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ABSTRACT
Online collaboration and sharing is the central theme of many web-
based services that create the so-called Web 2.0 phenomena. Using
the Internet as a computing platform, many Web 2.0 applications
set up mirror sites to provide large-scale availability and to achieve
load balance. However, in the age of Web 2.0, where every user is
also a writer and publisher, the deployment of mirror sites makes
consistency maintenance a Web scale problem. Traditional concur-
rency control methods (e.g. two phase lock, serialization, etc.) are
not up to the task for several reasons. First, large network latency
between mirror sites will make two phase locking a throughput bot-
tleneck. Second, locking will block a large portion of concurrent
operations, which makes it impossible to provide large-scale avail-
ability. On the other hand, most Web 2.0 operations do not need
strict serializability – it is not the intention of a user who is cor-
recting a typo in a shared document to block another who is adding
a comment, as long as consistency can still be achieved. Thus,
in order to enable maximal online collaboration and sharing, we
need a lock-free mechanism that can maintain consistency among
mirror sites on the Web. In this paper, we propose a flexible and ef-
ficient method to achieve consistency maintenance in the Web 2.0
world. Our experiments show its good performance improvement
compared with existing methods based on distributed lock.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—distributed applications; H.2.4 [Database Management]:
Systems—concurrency, transaction processing

General Terms
Algorithms

1. INTRODUCTION
Many popular web sites, including commercial sites and com-

munity sites (e.g. GNU, SourceForge, etc.), have multiple mirrors
across the Internet to support hundreds of millions of visits per day.
Mirror sites are an easy solution to scalability as users are able to
choose the nearest mirrors to get faster response time.

∗This paper is partly supported by National Natural Science Foun-
dation of China (NSFC) under Grant No.90612008, No.60736020
and National Grand Fundamental Research 973 Program of China
under Grant No.2005CB321905.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

Unfortunately, using mirror sites for Web 2.0 applications for
scalability may not be effective. In the Web 2.0 environment, each
user is an author and publisher. The sheer amount of user inter-
action, and the fact that shared data are edited simultaneously at
mirror sites physically far apart, create a lot of difficulty in consis-
tency control. In fact, performances of some popular Web 2.0 sites
(e.g. Wikipedia, Open Directory Project, YouTube, etc.) can be
very different across different places at different times.

Traditional distributed database systems maintain consistency by
enforcing the following semantics: the result of a concurrent exe-
cution must be equivalent to a serial one [16]. A common way to
achieve serialized transactions is to use Two Phase Locking (2PL)
[7]: transactions on different objects are executed simultaneously
while transactions on a same object are serialized by using locks.

In the Web environment, the main weaknesses of the above ap-
proaches are the following: (1) Due to internet latency between
mirror sites, it is very costly to obtain locks and commit transac-
tions. To ensure data integrity during the process, the system must
block all other operations (including read-only operations), which
reduces performance, and is unacceptable in the Web 2.0 environ-
ment. This undoes the purpose of creating mirror sites, which is to
increase scalability. (2) The locking mechanism requires all mir-
ror sites to wait for the slowest site to commit the transaction and
free the lock. Thus, vulnerability of one mirror site may affect the
efficiency of the entire system.

Web 2.0 users need a more flexible concurrency control mecha-
nism. Many current studies on user collaboration [6, 11, 14] show
that in order to facilitate free and natural information flow among
collaborating users, it is important to allow users to concurrently
edit any part of the shared document at any time. Traditional meth-
ods are unfit as concurrent operations (in transaction mode) always
block one another. Thus, it is clear that lock-based mechanisms are
unsuitable for mainitaining consistency of mirror sites that run Web
2.0 applications. This motivates us to explore novel approaches for
consistency control in the Web 2.0 environment.

In this paper, we introduce a light-weight, lock-free approach to
maintain consistency of mirrored sites. We briefly summarize our
approach below.

• CAUSALITY PRESERVATION. Instead of serializability, our
approach starts with preserving causality, which is regarded
as the bottom line requirement in consistency control. Intu-
itively, if operation X’s input depends on operation Y ’s out-
put, then Y must be executed before X. Preserving causality
is not enough for consistency control. However, because it is
much less costly (it does not require locking), we use it as a
starting point.

• LOCK-FREE TRANSACTIONS. The concept of transaction
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and serialization gives clear semantics to concurrent opera-
tions. Although most Web 2.0 operations (concurrent edits
by different users in different parts of a document) do not re-
quire strict serializability, critical operations by priority users
may still need to run in transaction mode. In our work, we
extend the causality theory to support transactions without
using locks.

• LOCK-FREE NON-TRANSACTIONAL OPERATIONS. For con-
current, non-transactional operations, we show consistency
can be achieved without using locks or incurring the cost of
supporting transactional operations. In our approach, these
operations are executed as soon as they are generated for
faster response time. Consistency of mirrored sites is en-
sured by a state transformation technique which is able to
recover mirrored data to previous states.

This paper is organized as follows. In Section 2, we describe
the replicated architecture of mirrored sites. Section 3 introduces
the causality concept. Lock-free consistency control for transac-
tional and non-transactional operations are discussed in Section 4
and 5. Section 6 discusses experiments. We discuss related work
in Section 7 and conclude in Section 8.

2. PROBLEM SETTING
In this section, we describe the consistency control problem in

the web environment.

2.1 Representations of Data and Operations
Data shared in mirrored sites can be in varied forms. In this

paper, we assume the shared data on mirrored sites are XML docu-
ments. Consequently, operations on the data are expressed by XML
queries and updates.

There are two W3C standards for XML queries: XPath [17] and
XQuery [18]. To process an XPath query, we start from the root
node, match all paths satisfying the XPath pattern, and return the
leaf nodes on this path. An XQuery is represented as a FLWR (For-
Let-Where-Return) pattern, and processed in two phases: a twig
pattern matching phase defined by FLW and a result construction
phase defined by R. XQuery is an extension to XPath and is more
powerful than XPath.

