
FloatCascade Learning for Fast Imbalanced Web Mining
Xiaoxun Zhang1, Xueying Wang2*, Honglei Guo1, Zhili Guo1, Xian Wu1 and Zhong Su1

1 IBM China Research Lab

Beijing, 100094, China

{zhangxx, guohl, guozhili, wuxian,
suzhong}@cn.ibm.com

2 Peking University

Beijing, 100871, China

{wangxy05}@sei.pku.edu.cn

ABSTRACT
This paper is concerned with the problem of Imbalanced
Classification (IC) in web mining, which often arises on the web
due to the “Matthew Effect”. As web IC applications usually need
to provide online service for user and deal with large volume of data,
classification speed emerges as an important issue to be addressed.
In face detection, Asymmetric Cascade is used to speed up
imbalanced classification by building a cascade structure of simple
classifiers, but it often causes a loss of classification accuracy due to
the iterative feature addition in its learning procedure. In this paper,
we adopt the idea of cascade classifier in imbalanced web mining
for fast classification and propose a novel asymmetric cascade
learning method called FloatCascade to improve the accuracy. To
the end, FloatCascade selects fewer yet more effective features at
each stage of the cascade classifier. In addition, a decision-tree
scheme is adopted to enhance feature diversity and discrimination
capability for FloatCascade learning. We evaluate FloatCascade
through two typical IC applications in web mining: web page
categorization and citation matching. Experimental results
demonstrate the effectiveness and efficiency of FloatCascade
comparing to the state-of-the-art IC methods like Asymmetric
Cascade, Asymmetric AdaBoost and Weighted SVM.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – Data
Mining; I.2.6 [Artificial Intelligence]: Learning

General Terms: Algorithms, Experimentation

Keywords: Fast imbalanced classification, Float Searching,
Cascade learning, Web page categorization, Citation matching

1. INTRODUCTION
In this paper, we are concerned with the problem of Imbalanced
Classification (IC) in web mining, which often arises on the web
due to the “Matthew Effect”: the rich get richer and the poor get
poorer. As a result, the positive and negative examples exhibits
distinct imbalance in web IC applications, i.e., the number of
positive examples is far smaller than that of negative examples. One
typical example is web directory (see Figure 1) where huge web
pages are manually organized into hierarchical categories, such as

ODP (Open Directory Project) [38], Yahoo! Directory [39] and
Google Directory [40]. It has been observed that the category
distribution is highly unbalanced on these popular web directories.
For instance, on ODP directory, the maximum second-level
category (“Society/religion and spirituality”) contains about 80,000
pages, whereas some minimum second-level categories contain only
one page (“Home/News and media”, “News/chats and forums”).
Another prominent example is citation matching (see Figure 2),
which aims to identify whether two citations actually refer to the
same publication [24, 34, 35]. It is a crucial step for online paper
services such as Google Scholar [41] and CiteSeer [42]. Among a
large amount of candidate pairs of citations, only a very few pairs
are target co-references.

Figure 1. The example of web directory: ODP.

Figure 2. The example of citation matching: Google Scholar.

* This work is conducted while the author was on an internship at
IBM China Research Lab.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

71

WWW 2008 / Refereed Track: Data Mining - Learning April 21-25, 2008 · Beijing, China

Previous work has shown that imbalanced data would adversely
affect classification accuracy. Classifiers without consideration of
imbalance tend to be overwhelmed by major negative examples [1,
2]. Some IC approaches have been proposed in the fields of text
mining and pattern classification, mainly including discarding
negative examples [3, 4, 5], synthesizing positive examples [18] and
assigning greater costs on positive examples than negative ones [6,
20, 21, 22, 23]. These methods primarily focused on improving the
classification accuracy with particular concern on minor positive
examples [16]. However, classification speed becomes an important
issue to be addressed in many cases, especially for those web IC
applications which need to deal with large volume of data and those
online web services which require rapid response to the user request.

