
Investigating Web Services on the World Wide Web
Eyhab Al-Masri and Qusay H. Mahmoud
Department of Computing and Information Science

University of Guelph, Guelph, ON, N1G 2W1 Canada

{ealmasri,qmahmoud}@uoguelph.ca
ABSTRACT
Searching for Web service access points is no longer attached to
service registries as Web search engines have become a new
major source for discovering Web services. In this work, we
conduct a thorough analytical investigation on the plurality of
Web service interfaces that exist on the Web today. Using our
Web Service Crawler Engine (WSCE), we collect metadata
service information on retrieved interfaces through accessible
UBRs, service portals and search engines. We use this data to
determine Web service statistics and distribution based on object
sizes, types of technologies employed, and the number of
functioning services. This statistical data can be used to help
determine the current status of Web services. We determine an
intriguing result that 63% of the available Web services on the
Web are considered to be active. We further use our findings to
provide insights on improving the service retrieval process.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability - Distributed
objects, Interface definition languages; H.3.5 [Information
Systems]: Online Information Services – Commercial services,
Data sharing, Web-based services.

General Terms

Management, Design, Measurement, Performance, Verification.

Keywords
UDDI, UDDI Business Registries, Crawler, Web Services,
Searching, Crawling, WSCE, WSDL, Interface, Service Portals.

1. INTRODUCTION
At the heart of service-oriented computing is a Web service
registry that connects and mediates service providers with clients.
Web service registries extend the concept of an application-
centric Web by allowing clients or applications to access a wide
range of Web services that match specific search criteria. Without
publishing Web services through registries, clients will not be
able to locate them in an efficient manner, and service providers
will have to devote extra effort in advertising these services
through other channels.

In recent years, several Web service portals or directories have
emerged such as WebServiceList [1], RemoteMethods [2],
WSIndex [3], and XMethods.net [4]. However, due to the fact that
these Web-based service directories fail to adhere to original Web
services’ standards such as UDDI, it is likely that they become

vulnerable to being unreliable sources for finding or interacting
with Web services, and can easily become disconnected from the
Web service environments as in the cases of BindingPoint,
Woogle, and SalCentral which closed their service portals after
many years of exposure. Apart from having service portals, there
have been numerous efforts that attempt to improve the discovery
of Web services [5,6], however, many of them have failed to
address the issue of handling discovery operations across multiple
UBRs and other heterogeneous environments. In addition,
publishing services across multiple heterogeneous sources (i.e.
UDDI, service portals, or search engines) adds another level of
complexity with respect to service providers managing and
administering them.

Other trends for finding services have also emerged in recent
years. Search engines such as Google, Yahoo, AlltheWeb and
Baidu have become a new source for finding Web services.
However, search engines do not recognize the significance for
publishing service information on the Web in such a manner that
meets the basic service properties (i.e. binding information,
operations, ports, service endpoints, among others).

In addition, search engines generally crawl Web pages from
accessible Web sites and since publicly accessible WSDL
documents reside on Web servers, they are likely to be fetched by
these crawlers. Crawling Web sites for capturing WSDL
documents to be indexed by search engines implies that they
could be treated as Web pages. However, there are key
differences that exist between the structure of Web pages and
Web services that make such crawlers unreliable sources for
capturing service information. Furthermore, Web-based search
engines simply cache or store WSDL documents but they do not
provide any business-centric models or adhere to original Web
service standards such as the service-oriented computing find-
bind-execute paradigm. Nonetheless, search engines may
potentially become in the near future very valuable technologies
for publishing, searching, and invoking services on the Web.

Based on the above, we conclude that there is a need to establish a
targeted Web service crawler engine that can potentially be used
for Web services discovery that fits a proper Web services
architecture. In this work, we make the following contributions:

• We examine the potential of using service registries for the
discovery of Web services versus Web-based search engines,
and vice versa.

• We introduce the notion of a targeted Web Service Crawler
Engine (WSCE) [7,8,9]. WSCE actively crawls accessible
UBRs and search engines to collect business and Web service
information. WSCE can also be used for performing service
metrics and finding relevant Web services. By continuously
crawling existing Web service resources available on the
Web, the system is capable of maintaining up-to-date Web

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

795

WWW 2008 / Refereed Track: Web Engineering - Web Service Deployment Beijing, China

service information, and therefore rendering an effective Web
service retrieval.

o We run several experiments on a large dataset consisting of
the plurality of Web services that can be accessed on the
Web today.

o We collect and analyze results and present various statistics
including how many services are accessible; how many are
functioning; object size distribution; and technology trends
in employing Web services.

The rest of this paper is organized as follows: Section 2 describes
some of the related work. In Section 3 the methodology of our
research is discussed. Section 4 describes the architecture of
WSCE. Section 5 discusses some of the main requirements and
challenges for crawling Web services. Results and evaluation
from WSCE are discussed in Section 6. Section 7 describes some
of the challenges in the discovery of services. Finally conclusion
and future work are discussed in Section 8.

2. RELATED WORK
Discovery of Web services is of an immense interest and is a
fundamental area of research in ubiquitous computing. Many
researchers have focused on discovering Web services through a
centralized UDDI registry [10,11,12]. Although centralized
registries can provide effective methods for the discovery of Web
services, they suffer from problems associated with having
centralized systems such as a single point of failure, and
bottlenecks. In addition, other issues relating to the scalability of
data replication, providing notifications to all subscribers when
performing any system upgrades, and handling versioning of
services from the same provider have driven researchers to find
other alternatives.

Other approaches focused on having multiple public/private
registries grouped into registry federations [6,13] such as
METEOR-S for enhancing the discovery process. METEOR-S [6]
provides a discovery mechanism for publishing Web services over
a federated registry sources but, similar to the centralized registry
environment, it does not provide any means for advanced search
techniques which are essential for locating appropriate business
applications. In addition, having a federated registry environment
can potentially provide inconsistent policies to be employed
which will significantly have an impact on the practicability of
conducting inquiries across the federated environment and can at
the same time significantly affect the productiveness of
discovering Web services in a real-time manner across multiple
registries.