Update operations allow users to modify XML documents. Cur-
rently, there is no standard for Update operations. We use FLWU,
an XQuery extension introduced by Tatarinov et. al. [15], to ex-
press updates. An FLWU is processed in two phases: in the FLW
phase, multiple subtrees that match the pattern specified by FLW
are generated, that is similar with the first part of XQuery [18], then
in the U (update) phase, certain nodes of the sub-trees are modified.
The actions of second phase (U) are based on the result of the first
phase (FLW), thus we call the results of the first phase the execu-
tion set of the operation. In mirrored sites, so long as the FLW
process gets the same execution set, the final results should be the
same across all sites.

Definition 1. (Execution Set). Following previous definitions in
[15, 18], we call the results returned in the first phase (FLW) of an
FLWU operation the execution set or ES of the FLWU operation.

<Root>
<book @title="Introduction to Algorithm">

<category>CS</category>
<tag>Hot</tag>

</book>
<book @title="Advanced Statistical Learning">

<category>UnKnow</category>

</book>
<book @title="Linear Algebra">

<category>Math</category>
</book>

</Root>

In our paper, we use the above XML document consisting 3
books, and the four Update operations, U1, U2, U3 and U4 on the
XML document as a running example for explaining consistency
control in mirrored sites.

Operation U1:
Change the title “Advanced
Statistical Learning” to
“Statistical Learning”.

FOR $title in
/root//title

WHERE $title =
"Advanced
Statistical Learning"

UPDATE $title {
REPLACE $title WITH
"Statistical Learning"

}

Operation U2:
Set the category of the
“Linear Algebra” book
to “Math”.

FOR $book in /root/book,
$title = $book/title,
$category = $book/category

WHERE $title =
"Statistical Learning"

UPDATE $book {
REPLACE $category WITH
<category>Math</category>

}

Operation U3:
Add a discount tag
to books in “Math”
category.

FOR $book in /root/book,
$category =

$book/category
WHERE $category = "Math"
UPDATE $book {

INSERT
<tag>Discount</tag>

}

Operation U4:
Set the category of the
“Linear Algebra” book
to “CS”.

FOR $book in /root/book,
$title = $book/title,
$category = $book/category

WHERE $title =
"Linear Algebra"

UPDATE $book {
REPLACE $category WITH
<category>CS</category>

}

Figure 1: Four Update Operations

2.2 Architecture
We assume that shared data on each mirrored site is represented

as a huge XML document. Our goal is to achieve good query/update
response and support unconstrained collaboration. This leads us to
adopt a replicated architecture for storing shared documents: the
shared document is replicated at the local storage of each mirrored
site. A user can operate on the shared data at any replica site, but
usually at the site closest to the user. Non-transactional user op-
erations are executed immediately at that site, and then dispatched
to other sites. Transactional operations require more complicated
scheduling. We discuss both cases in this paper.

As an example, Figure 2 shows three replicas in a groupware
environment: SR1, SR2 and SR3. Replica SR3 receives and exe-
cutes two operations U1 and U2. We assume U1 and U2 are causal
operations, since U2 operates on the results of U1, and they are ini-
tiated from the same site, possibly by the same user. Operations
U3, U4 and T1 arrive at roughly the same time on SR1, SR2, and
SR3 respectively. Here, we assume T1 is a transaction. U3, U4 and
T1 are concurrent operations.

To be clear, given a user operation, we call the replica receiv-
ing the operation the local replica and other replicas remote repli-
cas. And for the local replica, we also call this operation its local
operation, and operations dispatched from other replicas remote
operation. In Section 3, we define a causal (partial) ordering re-
lationships on operations based on their generation and execution
sequences.
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SR1 SR2

time

U1

U2

SR3

U3
U4 T1

Figure 2: The Replicated Architecture

2.3 The Need for Consistency Control
We use three examples to illustrate the need for consistency con-

trol based on the above settings.

1. (CAUSAL RELATIONSHIPS) Consider replica SR3, where
U1 changes the title of the book from “Advanced Statisti-
cal Learning” to “Statistical Learning”, and then U2 changes
the category of “Statistical Learning” to “Math”. Obviously,
there is a causal relationship between U1 and U2, as the user
intends to execute U2 based on U1’s result. Thus, operations
with causal relationships must be executed in the right order.

2. (TRANSACTIONS) Operation T1 is critical and must be exe-
cuted in transactional mode. Here, T1 arrives in different or-
der with regard to U3 and U4: on SR1, it arrives after U3, on
SR2, after U3 and U4, and on SR3, it arrives first. To guar-
antee transaction semantics, we must ensure T1 is executed
in the same order on all sites with regard to its concurrent
operations.

3. (CONCURRENT OPERATIONS) Operations U3 and U4 are
non-transactional and do not have causal relationships. But
they still need consistency control. At SR1, U3 adds a “Dis-
count” tag to books in “Math” category. But at SR2, because
U4 arrives earlier and changes one of the “Math” books to
“CS” category, U3 will add the “Discount” tag to the “Ma-
chine Learning” book alone. Thus, the results on SR1 and
SR2 are not consistent.

The three cases require different handling in consistency con-
trol. In the rest of the paper, Section 3 discusses consistency con-
trol issues for causal relationships, Section 4 for transactions, and
Section 5 for non-transactional concurrent operations. Overall, we
generalize the above cases and show our method ensures consis-
tency in a replicated Web architecture.

3. CAUSALITY PRESERVATION
In this section, we present the concept of causality, as well as

a known solution for causality preservation (ensuring causal oper-
ations such as U1 and U2 are executed in the same order across
all replicated sites) without using locking mechanisms. The tech-
niques we discuss here will be used as building blocks for ensuring
consistency of transaction and non-transactional concurrent opera-
tions.