In real-time face detection, the classifier is required to locate the
very few faces quickly and accurately among millions of image
regions [9]. Asymmetric Cascade (AsyCascade) can greatly speed
up face detection by building a cascade structure of simple
classifiers [10]. It uses a small number of features in the early stages
to exclude the large majority of non-face regions. Complex
computation is only reserved for the small number of face-like
regions. As a result, the classification speed is significantly raised.
Unfortunately, AsyCascade usually achieves fast classification at
the expense of classification accuracy. This is mainly due to the
iterative feature addition in its learning process. Classifiers with
more features run the risk of poorer generalization and more
computation time.

In this paper, we adopt the idea of cascade classifier in imbalanced
web mining for fast classification, and propose a new asymmetric
cascade learning method called FloatCascade to improve the
accuracy. Compared with AsyCascade, FloatCascade can select
fewer but more effective features at each stage of the cascade
classifier. It uses a float searching scheme [30] to remove and/or
replace features that cause higher false positive rates. The quantity
and quality of available features become the key factors to the
success of FloatCascade. A decision-tree scheme is hereby adopted
to enhance feature diversity and discrimination capability. We
evaluate FloatCascade on two typical web IC applications: web
page categorization and citation matching. Experimental results
demonstrate that: 1) the classification time of FloatCascade is
further reduced compared with AsyCascade because fewer features
are required for classification; 2) FloatCascade is consistently
superior to AsyCascade and even better than non-cascade
asymmetric methods like Asymmetric AdaBoost [9] and Weighted
SVM [6, 23] because more effective features are found for
classification.

The remainder of the paper is organized as follows. Related work is
reviewed in Section 2. Section 3 presents our FloatCascade learning.
Experiments, evaluation and analysis are conducted in Section 4.
Finally, the conclusion is given in Section 5.

2. RELATED WORK
2.1 Imbalanced Classification Problem
The IC problem has attracted considerable attention in the fields of
text mining and pattern classification, e.g., text categorization [6, 17,
23, 25], reference matching [24, 31], spam detection [27], duplicate
detection [32], medical diagnosis [27] and oil spills detection [33].
Existing IC approaches can be broadly divided into two categories:
re-sampling and re-weighting methods. Re-sampling methods
artificially balance the two classes by over-sampling positive
examples or down-sampling negatives ones [1, 2, 3, 4, 5]. Re-

weighting methods are also known as cost-sensitive methods [6, 20,
21, 22, 23], where positive examples are assigned greater costs than
negative ones. However, until now, the IC problem has not received
much attention in the community of web mining, though it occurs
very often on the web.

Since manual categorization is prohibitively time-consuming and
labor-expensive for web-scale applications, there has been much
work on automatic web page categorization. Generally, there are
two major kinds of automatic categorization approaches [11, 12, 13]:
content-based and context-based methods. Content-based methods
build the classifier using words or phrases in web pages. Naive
Bayes (NB) [11, 15] and Support Vector Machine (SVM) [11, 14]
have been approved to be effective methods along this line.
Context-based methods additionally exploit hyperlink and hypertext
among web pages [12, 13]. However, most of these approaches
ignore imbalanced distribution of web categories, which results in
adverse classification accuracy [1]. Some works on text
categorization have noticed this problem and attempted to improve
the accuracy by exploring imbalanced text distribution, e.g., SVM
on re-sampled data [17, 25] and Weighted SVM with asymmetric
cost [6, 23]. Though these works might achieve better classification
accuracy, they fundamentally neglect the important issue of
classification efficiency, which makes them inapplicable to the web-
scale applications. By contrast, FloatCascade considers both
classification effectiveness and classification efficiency by taking
advantage of the inherent imbalance of web categories.