Other approaches focused on the use of text document matching
[14,15] and mainly depend on analyzing the frequency of terms.
Other research attempts focused on schema matching [16,17]
which try to understand the meanings of the schemas and suggest
any related matches. Other research studies examined the
potential of using supervised classification and unsupervised
clustering for Web services [18], artificial neural networks [19],
or unsupervised matching at the operation level [20].

Some other approaches focused on the peer-to-peer framework
architecture for service discovery and ranking [21], providing a
conceptual model based on Web service reputation [22], and
providing keyword-based search engine for querying Web
services [23]. However, these approaches provide a very limited
set of search capabilities (i.e. search by business name, business

location, etc.) that would make it impractical for clients to
perform proper service queries tailored to their needs.

Although keyword matching methods (i.e. broad, phrase, exact,
and negative) may partially support the discovery of Web
services, they do not provide clients with efficient ways for
articulating proper service queries (i.e. consider input/output
values of service operations). In addition, the lack of having the
appropriate methods and tools to search for Web services
contributes significantly to the scarcity in determining the current
status of Web services.

Very little research is conducted on investigating Web services on
the Web. In [28], the authors provide an exploratory study on
Web services on the Web. The study provides some details and
statistics from Web services collected throughout the Web via
Google API such as operation analysis, size analysis, words
distribution, and function diversity analysis. However, the study
does not provide a complete view of Web services on the Web
and focuses only on a single search engine. This may provide
only a cross section of what is available on the Web today and
therefore may provide inaccurate or misleading conclusions. In
addition, the number of services claimed constitutes only 67% of
our dataset.

In another effort, authors in [31] describe a programmatic
approach to Web service brokerage and provide some statistics on
the available services in their Merobase repository. However, the
study does not provide any statistical analysis on the number of
functioning services or how they were collected. It is imperative
to determine if the number of services collected is from a single
service resource on the Web or from multiple environments. In
addition, using WSCE, we have been able to collect a larger
selection of Web services than Merobase which accounts only
60% of our dataset. In addition, the study does not provide any
details on how many services were functioning, how they were
collected, or any historical distribution.

Recently, some Web-based directories such as RemoteMethods or
WebServiceList focused on providing simple service portals
based on a keyword search paradigm of Web service descriptions.
However, due to the fact that organizations can develop custom
taxonomies created for specialized use within a business which
serves as a tagging mechanism for UDDI service entries with
critical metadata, it becomes apparent that simple keyword search
methods are inefficient. For example, this metadata is not well
organized or the keyword search method does not capture the
underlying semantics of this metadata, Web service data will not
be easily discovered and therefore, results will not yield
meaningful information. In fact, if Web service-related data
cannot be understood, its functionality is considered non-existing
or misleading. In addition, a user who is not able to determine the
context of a given Web service (i.e. the host location, how it is
supported, etc.), then the user will not be able to effectively
interact with the Web service.

3. METHODOLOGY
The procedure of our research consists of: (1) building a database
for the majority of Web service resources that are accessible
including UBRs, service directories/portals, and search engines
indices; (2) building the necessary tools to automatically crawl
service resources and collecting Web service information
including metadata and WSDL documents; (3) recursively parse
the underlying Web service interfaces; (4) verify and validate the

796

WWW 2008 / Refereed Track: Web Engineering - Web Service Deployment Beijing, China

number of accessible Web services; and (5) analyze retrieved
Web services by obtaining service metadata, WSDL documents,
supported protocols, serviceability, types of technologies
employed, among others.

Although there are several sources that are widely used in the
research community for accessible Web sites such as Alexa Inc.
[29] and Stanford WebBase project [30], there is very little or no
known source that provides comprehensive list of sources for
accessible Web services. Prior to building the necessary tools to
crawl service resources using the Web Service Crawler Engine
(WSCE), it was necessary to first build a set of available
resources that provide a list of Web services that can later be used
as the input to our experiments. By combining lists of Web
services from these available Web service resources, we are able
to achieve a much larger dataset and aggregate a much larger
number of Web services. Unfortunately, studies such as [28] have
primarily focused on a particular Web service resource, a cross
section of services available over the Web today, or do not clearly
state how services were collected [31] which may not provide a
comprehensive statistical analysis on all possible resources and
hence may provide inaccurate or misleading results or
conclusions.

4. Web Service Crawler Engine (WSCE)
Applying Web crawling techniques to Web service definitions or
WSDL files, and business registries or UBRs may not be efficient,
and the outcome of our research was an enhanced crawler
targeted for Web services. The crawler should be able to handle
WSDL files, and UBR information concurrently. In addition to
that, the crawler should be able to collect this information from
multiple registries and storing them into a centralized repository,
the Web Service Storage (WSS) [9]. WSS serves as a central
repository where data and templates discovered by the Web
Service Crawler Engine (WSCE) are stored. WSS represents a
collection or catalogue of all business entries and related Web
services.

WSS plays a major role in the discovery of Web services in many
ways: first: it enables for the identification of Web services
through service descriptions and origination, processing
specification, device orientation, binding instructions, and registry
APIs; second: it allows for the query and location of Web services
through classification; third: provides means for the service life-
cycle tracking; fourth: provides dynamic service invocation and
binding; fifth: provides means for the advanced search queries;
sixth: enables the provisioning of Web services by capturing
multiple data types, and seventh: provide means for the advanced
business notification for Web services. The WSS also takes
advantage of some of the existing mechanisms that utilize
context-aware information using artificial neural networks [19]
for enhancing the discovery of Web services.

Our approach in implementing this conceptual discovery model
shown on Figure 1 is a process-per-service design in which
WSCE runs each Web service crawl as a process that is managed
and handled by the WSCE’s Event and Load Manager (ELM).
The crawling process starts with dispensing Web services into the
WsToCrawl queue. WSCE’s SeedWs list contains hundreds or
thousands of Web services with their corresponding access points.