Consider operations U1, U2 in Figure 1, and replica SR3 in Fig-
ure 2. Operation U1 changes a book title from “Advanced Statis-
tical Learning” to “Statistical Learning”, and then U2 sets the cat-
egory of book “Statistical Learning” to “Math”. Obviously, U2 is

causally after U1 since the user intends to execute U2 based on U1’s
result. However, because of internet latency, replica sites such as
SR1 may receive U2 before U1. To address this problem, we apply
the causality preservation strategy.

Definition 2. (Causal Ordering Relation “→”). Given two oper-
ations Oa and Ob from local replica sites i and j respectively, we
have Oa → Ob, if and only if (1) i = j, and Oa is generated before
Ob is generated; (2) i �= j, and Oa is executed on site j before Ob

is generated; (3) there exists an operation Ox, such that Oa → Ox

and Ox → Ob.

Definition 3. (Concurrent Relation “‖”). Given two operations
Oa and Ob, we say Oa and Ob are concurrent or Oa ‖ Ob iff
neither Oa → Ob, nor Ob → Oa.

Figure 3 illustrates the 3 cases of causality given by Definition 2.

SRi SRj

time

Oa

Ob

SRi SRj

time

Oa

Ob

SRi SRj

time

Oa

Ob

Ox

(a) (b) (c)

Figure 3: Causal Relationships

Intuitvely, in order for every site to execute causal operations
such as U1 and U2 in the same order, all they need to know is that
U1 precedes U2 on the site they are generated, so if U2 arrives first,
they will wait until U1 arrives. But in a distributed environment, it
is difficult to implement a global, precise clock that informs each
site the precedence of operations. The challenge is thus to define
the "happened before" relation without using physical clocks.

To do this, we use a timestamping scheme based on State Vector
(SV ) [6, 14]. Let N be the number of replica sites (we assume N
is a constant). Assume replica sites are identified by their unique
replica IDs: 1, · · · , N . Each site i maintains a vector SVi with N
components. Initially, SVi = 〈0, . . . , 0〉. After it executes a remote
operation dispatched from site j, it sets SVi[j] = SVi[j] + 1.

In our approach, all (non-transactional) operations are executed
immediately after their generation (operations’ localized execution
ensures good response and supports unconstrained collaboration).
Then the operation is dispatched to remote sites with a timestamp
(state vector) equal to the local state vector. Specifically, operation
O generated from site j is dispatched to other replicas with a state
vector timestamp SVO = SVj .

Definition 4. (Execution Condition). Assume site i executes an
operation O and then dispatches it to other replicas with timestamp
SVO. O is causally ready for execution at site j (i �= j) if the
following conditions are satisfied:

1. SVO[i] = SVj [i] + 1

2. SVO[k] ≤ SVj [k], for all 1 ≤ k ≤ N and k �= i.

Intuitively, the first condition ensures that O is the next operation
from site i, that is, no operations originated from site i before O
have been missed by site j. The second condition ensures that all
operations originated from other sites and executed at site i before
the generation of O have been executed at site j already. The two
conditions ensure that O can executed at site j without violating
causality. [14]
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THEOREM 1. The execution condition ensures that causality as
defined in Definition 2 is preserved.

Take Figure 2 as an example. Assume the state vector of each
site is 〈0, 0, 0〉 initially. When U2 is dispatched to SR1, it carries a
state vector with SVU2 [3] = 2, because SR3 has executed 2 local
operations U1 and U2. However, SV1[3] = 0 because site SR1

has not executed any operation from SR3. Thus the first execution
condition, SVU2 [3] = SV1[3] + 1, is not satisfied, which means
U2 cannot be executed on SR1 yet. Now U1 arrives at SR1 with
state vector SVU1 [3] = 1. It is executed immediately and SV1[3] is
increased by 1. Then, U2 is ready for execution because SVU2 [3] =
SV1[3]+ 1. Thus, U1 and U2 will be executed on SR1 and SR2 in
the same order as they are executed on SR3. We have thus solved
the first problem in Section 2.3.

We omit the proof of Theorem 1 in the paper. Details related
to this result can be found in [6, 10]. Specifically, Lamport [10]
first introduced timestamp to describe the causal relationship. C.
A. Ellis [6] first proposed an execution condition to preserve the
causality among operations.

4. TRANSACTIONS
Some critical operations need to be executed in the transaction

mode to guarantee integrity across multi-replicas. For example,
when doing a money transfer, if the money is debited from the
withdrawal account, it is important that it is credited to the deposit
account. Also, transactions should not interfere with each other.
For more information about desirable transaction properties, please
refer to [7, 16]. In this section, we discuss a light-weight approach
to achieve this in a replicated environment.

4.1 Semantics
The transaction model is introduced to achieve concurrent trans-

parency [7, 16]. In the transaction semantics, although the system
is running many transactions concurrently, the user can still as-
sume that his/her transaction is the only operation in the system.
To achieve the same goal in a distributed environment, we must
guarantee a transaction is serializable with other operations (both
transactional and non-transactional operations).

Definition 5. (Serialized Transaction). Let T be a transaction,
and O be an operation (O may or may not be a transaction). Trans-
action T is a serialized transaction only if either O is executed be-
fore T in all sites, or O is executed after T in all sites.

According to our definition of concurrent operations (Defini-
tion 3), it is easy to see that a serialized transaction does not have
concurrent operations. This ensures that transaction integrity is
guaranteed across multiple replicas. But in a fully replicated ar-
chitecture, it is very hard to achieve global serialization. In the fol-
lowing, we describe in detail how we achieve global serialization
in such a replicated environment.

4.2 A causality based approach
The state vector based approach for preserving causality is ele-

gant and light-weight (Section 3). In this section, we implement
transaction semantics based on causal relationships.

Of course, existing causal relationships are not enough to enforce
serialization of operations across all sites. To solve this problem,
we create dummy operations (NOOPs) to introduce a rich set of
virtual causal relationships. With these virtual relationships, we
implement transaction semantics.