Citation matching aims to identify whether two citations actually
refer to the same publication [31]. It is not a trivial problem since
various data inconsistencies may occur between citations, e.g., name
abbreviation, incorrect spellings, different formatting and citation
mistakes. Citation matching is a crucial problem for paper search
engines, where fast classification is highly desirable for online
response to user queries. An efficient two-stage method called
Canopy was proposed for citation matching in [24]. It first places
the citations which are potential co-references into the same cluster
using a rough metric, and then conduct complex computation in
each cluster using a rigorous metric. In some sense, Canopy can be
regarded as a simplified two-stage AsyCascade classifier, but
AsyCascade differs from it in two essential aspects: 1) the two
metrics used in Canopy are manually determined while all the
features used in AsyCascade are automatically selected; 2) Canopy
reduces the classification time by excluding the citation pairs
between different clusters while AsyCascade achieves fast
classification by quickly discarding the majority of negative
examples in early stages.

2.2 Asymmetric Cascade
Simple classifier at each stage of AsyCascade is trained using
Asymmetric AdaBoost (AsyBoost) whose learning objective is to
reserve as many positive examples. AsyBoost is an extension of
AdaBoost [9] which combines multiple weak classifiers to form a
strong ensemble classifier [8]. Mostly, a weak classifier is just a
single feature. AdaBoost provides an effective feature selection
mechanism by iteratively re-weighting the training examples. It
selects the feature with the lowest weighted error at each round and
adds it to the ensemble classifier. As re-weighting proceeds, the
weights of correctly classified examples are decreased while the
weights of misclassified ones are increased. This forces the
subsequent weak classifiers to gradually focus on hard examples.
AsyBoost [9] further assigns greater costs to false negatives than
false positives by up-weighting the positive examples. This forces

72

WWW 2008 / Refereed Track: Data Mining - Learning April 21-25, 2008 · Beijing, China

the subsequent weak classifiers to asymmetrically focus on positive
examples. As a result, AsyBoost can effectively reduce the
misclassification of positive examples.

The main learning objective of AsyCascade is to achieve radically
reduced classification time as well as increased detection rate.
Toward this end, AsyCascade leverages the inherent imbalanced
data distribution from two aspects: 1) Re-weighting. Each simple
classifier is trained using AsyBoost for reserving more positive
examples. The process of re-weighting all examples is repeated once
adding a new feature to the ensemble classifier. 2) Re-sampling.
Each stage is trained on all positive examples and on a subset of
negative examples. The process of re-sampling negative examples is
repeated once adding a new stage to the cascade classifier. In
moving from the previous stage to the next one, correctly classified
negative examples are replaced with the unused ones while
misclassified negative examples are retained. This poses a more
challenging classification task for the next stage, and thus a more
complex classifier is usually learned. As seen, AsyCascade
combines the advantages of the re-sampling and re-weighting
techniques to achieve fast classification. It has been improved by
some subsequent works in two ways. The first way attempts to
improve AsyBoost using a better re-weighting scheme [26, 27]
while the second one tries to build a better cascade classifier [28,
29]. Unfortunately, all of these works achieved fast classification at
the cost of decreased accuracy. As compared, FloatCascade can
achieve better classification accuracy as well as higher classification
speed simultaneously.

3. FLOATCASCADE LEARNING
In this paragraph, we first highlight the learning objective of
FloatCascade in Section 3.1. Then, we present FloatCascade
learning from its training and testing in Section 3.2. After that, in
Section 3.3, we build the decision-tree feature for FloatCascade
learning. Finally, in Section 3.4, we discuss some related issues.

3.1 Learning Objective
Web data often manifests two distinct characteristics with respect to
data distribution: 1) there are a large amount of examples; 2) there
are a small number of positive examples in comparison with a large
quantity of negative ones. Such web data poses some great
challenges for learning a classifier, including

 Balanced classification accuracy: AsyCascade hopes to detect
as many positive examples in its learning. Formally, the false
negative rate ()fn at its each stage should be lower than a
predefined threshold ϑ , i.e.,

ϑ≤fn

However, a classifier with enough low fn is still useless in real-
world applications if it has too high false positive rate ()fp . In an
extreme case, all the examples can be simply classified as
positive examples. In this way, all the positive examples are
reserved, but all the negative examples are misclassified. In order
to control the misclassification of negative examples,
FloatCascade wants to locate the minimum fp on condition that
fn is not greater thanϑ . Specifically, the learning objective at

each stage of FloatCascade learning can be formulated as

() ϑ≤fntsfp ..min

As a consequence, FloatCascade can achieve not only very low
false negative rate to avoid missing minor positive examples but
also very low false positive rate to avoid introducing too many
negative examples. The overall classification accuracy is well
balanced and favorably raised.