WSCE begins with a collection of Web services and loops
through taking a Web service from WsToCrawl queue. WSCE
then starts analyzing Web service information located within the

registry, tModels, and any associated WSDL information through
the Analysis Module (AM). WSCE stores this information into
WSS after processing it through the Indexing Module (IM). IM is
primarily responsible for building data structures over textual
information contained within WSDL interfaces or UDDI objects
(i.e. businessEntity, businessService, bindingTemplate, tModels,
among others). After completion, WSCE adds an entry of the
Web service (using serviceKey) into VisitedWs queue. More
details on the complete architecture and components of WSCE
can be found in [7,9].

4.1 Web Service Resources
Finding information about Web services is not strictly tied to
UBRs. There are other standards that support the description,
discovery of businesses, organizations, service providers, and
their Web services which they make available, while interfaces
that contain technical details are used for allowing the proper
access to those services. For example, WSDL describes message
operations, network protocols, and access points to addresses used
by Web services; XML Schemas describe the grammatical XML
structure sent and received by Web services; WS-Policy describes
general features, requirements, and capabilities of Web services;
UDDI business registries describe a more business-centric model
of Web services; WSDL-Semantics (WSDL-S) uses semantic
annotations that defines the meaning of inputs, outputs,
preconditions, and effects of operations described by a Web
service interface. The following sections briefly describe the
plurality of the possible resources for collecting Web services on
the Web.

4.1.1 UDDI Business Registries (UBRs)
UBRs are used for publishing and discovering Web services into
registries. There are several key UBRs that currently exist and
were used for this method including: Microsoft, XMethods, SAP,
National Biological Information Infrastructure (NBII), among
others.

4.1.2 Web-based
Web-based crawling involves using an existing search engine API
to discover WSDL files across the Web such as Google and
Yahoo search APIs. Using this method, a crawler engine can

Figure 1. Web Service Crawler Engine (WSCE)

797

WWW 2008 / Refereed Track: Web Engineering - Web Service Deployment Beijing, China

continuously parse search results from an existing search engine
when looking for Web services throughout their indices. This
involves the use of search engine specific features to collect Web
service information. For example, Google Search API [26]
provides a way to search for files with any extension such as
WSDL, DISCO, or WSIL. There were several key search engines
indices that were used for crawling these types of service resource
including: Google, Yahoo, AlltheWeb, and Baidu.

4.1.3 File Sharing
File sharing tools such as Kazaa and Emule provide search
capability by file types. Similar to search engines, file sharing
tools may provide a way to collect Web services. However, unlike
search engines, peer-to-peer file sharing platforms provide
variable network performances, the amount of information being
shared is partial, and availability of original sources could not be
guaranteed at all times which prompted us to exclude this method
from crawling.

4.1.4 Service Portals or Directories
One possible method for collecting Web services is through Web-
based service directories or portals such as Woogle [20],
WebServiceList [1], RemoteMethods [2], and others. Capturing
Web services from service portals requires public access to their
repositories or building custom crawlers designed to capture Web
service data from each portal independently which prompted to
exclude this method from WSCE. In addition, the majority of
Web services listed within these directories were either indexed
by search engines or listed in existing UBRs. Unfortunately,
many of these Web-based service portals do not adhere to the
Web service standards, and therefore it becomes impractical to
use them for crawling Web services.

4.2 Dataset
Web service information is not strictly tied to service interfaces.
UDDI provides a more business-centric structure for publishing
service and business information while other defined Web service
resources only provide ‘links’ or access points to service
interfaces or WSDL documents. Therefore, a Web service is not
simply a WSDL document, but rather other metadata information
that were carefully considered when creating service registry
specifications such as UDDI or ebXML. However, for the
purpose of this study, only WSDL documents are considered
since the majority of services were obtained through search
engines.

We developed a crawling strategy that would accommodate each
service resource in which we obtained a list of 7,591 possible
Web service interfaces. However, it was necessary to refine this
crawling strategy due to inconsistent search results obtained from
these resources or their inability to validate the integrity of service
references stored in their databases. Therefore, it was necessary to
apply several intelligent crawling techniques to filter out
inaccurate services. Through the refined technique, we were able
to obtain 5,077 unique WSDL references. Additional filtering
techniques were necessary to determine the number of valid
service interfaces for which we have built three types of crawler
tools: (1) VerifyWS, (2) ValidateWS, and (3) MetaCollector.

4.3 Tools
The crawling tools consist of a verifier, validator, and metadata
collector. A Web service is passed to the WSCE crawler tools

after a resource is examined. Crawlers are used to build the
backend index for search engines by following links from one
page to another. However, Web service crawling is relatively
distinctive from Web page crawling (later discussed in Section 7).

4.3.1 VerifyWS
After crawling Web services of a particular resource as shown in
Figure 1, WSCE uses the VerifyWS (via InitWs) to determine
whether a WSDL reference is an active URL or not. Once a
service reference is verified, the crawler compiles a hierarchical
list of WSDL references that are considered to have active URLs
and passes it to the ValidateWS.

4.3.2 ValidateWS
Referencing a WSDL document in a UBR or having a link
appearing in a search engine result does not necessarily imply that
the reference reflects an actual or real service interface.
Therefore, it is often necessary to continue filtering the crawling
process to validate the content of a WSDL document and
determine whether it is a real service interface or not. ValidateWS
(via RequestWS) validates a service interface URL by parsing the
content and performs a series of tests to determine the
grammatical structure of a service interface. ValidateWS is the
first step that enables WSCE to begin indexing and analyzing
service information (Figure 1) and/or any possible measurements
that could apply such as QoS metrics [27]. Once a service
interface is validated, the crawler compiles a hierarchical list of
WSDL references that are considered to be functional services
and begins collecting any associated metadata.

4.3.3 MetaCollector
Once the validation of a WSDL document is complete, the
MetaCollector (via GetWs) begins capturing information
contained within the interface (i.e. operation names, message
names, among others) and any additional information provided by
the resource. If a resource is determined to be a UBR, the crawler
through the MetaCollector intelligently begins capturing service
and business information from the registry. If the resource is
determined to be a search engine results, it captures all possible
information that a search engine can retrieve (i.e. summary
snippet, cache size, title, among others).