Assume T1 is submitted to replica SR3. Because T1 is a transac-
tion, it is not executed immediately at its local replica, as we must

enforce transaction semantics across all sites. Each site SRi, in-
cluding SR3 itself, creates a dummy NOOPi upon receiving T1,
and dispatches NOOPi to other sites. This is shown in Figure 4,
where a solid line represents the dispatching of a transaction from
a local site to a remote site, a dashed line represents the dispatching
of a NOOP, and a circle represents the dispatching of a NOOP to
the local site itself.

SR1 SR2

time

SR3

T1

NOOP1

NOOP2

NOOP3

O1 O2

O3 O4

Figure 4: Flexible Transaction Model

The NOOPs introduce a rich set of causal relationships. Assume
NOOP1 is initiated at SR1 between its local operations O1 and
O3, and NOOP2 is initiated at SR2 between its local operations
O2 and O4. The NOOPs create the following causal relationships:

O1 → NOOP1 → O3 and O2 → NOOP2 → O4

Under the execution condition, NOOP1 and NOOP2 will be
executed after O1 and O2, while O3 and O4 will be executed after
NOOP1 and NOOP2. At any site, we execute T1 immediately
after all NOOPs corresponding to T1 are executed. It is easy to see
that at each site,

• O1 and O2 are executed before T1 (the causal relationships
enforce that O1, O2 are executed before the NOOPs, and
since T1 is executed after the NOOPs, T1 must be executed
after O1 and O2).

• O3 and O4 are executed after T1 (the causal relationships
enforce that the NOOPs are executed before O3 and O4, and
since T1 is executed immediately after the NOOPs, T1 must
be executed before O3 and O4).

The above procedure works not only in this case. It actually en-
forces serializability in all cases. Intuitively, when NOOPi is gener-
ated on SRi, it divides concurrent operations local to SRi into two
sets: Beforei and Afteri, which are concurrent operations that
arrive before and after NOOPi at SRi, respectively. The causality
introduced by NOOPi at site SRi can be expressed as

Beforei → NOOPi → Afteri

On any site SRi, at the time when T is causally ready to execute –
i.e., all NOOPs have arrived and are causally ready to execute – we
can be assured that all concurrent operations in B = Before1 ∪
· · · ∪ BeforeN have been executed on SRi and none concurrent
operations in A = After1 ∪ · · · ∪AfterN have been executed on
SRi. Note that A ∪ B are the entire set of concurrent operations
and A ∩ B = ∅, as any operation is local to one and only one
replica. Thus, for any operation O, either O ∈ A or O ∈ B must
be true, which means O either executes before T or after T on any
site SRi. Thus, T is serialized.

There is one pitfall in the above reasoning: it is possible that on
a site, the set of NOOPs will never be causally ready to execute.
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This happens when there are more than one concurrent transac-
tions. Figure 5 shows an example. Two concurrent transactions
arrive at replica sites in different order. Let NOOPT

i denote the
NOOP operation generated for transaction T at replica SRi. At
site SR1, we have NOOPT2

1 → NOOPT1
1 , and at site SR3, we have

NOOPT1
3 → NOOPT2

3 . Thus, neither the entire set of { NOOPT1
i

}, nor the entire set of { NOOPT2
i }, will ever be causally ready for

execution: the two transactions block each other.

SR1 SR2

time

SR3

T1

NOOP1
T1

NOOP2
T1

NOOP3
T1

T2
NOOP2

T2

NOOP3
T2

NOOP1
T2

Figure 5: Two Concurrent Transactions

Our goal is to achieve global serialization. Suppose finally we
have T1 → T2. Clearly, causality in the form of NOOP T2

i →
NOOP T1

i are inconsistent with this order. The solution is to sim-
ply remove such causalities. However, this requires all sites to
agree on the final order T1 → T2.

The State Vector timestamping mechanism we introduced in Sec-
tion 3 creates a virtual global clock, so that each relica site agrees
on the “happened-before” relationship for causal operations. This
gives us a way to order non-transactional operations. Transactions,
however, do not have State Vector timestamps (they are not exe-
cuted immediately on local replicas). In our case, transactions trig-
ger non-transactional NOOP operations, which enable us to extend
the order among non-transactional operations to transactions.

A non-transactional operation is assigned a state vector times-
tamp at the site it is generated, and dispatched to all other replicas
with the same state vector timestamp. We define a TOrder func-
tion [14] based on such timestamps.

Definition 6. (TOrder: total order for non-transactional opera-
tions). Let Oa and Ob be two non-transaction operation with local
replicas a and b. Oa ≺ Ob iff (1) sum(SVa) < sum(SVb), or
(2) a < b when sum(SVa) = sum(SVb), where sum(SV ) =
�N

i=1 SV [i].

It is easy to see that, because each non-transactional operation
has the same state vector timestamp at each replica, the total order
among non-transactional operations defined above is agreed by all
replicas.

We then extend TOrder to create a total order among transac-
tions.

Definition 7. (TOrder: total order for transactions). Let T1 and
T2 be two transactions. T1 ≺ T2 iff NOOP T1

1 ≺ NOOP T2
1 .

With a total order among transactions, we can solve the prob-
lem above. Algorithm 1 handles local operations, and Algorithm 2
handles operations dispatched from other sites. Finally, Theorem 2
shows that they achieve serializability.

THEOREM 2. Algorithm 1 and Algorithm 2 ensures that trans-
actions are serialized.

PROOF. See Lemma 1 and Theorem 1 in the Appendix.