 Fast classification speed: fast classification is required to deal
with the huge number of examples. FloatCascade achieves this
goal by exploiting the natural unbalanced distribution of the
positive and negative examples. It hopes to find more effective
features to quickly exclude more obvious negative examples with
simple computation. In the mean time, it hopes to use fewer
features at each stage of the cascade classifier, which further
reduces the computation time in classification.

3.2 Float Searching for Cascade Learning
3.2.1 Motivation
The training procedure of AsyCascade is automatic and adaptive,
which is conducted by the predefined accuracy requirement of the
ensemble classifier at each stage [10]. It requires each ensemble
classifier to achieve very high detection rate (which is near 100%)
and only modest false positive rate (which is not over 50%). In this
paper, detection rate refers to false negative rate and recall. The
detection rate is usually satisfied by lowering the threshold of the
ensemble classifier. However, a lower threshold would yield a
classifier with more false positives. It has to add more features to
reduce the false positive rate. As a result, it will introduce some
unnecessary and even deleterious features. The building of
AsyCascade classifier is just such a stage-wise process adding
features in greedy manner. Unfortunately, two problems may arise
in the classifier dependent on more features: 1) the classifier
becomes less efficient since more computation time is needed to
classify an example; 2) the classifier becomes less effective since
over-fitting problem is more likely to occur in a complex classifier.

To attack these problems, we propose a new asymmetric cascade
learning method called FloatCascade. It successfully uses less but
more effective features at each stage by adopting a float searching
scheme [33]. Float searching is an efficient feature selection method
with a backtrack mechanism. Backtracks are performed to remove
some previous features that cause accuracy drops when a new
feature is added. FloatCascade adopts the detection rate and false
positive rate to conduct such backtrack process. In specific, it
removes the features causing higher false positive rates given that
the required detection rate is attained. Next, we introduce
FloatCascade learning in details from its training and testing
procedures respectively.

3.2.2 Training Procedure of FloatCascade
Give a training set () () (){ }nn yxyxyxZ ,,,,,, 2211 L= where

ban += of which a examples have 1+=iy and b examples
have 1−=iy . In web IC problems, ba << .

The training process of FloatCascade is described in Figure 3. In the
figure, ettF arg denotes the target false positive rate for the overall

cascade classifier; ϑ is the acceptable minimum false negative rate
and f is the acceptable maximum false positive rate for each stage;
P is the set of training positive examples, V is the set of training
positive examples and N is a subset of training negative examples
by re-sampling all the training negative examples with the

73

WWW 2008 / Refereed Track: Data Mining - Learning April 21-25, 2008 · Beijing, China

maximum number maxb ; maxM is the maximum number of features
at each stage. Asymmetrically, false negatives cost k times more
than false positives. MH denotes the ensemble classifier of M th
stage in the cascade classifier, which linearly combines multiple
weak classifiers { }ih .

Figure 3. The training process of FloatCascade.

As described, FloatCascade includes two-level learning: cascade
learning and stage learning. Cascade learning adds a new stage to
the cascade classifier if ettF arg is not achieved. It mainly includes
stage learning in Step 3 and re-sampling in Step 4. The essential
difference between FloatCascade and AsyCascade just lies in stage
learning. Stage learning in AsyCascade continuously adds new
features to the ensemble classifier if f is not satisfied. Differently,
FloatCascade adopts a backtrack method to remove some pervious
features for the minimum false positive rate when ϑ is satisfied.
Feature addition in Step 3.1 is accomplished by AsyBoost assigning
greater costs to positive examples, and feature deletion in Step 3.2 is
accomplished by float searching removing features that cause higher
false positive rates. It should be noted that, for the purpose of
enhancing the generalization capability of the learned classifier, the
accuracy of each ensemble classifier is evaluated on the validation
set V rather than the training set itself in Step 3.2.2.