5. WSCE DESIGN CHALLENGES
Based on our experience with implementing WSCE and given the
proliferation and change rate of Web services, service crawlers
need to take into consideration many factors and challenges that
are discussed in this section.

5.1 Types of Web Services to Download
At many instances, crawlers cannot retrieve or download all Web
services that exist on the Web. At some instances, service
providers may require authentication for clients to browse through
their service registries as in the case of the US Environmental
Protection Agency UDDI Registry in which access to the registry
is protected and controlled based on roles. However, this is
similar to situations in which Web crawlers attempt to crawl
secure content on the Web in which they must authenticate in
order to download Web pages within secured locations. Given this
fact, it is important for a Web services’ crawler to carefully select
and identify the sources and types of Web services and to retrieve
those that are considered important first so that the fraction of
Web services retrieved over the Web is more meaningful.

798

WWW 2008 / Refereed Track: Web Engineering - Web Service Deployment Beijing, China

5.2 Crawler Update
At many instances, service providers may update their Web
services including description and WSDL information. Crawlers
need to be able to update or revisit Web services periodically in
order to determine changes that may have taken place and update
the collection of downloaded information. In order for a crawler
to achieve a particular refresh status, it needs to determine a
collection of Web services that must be revisited while skipping
those that are considered less frequently updated. To illustrate
how the update rate works, a crawler will take into consideration
those Web services that are often updated in which case it will
revisit them more frequently.

5.3 Scalability
As the number of Web services increases, having one crawler
engine or WSCE may not be efficient. In this case, it would be
desirable to provide a mechanism for distributing crawlers across
multiple machines. This process is often necessary to download a
large number of Web services across one or more UBRs, service
portals, or search engines. Therefore, there is a need for a
mechanism that organizes the coordination between these
crawlers so that they do not download the same information
multiple times.

5.4 Load Minimization
At many instances, a crawler may need to collect Web services
from existing UBRs or Web servers. In this case, the crawler will
consume resources that belong to other organizations who may
complain or block access by the crawler. To avoid such cases, the
crawler has to be intelligent enough to minimize the load on
network and other organization resources.

6. RESULTS
In this section we present results and statistics about collected
Web services during one of the routine daily crawls of WSCE
described in Section 4. The dataset is distributed among 4
machines, running experiments simultaneously. Each machine
has a 3.1 GHz Pentium IV running on Windows 2000. Table 1
provides details of the dataset with respect to the resources used
to collect Web services.

Table 1. Dataset for WSCE
 UBRs Search Engines
Crawled Services 1405 3672
Execution Time (sec) 3640 4300
Total Crawled Services 5077 services

6.1 Service Growth and Distribution
The total number of Web services crawled in one of WSCE’s
latest crawls is 5077 services, the majority of which can be found
through search engines. Results from an earlier crawl by WSCE
in October 2006 show that the number of services collected
through UBRs significantly exceeded that of search engines.

Search engines have grown significantly in the last few months
providing a much larger number of Web services compared to
earlier crawls by WSCE. In fact, comparing the number of
services from October 2006 to the time this paper is written
(October 2007), the number of Web services collected through
WSCE in October 2007 is approximately 10.4 times larger (with
respect to UBRs) while the growth rate of Web services through
UBRs was only ridiculously insignificant when compared to

search engines. Table 2 compares the number of Web services
from two different WSCE crawls.

Table 2. Historical service distribution (2006 and 2007)
 October ‘06 October ‘07 Growth Rate

UBRs 1248 1405 + 12.6 %
Search Engines 951 3672 + 286 %
Total 2199 5077 + 131 %

Table 2 shows the growth rates for services for one year. During
this period, a significant number of services captured using
WSCE through search engines. During October 2006, search
engines comprised of approximately 43% of the available services
during a WSCE crawl. However, the growth rate for search
engines with respect to indexing services has grown significantly
in which 72% of the services during a recent WSCE crawl are
captured through search engines (Tables 1 and 2). In addition, the
growth rate of search engines in terms of finding WSDL
references has grown by 286% while those of UBRs grew by only
12.6%. Furthermore, the 131% overall increase in the number of
services over this year period demonstrates that Web services are
becoming more popular. On the contrary, this significant increase
reflects the slow growth of UDDI since its formation.

Nonetheless, supporting UDDI and enabling organizations to self-
operate and manage their own service registries is evident as new
operating systems, applications, and APIs are equipped within
built in functionalities or tools for allowing businesses or
organizations to create their own internal service registries for
intranet and extranet use such as Enterprise UDDI Services in
Microsoft Windows 2003 Server, IBM WebSphere Application
Server, Systinet Business Service Registry, jUDDI, to name a
few. However, many service vendors such as Salesforce and
others are not using UDDIs due to existing limitations which
gradually led to the creation of Web-based service portals (i.e.
Salesforce AppExchange/Force.com, XMethods.net, and
ESynaps.com) and potentially using Web-based search engines
(i.e. Google, Baidu, Yahoo) for Web service discovery.

Such slow growth in the number of UBRs and the fast growth of
search engines in providing references to available services may
provide the potential of having search engines as the next major
player to discovering Web services on the Web. Whether the
number of service registries, service portals, or service interfaces
increases, the fact remains that discovering and selecting Web
services through a standard, universal access point facilitated by a
targeted Web services’ crawler is inherent and inevitable.

6.2 Verifying WSDL Interfaces
After collecting Web service interfaces, it is important to
determine the number of active URLs. Therefore, for every Web
service collected, a verification test is applied using the VerifyWS
component of WSCE. Web services that fail the verification test
are excluded from additional steps within WSCE (i.e. indexing
module, analysis module, etc.). Table 3 presents a breakdown of
the result from the VerifyWS crawling tool.

Table 3. VerifyWS crawling test results
 UBRs Search Engines Total
Active URL 661 3372 4033
Inactive URL 744 300 1044
Total 1405 3672 5077

Of the 5077 Web service interfaces collected, 79% of them are

799

WWW 2008 / Refereed Track: Web Engineering - Web Service Deployment Beijing, China

considered to have active links. Figures 2 and 3 present active
URLs WSDL distribution for UBRs and search engines,
respectively.