Algorithm 1 Local(i), algorithm on site SRi for local transactions
1: Wait Until SRi receives an operation O
2: if O is a transaction then
3: Generate a NOOP O

i for O with state vector SVNOOP O
i

=

SVi.
4: Dispatch O to other replica sites.
5: Dispatch NOOP O

i to all replica sites (including SRi)
6: end if
7: Goto 1

Algorithm 2 Remote(i), algorithm on site SRi for remote transac-
tions
1: Wait Until SRi receives an operation O
2: if O is a transaction then
3: Generate NOOP O

i for O with state vector SVNOOP O
i

=

SVi.
4: Dispatch NOOP O

i to all replica sites (including SRi)
5: end if
6: if O is NOOP T

j then
7: remove all inconsistent causalities
8: if all NOOPs for T have arrived then
9: Execute all NOOP T

j and T , for all SRj

10: SVi[j]⇐ SVi[j] + 1, for all SRj

11: end if
12: end if
13: Goto 1

5. CONSISTENCY CONTROL
In this section, we discuss how to perform consistency control

for concurrent, non-transactional operations.

5.1 Overview
To achieve faster response time, non-transactional operations are

executed at their local replicas immediately after they are submit-
ted. Hence, the execution order of concurrent operations are differ-
ent at different sites. As we show in the 3rd example in Section 2.3,
concurrent operations may create inconsistent results on different
sites.

To ensure consistency without using locks, we propose an XML
storage model that allows us to recover XML documents to states
before a previous concurrent operation was executed. Figure 6
gives an example. Figure 6(a) shows the XML document on site
SR2 after the execution of operation U4, which changes the cate-
gory of “Statistical Learning” from “CS” to “Math”. Later, SR2

receives operation U3, and it decides that U3 has an earlier times-
tamp than U4 (as indicated by TOrder). Then, it retraces the state
of XML document to the state shown in Figure 6(b), which is the
state before U4 is executed. Finally, U3 is executed on the retraced
XML document, which adds a “Discount” tag to both “Statistical
Learning” and “Linear Algebra” since both of them are in category
“Math”, then U4 is executed to change the category of “Statisti-
cal Learning” to “CS”. The result XML document, which is shown
in Figure 6(c), will be the same as that on site SR1, where U3 is
generated and executed first.

The high level procedures for the local site and remote site are
shown in Algorithm 3 and 4 respectively. Both of the algorithms
are concerned with the non-transactional operations, as we have
discussed transactions in Section 4. Algorithm 3 executes a local
operation immediately once it is generated. Algorithm 4 retraces
to earlier states when remote operates arrive with an earlier times-
tamp. Note that in neither of the two algorithms, the operations are
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Root

Statistical 
Learning

Linear 
AlgebraCS Hot CS MathIntroduction 

to Algorithm

book book book

@title @title @titlecategory category categorytag

Root

Math

book

@title category

Root

CS

book book

@title titlecategory

Discount

tag

Discount

tag Statistical 
Learning

Linear 
Algebra

Statistical 
Learning

(a)

(b)

(c)

Figure 6: With regard to site SR2 in Figure 2, (a) is the XML
document after the execution of U4. We retrace to the state
shown in (b), which is before the execution of U4, and (c) is the
result of executing U3 and then U4 on the retraced state.

Algorithm 3 Local(i): algorithm on site SRi for local operations
1: O ← next operation generated at site SRi

2: if operation O is not in transaction mode then
3: Execute O directly, and dispatch it to other sites with state

vector SVi as its timestamp.
4: SVi[i]⇐ SVi[i] + 1
5: end if

Algorithm 4 Remote(i): algorithm on site SRi for remore opera-
tion which comes from site SRj

1: O ← next operation satisfying the execution condition from
remote site SRj

2: if operation O is not in transaction mode then
3: Retracing(Doc, SVO)
4: ES← query(Doc, SVO) /* FLW phase of an FLWU */
5: Update(Doc, O, ES) /* U phase of an FLWU */
6: SVi[j]⇐ SVi[j] + 1
7: end if

forced to wait.
In the rest of the section, we describe in detail the storage model

and the retracing algorithm.

5.2 The Storage Model
In this section, we introduce an efficient XML query processing

model that supports retracing.

Range Labels and Inverted Lists
XML queries are processed by twig pattern matching [2]. Several
approaches exist, including the relational approach [15], the native
XML approach [2, 3], and a mixture of the two [19]. In general,
native XML data representation has better query efficiency. In this
paper, we base our approach on native XML data storage.

The core of XML query processing relies on one fundamen-
tal operation: determine the ancestor-descendent relationship be-
tween two nodes in an XML document. An efficient way of telling
whether one node is an ancestor (descendant) of another node is

to use interval-bases labels [4]. In the example shown in Figure 7
(which represents the XML document on site SR2 after the execu-
tion of U4 but before the execution of U3), each node n is labeled by
an interval (startn, endn). Using the labels, we can immediately
tell the ancestor-descendent relationships: node x is a descendant
of node y if startx ∈ (starty, endy). The labels in Figure 7 are
real values in the range of [0, 1], which allows us to subdivide the
range when new nodes are inserted.

Root

Statistical 
Learning

Linear 
AlgebraCS Hot CS MathIntroduction to 

Algorithm

book book book

@title @title @titlecategory category categorytag

(0  ,  1)

(0.1  ,  0.3) (0.4  ,  0.6) (0.7  ,  0.9)

(0.12  ,  0.16) (0.18  ,  0.22) (0.24  ,  0.28)

(0.13  ,  0.15) (0.19  ,  0.21)(0.25  ,  0.27)

(0.43  ,  0.49) (0.52  ,  0.58)

(0.45  ,  0.48)(0.53  ,  0.57)

(0.73  ,  0.79)

(0.74  ,  0.78)

(0.82  ,  0.88)

(0.83  ,  0.87)

Figure 7: The range labels of XML document nodes

To support efficient twig matching, we employ inverted lists to
organize labeled nodes. More specifically, for each element/attribute/value
in the XML document, we create a linked list which includes the
labels of nodes that have the same element/attribute/value. For in-
stance, in Figure 8, the linked list for the book element has three
members: (0.1, 0.3), (0.4, 0.6), (0.7, 0.9), corresponding to the 3
books in Figure 7.