3.2.3 Testing Procedure of FloatCascade
The testing process of FloatCascade is depicted in Figure 4. When
an example is input, a negative decision made at any stage leads to
the immediate rejection of the example, while a positive decision
from the previous stage triggers the evaluation of the next stage. So,
the input example is classified as positive only if it passes the tests
of all the stages. Simple classifiers are used to exclude the majority
of negatives examples before more complex classifiers are called
upon. Even though there are possibly many stages in the final
FloatCascade classifier, most are not evaluated for a typical negative
example since it has been excluded by the early stages. As a
consequence, the classification speed is raised greatly. Though the
testing process of FloatCascade is seemingly similar to AsyCascade,
FloatCascade has two important improvements in classification
performance: 1) the classification time is further reduced because
fewer features are required for classification; 2) the classification
accuracy is further raised because more effective features are found
for classification.

Figure 4. The testing process of FloatCascade.

From Figure 4, we can find out why FloatCascade can achieve
better classification accuracy than AsyCascade. Assuming that all
ensemble classifiers { }iH are constructed independently, the
detection rate and the false positive rate of the overall cascade
classifier are respectively given by ∏=

n

i id
1

and ∏=

n

i if1
. Since

each ensemble classifier of FloatCascade is trained to achieve lower
false positive rate if than AsyCascade under the same threshold
ϑ of the detection rate id , FloatCascade is able to beat AsyCascade
in overall classification accuracy hopefully.

3.3 Decision-tree Feature
FloatCascade attempts to use fewer but more effective features to
build the ensemble classifier. At this time, the quantity and quality
of available features become the key factors to its success.

 Feature quantity. The success of AsyCascade applied to face
detection benefits from a very large and varied set of features
available. For example, over six million Harr-like features were
extracted in [9, 10]. Unfortunately, in many web mining tasks, it
is hard to extract so many features. In the case of citation
matching, a citation only consists of several short text fields, so it
lacks of enough contexts for feature extraction. For web page
categorization, each term is commonly used as a feature. Even so,
the total number of terms is generally far smaller than six million.
The issue of feature quantity is more important to FloatCascade.
The limited number of features reduces the possibility of finding
fewer but more effective features.

 Feature quality. Even though there have been a lot of features
available, it is still difficult to find effective features if each of

74

WWW 2008 / Refereed Track: Data Mining - Learning April 21-25, 2008 · Beijing, China

them has weak discrimination capability. The useable features
should exhibit sufficient diversity, which requires that each
feature should capture the different characteristic of the data.
Classification speed and classification accuracy of the first few
stages is critically important to the overall performance of the
cascade classifier, because it needs to find a very few features in
these early stages for rejecting many negative examples and
meanwhile accepting almost all positive ones. The issue of
feature quality is especially significant to FloatCascade. Only
when there are enough effective features, the number of required
features at each stage could be reduced and the accuracy of the
ensemble classifier could be raised.

Figure 5. A three-level decision-tree feature.

To enhance feature diversity and discrimination capability, a three-
level decision scheme is adopted to build a tree feature for
FloatCascade learning. Such a kind of decision-tree feature has also
been successfully used in [27, 28] for text categorization. A
decision-tree feature consists of seven nodes, which is illustrated in
the Figure 5. Each node contains a single feature, e.g., a term feature
in web page categorization and a metric feature in citation matching.
Since each node can select a different feature and each feature can
set a different threshold, a considerable number of decision trees
could be generated and the available decision-tree features are
vastly enriched. In addition, since a variety of features are now
combined as an overall decision-tree feature, the feature
discriminative power is significantly enhanced. In fact, a single
feature can be viewed as a one-level decision-tree feature just
corresponding to the root note, which is extensively used in the
community of face detection [9, 10].