UBRs Active URLs Distribution

47%

53%

Active URLs Inactive URLs

Figure 2. WSCE verification test results for UBRs

As can be seen from Figure 2, the number of inactive URLs
exceeds that of active ones. Based on the data collected through
UBRs, many of the services published through them were mostly
for testing purposes, and hence may contain inaccurate
information. At many instances, service metadata information
collected through UBRs contained irrelevant service descriptions
or did not have any relevant details. Unfortunately, due to the fact
that many of the information contained within UBRs is not
accurate, it consumed more resources when performing tests and
took longer to execute which is reflected by execution time for
UBRs in Table 1, and can be interpreted by the high percentage of
inactive links.

Although the number of Web services crawled from each
approach varies, Web-based search engine results appear to have
a much higher percentage of active links for WSDL documents
than UBRs due to a variety of reasons most importantly that
search engines have an update interval that checks for any
outdated links and hence exclude them from returned search
results. Unfortunately, registration for accessible UBRs is
voluntary and therefore many access points may be broken or
outdated since no such mechanism exists that can determine the
validity of access points at the time of registration or continuously
checks for any outdated links.

Search Engines Active URLs Distribution

92%

8%

Active URLs Inactive URLs

Figure 3. WSCE verification test results for search engines

As can be seen in Figure 3, information collected through search
engines does not imply that links provided in their search results
can always be assumed to have active links. In fact, 8% of
returned results contained outdated or inactive URLs. The
majority of the 300 inactive URLs were mostly captured from
Yahoo’s and Baidu’s search engine results. Google and
AlltheWeb had very few inactive URLs in their search result
which indicates that their crawlers visit Web sites and crawls
pages more often.

6.3 Validating WSDL Interfaces
After excluding inactive WSDL files based on our verification
test, we apply a validation test that determines the number of
interfaces that represent real Web service implementations. For
example, having an active URL for a WSDL document does not

imply that the URL reflects an actual Web service interface and it
could be an XML or HTML file with the same file extension. This
step helps amplify WSDL documents in order to remove any files
with “WSDL” extension but do not conform an actual WSDL file
schema. In addition, the validation step (which uses ValidateWS
component) guarantees to remove any redundant Web service
interfaces fetched during the crawling process. Furthermore,
ValidateWS helps determine the number of Web services per host
(i.e. domain name), and the number of Web services fetched from
a particular domain type (i.e. commercial, network, organization,
among others). The results from the ValidateWS crawling test are
shown in Table 4.

Table 4. ValidateWS crawling test results
 UBRs Search Engines Total
Valid 242 2942 3184
Invalid 419 430 849

Total 661 3372 4033

Of the 4033 Web services that passed our VerifyWS step, 79% of
them are considered valid service interfaces and conform to a
WSDL schema. Figures 4 and 5 present valid WSDL distribution
for UBRs and search engines. However, as discussed in earlier,
search engines were not designed for collecting information about
Web services, and therefore, they do not offer a complete solution
for discovering Web services. Search engines only provide
pointers to access points (or WSDL documents) which is one of
the many components in the overall Web services architecture.

UBRs Valid WSDL Distribution

37%

63%

Valid WSDL Invalid WSDL

Figure 4. WSCE validation test results for UBRs

Results from Figure 4 coincide with those in Figure 2. Although
the majority of Web services contained in UBRs during the
verification test were inactive URLs, this fact is also true when
validating active URLs. Only 37% of the 661 Web services that
could be verified can be validated as valid WSDL documents.
This indicates that only 17% of the Web services initially
collected through UBRs after the first crawling process can be
considered actual Web service implementations.

Search Engines Valid WSDL Distribution

87%

13%

Valid WSDL Invalid WSDL

Figure 5. WSCE validation test results for search engines

As can be seen in Figure 5, using search engines, 87% of the
verified Web services were successfully validated. This indicates
that 80% of the Web services initially collected through
accessible search engines after the first crawling process can be
considered functional. Although this percentage represents an

800

WWW 2008 / Refereed Track: Web Engineering - Web Service Deployment Beijing, China

error value of 20% (or 730 services), it is nonetheless high. By
combining these findings, we determine that the success rate of
finding a real or functional service implementation is 63% which
implies that searching for Web services can become time
consuming. Furthermore, from these findings, we note that
additional amplification steps will provide more consistent search
results but they do not involve any measures as to the relevancy
of finding a Web service of interest.

Due to the fact that the majority of service interfaces collected
contained little or no documentation of what they offer, it
becomes challenging and time consuming to discover relevant
Web services. Although statistics from our experiments show that
search engines may provide a much larger selection for finding
Web services, they may become vulnerable to returning irrelevant
search results mainly due to the fact that information retrieval
techniques applied to Web pages could not simply be used for
Web services and may fail to retrieve relevant results. When
looking for appropriate Web services, clients look for those that
meet their requirements particularly the overall functionality and
Quality of Service (QoS) [27].

6.4 HTTP Status Distribution
We believe that investigating HTTP status distribution for
collected Web services in our dataset can provide an overview of
the current status of Web services. HTTP status distribution can
also provide many details such as how many services need
authentication prior to consuming them, fail to execute properly,
could not be found, or have network related issues (i.e. down
time, server unavailability, among others). Table 5 provides a
breakdown of the HTTP status codes for WSDL documents after
the WSCE verification test (using VerifyWS crawling tool).

Results from Table 5 show that the majority of errors for both
UBRs and search engines occur in the “Remote Server Error”
which could be due to a variety of reasons such as the remote host
was down at the time this test has taken place or some other
network failure. In both approaches, WSCE was able to verify the
majority of Web services as in the case of UBRs in which 661
Web services were verified (which accounts for 47% of crawled
Web services) and in the case of search engines in which 3372
Web services were successfully verified (which accounts for 92%

of crawled Web services). However, WSCE verification test
shows that 16.44% of Web services in UBRs contain an inactive
or broken links while this condition accounts for only 1.09% of
Web services crawled through search engines. This is due to the
fact that search engines have a higher refresh rate that would
eventually exclude broken links while UBRs do not enforce such
mechanism and therefore UBRs may contain a much higher
number of outdated or broken links than search engines.