Figure 8: Inverted list for XML in Figure 7

The inverted lists enable us to efficiently find the nodes involved
in a query and match the twig pattern by joining the nodes. The
inverted lists, however, represent a certain state of the XML docu-
ment only. In order to retrace its temporal history, i.e., states of the
XML document before certain update operations are executed, we
need some additional mechanisms.

Timestamps
Assume an XML document has gone through a series of updates
u1, · · · , ui, · · · , uk (the updates in the series follow TOrder). Now
a new update u′ comes in, and u′ ≺ ui. We recover the document
to the state before ui is applied, and then apply u′, ui, · · · , uk on
the recovered documents.

In order to recover the document to a previous state, we assign
each node in the inverted lists a pair of timestamps (create,
delete), where create and delete are the TOrder number
of the operation that creates and deletes the node. It is clear that
create ≺ delete. In other words, when an operation deletes
a node, instead of removing it from the inverted lists, we assign it
a delete timestamp, but keep it there. In Section 5.4, we show
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that we only need to keep a limited number of states in the inverted
lists – when an operation has been executed on all sites, it will have
no concurrent operations, and its effect is made permanent on the
inverted lists. In the next section, we discuss how retracing and
query processing are performed on timestamped inverted lists.

Figure 9: State changes in inverted lists

5.3 Query Processing
In this section, we discuss how to augment traditional XML

query processing engines to support retracing, querying, and up-
dating on timestamped inverted lists.

Retracing
The (create, delete) timestamps enable us to retrace the
temporal history of an XML document. Let us first examine an
example. The inverted lists shown in Figure 9 correspond to the
XML documents in Figure 6. Figure 9(a) shows the inverted list
on site SR2 after the execution of U1, U2, and U4. The Math node
(0.53, 0.57) is created by operation U2 and deleted by operation
U4. Thus, it has timestamp (U2, U4)

1. Since U4 changes the Math
node to a CS node, a new node with timestamp (U4,−) is created
in the inverted list of CS. When U3 arrives, we find that, according
to the total order, U3 ≺ U4. We thus retrace the steps to before
U4 is executed, as we show in Figure 6(b). Since the Math node
(0.53, 0.57) is timestamped (U2, U4), which means it is deleted by
U4, its timestamp is rolled back to (U2,−), making the node cur-
rent again. On the other hand, the CS node with timestamp (U4,−)
will be removed as it is created at time U4, which is a future times-
tamp at time U3.

In summary, the inverted lists keep mutltiple versions or multiple
states for the category of the book “Statistical Learning”. This is
shown in Figure 10. First, U2 changes its category from Unknown
to Math, then U4 changes it again to CS. Thus, the three states can
1For simplicity, we use U2 to denote the TOrder number of U2,
which is used as timestamp.

be arranged into a sequence. It is clear that there is no overlap in
their timestamps, and at any time only one of them is valid.

UnKnow Math CS

Create by : U2Create by : Initial Create by : U4

Delete by : U4Delete by : U2

Figure 10: Dependence Relationship

In general, only nodes whose timestamp (tcreate, tdelete) satis-
fies t ∈ (tcreate, tdelete) are valid at t. For the example above,
given U3, whose timestamp precedes that of U4, we know only the
Math state is valid, and the Unknown and CS states are invalid.

Querying
A common way to tackle twig pattern matching is to decompose
the twig pattern into a set of parent-child and ancestor-descendant
relationships, query each relationships independently, and then join
the results.

We introduce an algorithm called State-Join (Algorithm 5) to
process basic parent/child relationships, “A/D”, or ancestor /de-
scendant relationships, “A//D”. The algorithm takes into con-
sideration the states of each XML node defined by its timestamp.
As finding the parent-child and ancestor/descendant relationships
is the most fundamental operation in XML query processing, it can
be used by other XML query algorithms, such as the stack-based al-
gorithm known as Stack-Tree-Desc [2], for twig-pattern matching
in a transparent manner.

As the example shown in Figure 8 (which represents the XML
document on site SR2 after the execution of U4 but before the ex-
ecution of U3), in order to process U3, we first fetch the inverted
list of “book”, “title”, “category” and “Math”. Though the cate-
gory of book “Linear Algebra” has been changed into “CS”, the
original node (0.53, 0.57) still exists in the inverted list of “Math”
and is timestamped (U2, U4). According to the total order, U2 ≺
U3 ≺ U4, which means the node is valid as far as U3 is concerned.
Since timestamp checking has O(1) cost, the State-Join algorithm
will not increase the complexity of the original Stack-Tree-Desc
algorithm.

Algorithm 5 State-Join(“A/D” or “A//D”). Given a state vector
timestamp SV, it returns the execution set for sub-query “A/D” or
“A//D” valid at timestamp SV .

1: AList, DList⇐ the list of potential ancestors or descendants
with tag name A or D in the inverted lists, both in sorted order
of StartPos.

2: ∀a, a ∈ AList, delete a from AList if SV �∈
(a.tcreate, a.tdelete)

3: ∀d, d ∈ DList, delete d from DList if SV �∈
(d.tcreate, d.tdelete)

4: Return Stack-Tree-Desc(AList, DList) as ES

Updating
An update operation may change nodes in the inverted lists in two
ways: (1) Create new nodes with appropriate range labels and times-
tamps; (2) Revise the timestamps of existing nodes. The algorithm
can be expressed in Algorithm 6.

Instead of modifying a node, what an update operation really
does is to create a new state for the node in the state-based inverted
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Algorithm 6 Update(Doc, O, ES), execute the U process of oper-
ation O based on execution set ES.
1: for all node n be revised by O in ES do
2: if n is inserted by O then
3: Create a new range label interval (startO, endO) for the

content of O by Range-Scan function [8].
4: end if
5: Revise the states related to O according to the description in

“Retracing” part of Section.5.3
6: end for

list, and leave the original node intact (except changing its times-
tamp). For example, in order to execute U3 at the state of Figure
8, it (i) creates two new nodes (0.585, 0.595) and (0.885, 0.895),
and insert them into the inverted list for “tag”; (ii) creates two new
nodes (0.588, 0.592) and (0.888, 0.892), and insert them to the in-
verted list for “Discount”; and (iii) set the timestamps for all of
them to (U3, -).

