the evaluation of Q4 (Fig. 11(b)) than in the evaluation of
Q2 (Fig. 11(a)). In contrast, the execution time of PartialMJ-R is
strongly affected.

6. CONCLUSION
In this paper, we addressed the problem of evaluating partial path

queries with repeated labels under the indexed streaming model.
Partial path queries generalize path-pattern queries and are useful
for integrating XML data sources with different structures and for
querying XML documents when the structure is not fully known
to the user. Partial path queries are expressed as dags and can be
specified in XPath with reverse axes.

We designed three algorithms for evaluating partial path queries
on XML data. The first algorithm, IndexPaths-R, exploits a struc-
tural summary of data to generate an equivalent set of path pat-
terns of a partial path query and then uses a stack-based algorithm,
PathStack-R, for evaluating path-pattern queries with repeated la-
bels. The second algorithm, PartialMJ-R, extracts a spanning tree
from the query dag and uses PathStack-R to find the matches of
the root-to-leaf paths in the tree. These matches are progressively
merge-joined to compute the answer. Finally, the third algorithm,
PartialPathStack-R, exploits multiple pointers of stack entries and a
topological ordering of the nodes in the query dag to apply a stack-

based holistic technique. To the best of our knowledge, PartialPathStack-
R is the first holistic algorithm that evaluates partial path queries
with repeated labels. We analyzed to the three algorithms and con-
ducted extensive experimental evaluations to compare their perfor-
mance. Our results showed that PartialPathStack-R has the best
theoretical value and has considerable performance superiority over
the other two algorithms.

We are currently working on extending our approaches for evalu-
ating partial tree-pattern queries under the indexed streaming model.
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Figure 10: Evaluation of various types of queries for fixed datasets.
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