6.5 WSDL Size Distribution
We believe that the WSDL file distribution could provide an
overview of the current status of Web services on the Web, their
magnitude, level of complexity, and file size comparison to Web
pages. To achieve this task, an additional WSDL-content test was
performed to determine the average size of WSDL documents that
were successfully crawled and Figure 6 presents the results from
this test. Of the 661 WSDL documents that were successfully
downloaded by the WSCE from UBRs, 83% were between 1K
and 64K bytes in size while of the 3372 WSDL documents that
were successfully downloaded by the WSCE from search engines,
91% were between 1K and 64K bytes in size.

Figure 6 presents a histogram of the WSDL document size
distribution. In this figure, WSDL documents were distributed
across fourteen bins labeled with increasing the document size
exponentially in which a WSDL document of size m is likely to
be placed in a bin that is not greater than the value. Figure 7
presents a histogram of the distribution of Web services that
passed the validation test.

Table 5. Breakdown of HTTP status codes (VerifyWS)

UBRs Search Engines Code Description
Web Services Percent # Web Services Percent

200 OK 661 47.05 3372 91.83
301 Moved Permanently 0 0.00 1 0.03
400 Bad Request 3 0.21 3 0.08
401 Unauthorized 0 0.00 1 0.03
403 Forbidden 8 0.57 4 0.11
404 Not Found 231 16.44 40 1.09
405 Method Not Allowed 11 0.78 0 0.00
406 Not Acceptable 4 0.28 7 0.19
411 Length Required 8 0.57 0 0.00
500 Internal Server Error 38 2.71 15 0.41
502 Bad Gateway 12 0.85 2 0.05
503 Service Unavailable 1 0.07 2 0.05

Others Remote Server Error 254 18.08 219 5.97
Others Invalid URI 174 12.38 6 0.16

Total 1405 100.0 3672 100.0

0%

5%

10%

15%

20%

25%

30%

Pe
rc

en
ta

g
e

1-1
28

12
8-2

56
25

6-5
12

51
2-1

K
1K

-2K
2K

-4K
4K

-8K
8K

-16
K

16
K-

32
K

32
K-

64
K

64
K-

12
8K

12
8K

-25
6K

25
6K

-51
2K

> 1
M

Size (bytes)

WSDL File Size Distribution (Verified)
Search Engines UBRs

Figure 6. WSDL file size distribution (verification)

801

WWW 2008 / Refereed Track: Web Engineering - Web Service Deployment Beijing, China

Figure 7 presents a histogram showing the document size
distribution of WSDL documents that were validated and
complied to a WSDL specification (i.e. contained the necessary
tags) in which 84% were between 1K and 64K bytes in size in the
case of UBRs and 93% in the case of search engines.

6.6 Development Technology Trends
In this study, we have come to another intriguing finding that
relates to the types of technologies used for building Web
services. Although Web service interfaces are meant to block or
hide access to application code (service endpoint) and hence
communication between services is language independent, we can
determine the technology used for building application code. All
of the technologies used to build Web services provide ways to
automatically generate WSDL documents and therefore have their
own propriety format on how they are created. To illustrate how
we can determine the type of technology used, consider for
example how Microsoft .NET generates WSDL documents by
simply appending “?WSDL” to a Web service URL. Some other
technologies are more complex to determine such as Java (i.e.
service endpoint could be a folder name). However, by examining
the location of WSDL documents on the Web (i.e. URLs) and
parsing service endpoint, we can determine to an extent the type
of technology used to generate them.

Based on our data, the majority of Web services collected were
implemented using Microsoft .NET technology. In fact, 47% of
them appear to be created using ASP.NET followed by PHP with
23%, and Java with 17%. Other technologies such as ColdFusion,
Common Gateway Interface (CGI) among others constituted 7%
while the remaining 6% was undetermined. This is due to the fact
that at some instances WSDL files may contain invalid service
endpoints which makes the task of determining the type of
technology applied unknown. However, results from our study
provide to some extent an overall view of the most preferred
technologies used for building Web services. Figure 8 shows a
breakdown of the types of technologies used when examining
WSDL documents through the analyzer module.

7. DISCUSSION

7.1 Challenges in Web Services Discovery
Business registries provide the foundation for the cataloging and
classification of Web services and other additional components.
UDDI Business Registry (UBR) serves as the central service
directory for the publishing of technical information about Web
services [24]. The current design of the UDDI allows for
simplified search capabilities and provides a minimal control for

trading partners to publish related business data and
categorization for their Web Service advertisements.

Although the UDDI provides ways for locating businesses and
how to interface with them electronically, it is limited to a single
search criterion. The simplified search techniques offered by the
UDDI will make it impractical to assume that it can be very
useful for Web services’ discovery or composition. In addition, a
client does not have to endlessly search UDDI registries for
finding an appropriate business application. As Web services
proliferate and UBRs becomes filled with hundreds o thousands
of Web services, limited search capabilities will likely yield
meaningful search results which makes the task of performing
search queries across one or multiple UBRs very time consuming,
and less productive.

Apart from the problems regarding limited search methods
offered by UDDI, there are other major limitations and
shortcomings with the existing UDDI. Some of these limitations
include: (1) UDDI was intended to be used only for Web services
discovery; (2) UDDI registration is voluntary, and therefore, it
can easily become passive; (3) UDDI does not provide any
guarantee to the validity and quality of information it contains; (4)
the disconnection between UDDI and the current Web; (5) UDDI
is incapable of providing Quality of Service (QoS) measurements
for registered Web services, which can provide helpful
information to clients when choosing appropriate Web services,
(6) UDDI does not clearly define how service providers can
advertise pricing models; and (7) UDDI does not maintain nor
provide any Web service life-cycle management.