XML documents are sensitive to the order of sibling nodes under
a parent node. If two operations insert two nodes under a same
parent node, we must enforce that their order is the same at all sites.
We again use the TOrder function to determine the sibling order
of nodes inserted by concurrent operations. A serious treatment of
this problem may use techniques as the scan function [8] to achieve
global consistentancy for insert operations in a linear structure. We
omit the proof here. Information for this result can be found in [8].

5.4 The Size of the Inverted Lists
To support rollback, the inverted lists keep multiple states of the

documents. One question is, will the size of the inverted lists keeps
growing? The answer is negative. The reason is that, when an op-
eration has executed on all replicas, it will no longer be concurrent
to any other operation. So can purge all timestamps related to this
operation. In our approach, we store operations in an Operation
History List (OHL). Each time a replica receives a new remote op-
eration, it will update OHL. When an operation is executed on all
replicas, it will be removed from OHL and its related state infor-
mation will be removed from the inverted list. If it deleted some
nodes, we remove those nodes permanently. Since the amount of
concurrent operations is limited, the amount of the states we main-
tain in the inverted list is limited.

5.5 Convergence
Our approach ensures faster response time. Notably, each non-

transactional concurrent operation is executed immediately on its
local replica. More generally, concurrent operations are executed
in different order on different replicas. This means inconsistency
exists across mirrored sites. However, we guarantee that at any
moment, if all operations have been executed on all replicas, the
mirrored data on each replica converges to a same state. In essence,
the convergence property ensures the consistency of the final results
at the end of a cooperative editing session [14].

THEOREM 3. At any time when all existing operations have
been executed on all replicas, each replica has the same mirrored
data (consistent).

PROOF. See Lemma 2 and Theorem 2 in the Appendix.

6. EXPERIMENTS
In order to evaluate the efficiency of XML Updates, we build a

prototype system and compare it to lock-based distributed system.
The experiment is conducted with 100Mbps LAN, 2-4 sites, CPU

Figure 11: Sending Command Frequency

Figure 12: Network Latency Between Sites

P4 2.4G, main memory 1G, and Windows 2003. The prototype
system and the lock-based distributed system are both implemented
By Java (Version 1.6.0-b105). We adjust operations’ frequency to
simulate network latency.

Experiment data comes from DBLP website [1], and current size
is 133MB. We create 70 queries and 70 updates and execute them
repeatedly. An additional computer is used to submit the above
operations to each site with given frequency, and record the aver-
age responding time. The process of experiments are described as
follows.

There are three types of operations: Query, Non-Transaction
Update, and Transaction Update. We label them as ASTQuery,
ASTNU and ASTTU respectively. For lock-based distributed sys-
tem, all operations are in transaction mode, and it has only two
types of operations: LockQuery and LockUpdate.

First, we evaluate the effect of different operation frequencies.
The parameters are: 3 sites, the proportions of ASTQuery, ASTNU

and ASTTU are 90%, 8% and 2%, respectively, network latency
between two sites is 200ms. The result is shown in Figure 11:

When the frequency is every 50ms or 100ms an operation, since
operations can not be executed immediately, they were blocked in
the waiting queue. ASTTU and LockUpdate involves more depen-
dancies than ASTNU , ASTQuery and LockQuery do, so the re-
sponse time of ASTTU and LockUpdate rose rapidly. On the other
hand, when the frequency drops to 200ms to 600ms an operation,
the response time of ASTNU is similar to query operation and also
far below ASTTU and LockUpdate. By using ASTNU instead of
ASTTU and forcing more operations executed at local site we can
significantly improve the response time.

Second, we evaluate the effect of different network latencies.
The parameters are: 3 sites, the proportions of ASTQuery, ASTNU

and ASTTU is 90%, 8% and 2% and the sending command fre-
quency is 200ms. The network latency between sites are simulated
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Figure 13: Operations’ Proportion

Figure 14: Effect for Average Responding Time in Different
Operations’ Proportion

Figure 15: Number of Sites

by force a given delay. The result is shown in Figure 12.
As latency increases, the only notable growth is for ASTTU and

LockUpdate, as they need all sites participation. As noted before,
one of the benefits to deploy more sites is to enable the user to
select the nearest site to access and get higher speed and shorter
respond time. So by relying on ASTNU , which execute locally, we
have a good way to achieve this goal. But the lock-based update
operations need to request locks from all replicated sites and will
block all other conflict operations. Even thought more sites are de-
ployed, the respond time not only depends on the latency between
the user and his/her entry site but also depends on the network la-
tency among all replicated sites. Further more, the network latency
in internet is unstable and inevitable.

Third, we evaluate the effect of compositions of different types
of operations. Similarly, the parameters are: 3 sites, network la-
tency between sites is 200ms, and the frequency is 200ms per op-
eration. The results are shown in Figure 13 and Figure 14.

The figures show, as the ratio of ASTNU increases, the con-
flicts between ASTTU decreases. It lowers the responding time
of both ASTNU and ASTTU . The figures also show that through
increasign the ratio of ASTNU , we can significantly reduce the av-
erage response time.

Finally, we evaluate the effect of number of sites. The parameters
are: network latency is 200ms, the average frequency is 50ms per
operation, and the proportions of ASTQuery, ASTNU and ASTTU

operation are 90%, 8% and 2%. The result is shown in Figure 15:
To evaluate the effect for different number of sites, we choose

the frequency to 50ms. The result shows as the number of sites
increases, the average response time decreases.

In summary, the four experiment results show that the algorithm
meet our expectations. By executing ASTNU locally and avoid-
ing the dependance of network latency, we can make better load
balance and achieve high-speed access and shorter respond time.