WSDL documents are no longer a scarce resource as there are
thousands of Web services disseminated throughout the Web and
not necessarily through UBRs. Due to the fact that Web services
are syntactically described through Web Services Description
Language (or WSDL) documents which reside on Web servers,
such documents can potentially be indexed by Web-based
crawlers. This allows search engines to enable users to perform
search queries for discovering Web services disseminated
throughout the current Web.

However, Web-based search engines crawl such document types
on the assumption that they contain textual information that can
be indexed or treat them in the same manner as Web pages which
makes search engines incapable of indexing Web services.
Unfortunately, a considerable amount of WSDL files crawled
over the Web as discussed in Section 4 did not contain
descriptions of what these Web services have to offer and a
considerable amount of the crawled Web services contained
outdated, passive, or incomplete information.

Web Service Technology Trend

Microsoft
47%

Undetermined
6%

Others
7%

Java
17%

PHP
23%

Figure 8. Types of technologies used for employing services

0%

5%

10%

15%

20%

25%

30%
Pe

rc
en

ta
g
e

1-1
28

12
8-2

56
25

6-5
12

51
2-1

K
1K

-2K
2K

-4K
4K

-8K
8K

-16
K

16
K-

32
K

32
K-

64
K

64
K-

12
8K

12
8K

-25
6K

25
6K

-51
2K

> 1
M

Size (bytes)

WSDL File Size Distribution (Validated)
Search Engines UBRs

Figure 7. WSDL file size distribution (validation)

802

WWW 2008 / Refereed Track: Web Engineering - Web Service Deployment Beijing, China

7.2 Information Retrieval and Web Services
Collecting Web services data is not the key element that leads to
an effective Web services’ discovery, but how it is stored. The
fact that Web services data is spread all over existing search
engines databases, accessible UBRs, or file sharing platforms
does not mean that clients are able to find these Web services
without difficulties. However, making this Web services data
available from a standard, universal access point that is capable of
aggregating this data from various sources and providing clients
to execute search queries tailored to their requirements via a
search engine facilitated by a Web service crawler engine or
WSCE is a key element to enhancing Web services discovery and
accelerating the adoption of Web services.

Crawling for Web services is very complex and requires special
attention particularly looking at the current Web crawler designs.
When designing WSCE, it became apparent that many of the
existing information retrieval models that serve as basis for Web
crawlers may not be very suitable when it comes to Web services
due to key differences between Web services and Web pages
including:

o Web pages often contain long textual information while Web
services have very brief textual descriptions of what they offer
or little documentation on how it can be invoked. This lack of
textual information makes keyword-based searches vulnerable
to returning irrelevant search results and therefore become
very primitive means for effectively discovering Web
services.

o Web pages primarily contain plain text which allows search
engines to take advantages of information retrieval methods
such as finding document and term frequencies. However,
Web services structure is much more complex than that of
Web pages and only a small portion of plain text is often
provided either on UBRs or service interfaces which makes
the dependency on information basic retrieval techniques very
unreliable since they were intended for this type of complex
structures.

o Web pages are built using HTML which has a predefined or
known set of tags. However, Web service definitions are
much more abstract. Web service interface information such
as message names, operation and parameter names within
Web services can vary significantly which makes the finding
of any trends, relationships, or patterns within them very
difficult and requires excessive domain knowledge in XML
schemas and namespaces.

Applying Web crawling techniques to Web service definitions or
WSDL files, and business registries or UBRs may not be efficient,
and the outcome of our research was an enhanced crawler
targeted for Web services. The crawler should be able to handle
WSDL files, and UBR information concurrently. In addition to
that, the crawler should be able to collect this information from
multiple registries and storing them into a centralized repository,
the Web Service Storage (WSS) [9]. WSS serves as a central
repository where data and templates discovered by the WSCE are
stored. Table 6 outlines a comparison between UBRs and Web-
based search engines used for the discovery of Web services.

The ability to explore service registries and Web-based search
engines for finding appropriate Web services is becoming a
challenge. Although the UDDI has been approved as a standard
for Web service discovery, the lack of autonomous control acts

considerably as a deterrent for the widespread its deployment
[25]. In addition, Web-based search engines were not designed to
handle the Web services syntactic structure; therefore they only
provide an ad-hoc solution for matching keywords that appear
within WSDL documents.

8. CONCLUSION
On the dawn of service-oriented computing, finding relevant Web
services was mainly done by scanning through services registries
(i.e. UDDI Business Registries or UBRs). Automated Web service
search engines were not necessary when Web services were
counted by the hundreds. However, the number of service
registries is gradually increasing and Web service access points
(i.e. WSDLs) are no longer a scarce resource as there are
thousands of Web services disseminated throughout the Web.

Our experiments show building a crawler and a centralized
repository for Web services is inevitable. In this work, we have
used our Web Service Crawler Engine (WSCE), a crawler that is
capable of capturing service information from various accessible
resources over the Web, to help us in conducting our investigation
of Web services on the Web.

In our study, we investigated the distribution of certain elements
and characteristics of the available Web services on the Web.
Distribution based on valid WSDL interfaces, file sizes, HTTP
status, and technology trends are found. Results provide an
overall view on the current status of Web services. An intriguing
result is that fact those search engines have become a new major
source for searching for Web services and that they constitute
72% of Web services available on the Web. Such service statistics
may likely drive search engines to examine the potential of
interoperability with service registries or apply features that can
turn them into effective tools used for discovering services on the
Web.

Although UDDI and search engines provide two distinctive
approaches for finding Web services, it is unclear whether they
will likely merge or coexist. Based on our findings, search
engines have become a new major source for searching for Web
services. Yet, they are vulnerable to returning irrelevant results
and only provide access points to WSDL documents while UDDI
business registries provide a more business-centric model that can

Table 6. Comparison between UBRs and search engines

Features UBRs Search
Engines

Contains business information? Yes No
Uses tModels? Yes No
Is publishing (listing) voluntary? Yes Yes
Any service-like structure? Yes No
Stores WSDL Documents No Yes
Any update interval? No Yes
Any support for range-based
searching? No No

Any support for caching? No Possibly

Search Capabilities Limited Keyword
matching

Any Web service
subscription/business model? Yes No

Can handle versioning? No No
Validates, governs, or secures Web
services? No No

Any support for Web service specific
measurements? No No

803

WWW 2008 / Refereed Track: Web Engineering - Web Service Deployment Beijing, China

be used as the first step towards an application-centric Web. In
addition, results show that collecting Web service information is
beyond simple crawling and information retrieval techniques and
therefore they may not be applicable at the Web services level.
Searching for Web services based on QoS parameters, schema
properties, service reputation, trust, and semantic matching will
considerably increase the relevancy of finding and selecting
appropriate Web services.