7. RELATED WORK
Our approach is similar in spirit to some existing non-locking

methods [5,9,12,14] that rely on operation transformation for con-
sistency maintenance, where an operation is executed immediately
at its local site and then dispatched to other remote sites. By in-
cluding or excluding some effects of concurrent operations, a re-
mote operation finds its correct state to execute. However, a major
difference is that these approaches only focus on atomic operations
(e.g. inserting or deleting a atomic object) no matter which struc-
ture they used (liner or tree). They do not support query or update
with conditions, nor do they support transactions.

There are a few multi-replicas consistency maintenance solu-
tions. Bayou [13] implements a multi-replicas mobile database,
but for concurrent operations, its repeated undo and redo lead to
huge system cost. TACT [13] tries to limit the differences between
replicas, but when a replica exceeds the limit, operations will be
blocked and response time will increase. TSAE [13] uses ack vec-
tors and vector clocks to learn about the progress of other replicas.
The execution of an Update operation is blocked until it arrives at
all replicas. XStamps [20] proposes a timestamp based XML data
multi-replica control solution, but some conflicting operations will
be aborted. Though this is avoidable in a serial execution, the au-
thors point out that generally, aborting is inevitable in XStamps.

Our work focuses on consistency control of structured data such
XML, and is uses the stack-based algorithm for XML query pro-
cessing. Recent work including Holistic Twig Joins [3] further im-
proves XML query performance. These new approaches rely on
the same inverted list as the stack-based algorithm. Thus, they are
compatible to our retracing approach.

8. CONCLUSIONS
In this paper, we proposed a lock-free approach for consistency

maintance in Web 2.0 environment. Tranditional concurrent opera-
tions (e.g. two phase lock, serialization, etc.) lead to the throughput
bottleneck among distributed mirror sites and a large portion of user
operations is blocked. Our method has two significant features.
First, we do not use the locking mechanism, so concurrent opera-
tions are executed as soon as possible upon their arrival. Our algo-
rithm ensures the convergence of the state of the shared documents.
This satisfies the need for most non-critical user operations in the
Web 2.0 environment. Second, we support the transaction seman-
tics for critical operations without using the locking mechanism.
Instead, we rely on the lock-free causality preservation approach.
We prove our approach implements consistency convergence and
transaction semantics in our paper. Experimental results show that
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our approach achieves better load balance, high-speed access and
shorter respond time.
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APPENDIX
LEMMA 1. The execution order of all transactional operations

is consistent on all replica sites.

PROOF. Suppose the execution order of n−1 transactions at all
sites are consistent. We want to extend the result to n transaction
operations.

Assume there are n transactions in the system: T1, T2, · · · , Tn.
Without loss of generality, assume the T1 ≺ Ti, for all 1 ≤ i ≤ n.
There may exist one or more NOOP Ti

a and we have NOOP Ti
a →

NOOP T1
a for all 2 ≤ i ≤ n. Since T1 ≺ Ti, we switch the

timestamps of involving NOOPs to reverse the causality. Specifi-
cally, NOOP T1

b will switch its timestamp with all NOOP Ti
b until

NOOP T1
b causally precedes all NOOP Ti

b where 2 ≤ i ≤ n.
Thus, T1 must be executed first among {T1, T2, T3, · · · , Tn} on

all replica sites. Then the remain operations are {T2, T3, · · · , Tn}.
According to the assumption, the execution order of n − 1 opera-
tions at every site is consistent. Thus, the execution order are con-
sistent after n operations in all replica site.

THEOREM 1. Transactions in our system are serialized (Defi-
nition 5).

PROOF. According to Lemma 1, the execution order of trans-
actions is consistent on all replicas. To prove the current theorem,
we only need to prove the order between each transaction and non-
transaction is consistent on all replicas. Let T be a transaction and
O be a non-transaction operation.

We consider the situation after all timestamp switches have taken
place for transactional operations. Without loss of generality, as-
sume O is generated from replica site a. Since the switch rule
only applies to NOOP operations from the same replica site, after
the switch, T should still have one corresponding NOOP operation
from each replica site. Let NOOP T

a denote the NOOP operation
from site a. Since both O and NOOP T

a are local operations of
replica site a, their relationship can only be Causal Relationship
(Definition 2). Their execution order is determined by the Execu-
tion Condition for remote operation (Definition 4). Since transac-
tion T will be executed together with NOOP T

a at all sites. So the
execution order between T and O is fixed.

In summary, no matter which type the operation is, the execution
order is certain. This satisfies the Definition 5.

LEMMA 2. Assume the system contains two concurrent opera-
tions and two replicas. The results are the same even though the
two operations are executed in different order on the two replicas.

PROOF. Assume U1 ≺ U2, and on one of the replicas, U2 ex-
ecutes first. We what to show executing U1 after U2 leads to the
same result. Consider any node n in the document. If n’s times-
tamp is not changed by U2, then U2 has no effect on n, so execut-
ing U1 before or after U2 is the same. Suppose n’s timestamp is
changed to (U2,−), that is, n is created by U2. Since U1 ≺ U2,
or U1 �∈ (U2,−), the retracing algorithm will make n invisible
to U1. Suppose n’s timestamp is (U ′, U2), i.e., n is deleted by
U2. Assume n’s original timestamp is (U ′, U ′′), and we have
U ′ ≺ U2 ≺ U ′′. There are only two cases: (i) U ′ ≺ U1 ≺ U ′′ and
(ii) U1 ≺ U ′, where in case (i) n is visible to U1 and in case (ii)
n is invisible to U1, no matter there is U2 or not. This means, with
retracing, U1 is seeing the document as if U2 never occurred.

THEOREM 2. Assume the system contains n operations and any
number of replicas. After the n operations have executed on all
replicas, the results on all replicas are the same..

Lemma 2 proved consistency for two operations in a distributed
environment. Based on Lemma 2, we simply apply the results in
our previous work (Theorem 3 of [8]) to extend the proof to n op-
erations.
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