Interoperability among existing technologies used for discovering
Web services would complement the strengths of each other,
although the ability to administer, manage, and search for Web
services in a uniform fashion across heterogeneous environments
remains an obstacle as services proliferate. Future work includes
extending the notion of a targeted Web services crawler engine to
continuously perform Quality of Web Service (QWS) metrics on
collected Web services, enable clients to selectively control the
discovery process, and rank relevant Web services.

9. ACKNOWLEDGMENTS
We would like to thank Mohamed Al-Masri for his valuable time
and effort in collecting and analyzing data for this work. This
research was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC) Discovery
Grant No. 045635.

10. REFERENCES
[1] Web Service List, http://www.webservicelist.com, Accessed

February 2008.

[2] RemoteMethods: Home of Web Services,
http://www.remotemethods.com, Accessed February 2008.

[3] Web Services Directory (WSIndex),
http://www.wsindex.org, Accessed February 2008.

[4] XMethods, http://www.xmethods.net, Accessed February
2008.

[5] E. Maximilien and M. Singh. “Conceptual model of Web
service reputation,” ACM SIGMOD Record, 31(4), 2002.

[6] K. Sivashanmugam, K. Verma, and A. Sheth, “Discovery of
web services in a federated registry environment,” ICWS,
pp. 270-278, 2004.

[7] E. Al-Masri, and Q.H., Mahmoud, “A framework for
efficient discovery of web services across heterogeneous
registries,” IEEE Consumer Communication and Networking
Conference (CCNC), pp. 415-419, 2007.

[8] E. Al-Masri, and Q. H. Mahmoud, “Crawling multiple UDDI
business registries”, 16th WWW Conf., pp. 1255-1256, 2007.

[9] E. Al-Masri, and Q. H. Mahmoud, “WSCE: A crawler
engine for large-scale discovery of web services,” ICWS pp.
1104-1111, 2007.

[10] U. Thaden, W. Siberski, and W. Nejdl, “A semantic web
Based Peer-to-Peer Service Registry Network,” Technical
Report, Learning Lab Lower Saxony, 2003.

[11] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara,
“Semantic matching of web services capabilities,” ISWC, pp.
333-347, 2002.

[12] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara,
“Importing the semantic web in UDDI,” International

Workshop on Web Services, E-Business, and the Semantic
Web, pp. 225-236, 2002.

[13] C. Zhou, L. Chia, B. Silverajan, and B. Lee, “UX- an
architecture providing QoS-aware and federated support for
UDDI,” ICWS, pp. 171-176, 2003.

[14] L. Larkey, “Automatic essay grading using text classification
techniques,” ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 90-95, 1998.

[15] Y. Yang, and J. Pedersen, “A comparative study on feature
selection in text categorization,” Fourteenth International
Conference on Machine Learning, pp. 412-420, 1997.

[16] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity
flooding: a versatile graph matching algorithm,” 18th
International Conference on Data Eng, pp. 117-128, 2002.

[17] E. Rahm and P. Bernstein, ”A survey on approaches to
automatic schema matching,” The International Journal on
Very Large Databases 10(4), pp. 334-350, 2001.

[18] A. Heß and N. Kushmerick, “Learning to attach semantic
metadata to web services,” ISWC, pp. 258-273, 2003.

[19] E. Al-Masri, and Q.H. Mahmoud, “A Context-Aware Mobile
Service Discovery and Selection Mechanism using Artificial
Neural Networks,” ICEC, pp. 594-598, 2006.

[20] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang,
“Similarity search for web services”. In: The International
Journal on Very Large Databases, 2004.

[21] F. Emekci, O. Sahin, D. Agrawal, and A. Abbadi, “A peer-
to-peer framework for web service discovery with ranking,”
ICWS, pp.192-199, 2004.

[22] E. Maximilien and M. Singh, “Conceptual model of Web
service reputation,” ACM SIGMOD Record, 31(4), 2002.

[23] M. Quzzani, “Efficient delivery of web services,” PhD
Thesis, Virginia Polytechnic, 2004.

[24] UDDI Version 3.0.2 Specifications, October 2004,
http://uddi.org/pubs/uddi_v3.htm, Accessed February 2008.

[25] F. Hartman and H. Reynolds, “Was the universal service
registry a dream?”, Web Services Journal, December 2004.

[26] Google SOAP Search APIs,
code.google.com/apis/soapsearch, Accessed February 2008.

[27] E. Al-Masri, and Q. H. Mahmoud, “Discovering the best web
service,” 16th International World Wide Web Conference
(WWW), pp. 1257-1258, 2007.

[28] Y. Li, Y. Liu, L. Zhang, G. Li, B. Xie, and J. Sun, “An
Exploratory Study of Web Services on the Internet,” ICWS,
pp. 380-387, 2007.

[29] Alexa Inc., Global Top 500,
http://www.alexa.com/site/ds/top_sites?ts_mode=global,
Accessed February 2008.

[30] J. Cho, H. Garcia-Molina, T. Haveliwalia, W. Lam, A.
Paepcke, S. Raghavan, and G. Wesley, “Stanford WebBase
Components and Applications,” ACM Transactions on
Internet Technology, Vol. 6, No. 2, pp. 153-186, 2006.

[31] C. Atkinson, P. Bostan, O. Hummel, D. Stoll, “A Practical
Approach to Web Service Discovery and Retrieval,” ICWS,
pp. 241-248. 2007.

804

WWW 2008 / Refereed Track: Web Engineering - Web Service Deployment Beijing, China