3.4 Discussion
3.4.1 Comparison and Analysis
Float searching scheme has also been used in FloatBoost [19] to
remove features resulting in higher error rates. Nevertheless,
FloatCascade and FloatBoost are different in principle. Essentially,
the former improves AsyCascade while the latter improves
AsyBoost. FloatBoost follows AsyBoost in the way of minimizing a
quantity related to error rate [19], which is at best an indirect way of
meeting the learning objective of cascade learning as pointed out in
[31, 32]. In the context of cascade learning, the learning objective of
the ensemble classifier is to achieve high false negative rate and
moderate false positive rate instead of a minimum error rate [9].
FloatCascade is specially designed to improve the cascade classifier
using float searching. It makes the largest improvement in the false
positive rate of each ensemble classifier when the detection rate is

satisfied, which is directly consistent with the learning goal of
asymmetric cascade classifier.

It is well known that most of algorithms have to trade efficiency for
effectiveness, or vice versa. But, our FloatCascade can achieve high
classification speed as well as good classification accuracy. Based
on the following experiments, the classification accuracy of
FloatCascade is even comparable to non-cascade methods. In
AsyCascade, it focuses too much on the positive examples at the
cost of too many misclassified negative examples, which results in
an unfavorable decrease in overall classification accuracy. By
contrast, FloatCascade attains a satisfactory balance between false
negative rate and false positive rate and ensures that the overall
classification accuracy is not decreased and even slightly raised.

Notably, asymmetric cascade learning is essentially independent of
AsyBoost. In other words, AsyCascade and FloatCascade can be
implemented without AsyBoost. In fact, any feature addition
method (even random addition) can be used to provide candidate
features for ensemble classifiers. After that, FloatCascade adopts
float searching to remove some deleterious features for enhanced
ensemble classifiers. Its key insight is that feature refinement (i.e.,
feature deletion in FloatCascade) can remedy the accuracy loss
caused by continuous feature addition in the way of directly
maximizing the learning objective of the cascade learning.

The implementation of AdaBoost, AsyBoost, AsyCascade and
FloatCascade are relatively easier than other popular classification
models, such as SVM. AdaBoost has only one parameter, namely
the iteration number. In the experiment, we set it be 100 and report
the best accuracy. AsyBoost has an additional parameter k for
asymmetric cost. We automatically set it to be the ratio of negative
examples over positive examples in each category. FloatCascade
and AsyCascade have the same parameter settings. As explained in
Section 3.2.3, some important parameters such as ettF arg ,ϑ and f
can be determined according to the learning objective of cascade
classifier. In our experiment, we set 61arg −= eF ett , 99.0=ϑ

and 5.0=f . Once these parameters are set, the training of
FloatCascade and AsyCascade is fully data-driven requiring no any
manual intervention and inspection.

3.4.2 The Generality of FloatCascade Learning for
Imbalanced Web Miming
Arising from the extensive impact of “Matthew Effect” on the social
web, the problem of imbalanced classification occurs very often in
web mining. Besides web page categorization and citation matching,
there are also many other web IC applications, such as

 Web search. Though there are a great number of web pages, only
a very small number of ones are really relevant to a search query,
even if search engines have filtered so many irrelevant ones in
their searching results.

 Spam detection. Generally, there are only a very small amount of
spam documents compared with a very large amount of
legitimate ones, such as spam emails and spam web pages.

 Keyword extraction. Usually, only several terms occurring in
web pages can be served as their keywords, even if the web page
contains many textual terms in its body.

Fortunately, all of these web mining tasks could be solved in the
framework of learning to classification. The general solution is to

75

WWW 2008 / Refereed Track: Data Mining - Learning April 21-25, 2008 · Beijing, China

define some task-specific features, extract features from the web
example, and accomplish the classification in the feature space.
Some prior work has actually complied with this paradigm to attack
these problems, such as fRank for static ranking [42], SVM for
spam detection [43] and learning to extract keywords from web
pages [44]. Our FloatCascade also follows this learning framework,
but more importantly, it additionally exploits the imbalance nature
in these web IC problems to achieve desirable improvement in both
classification effectiveness and classification efficiency. In fact,
many web mining problems can be attacked in the framework of
imbalanced classification by proper and subtle problem
reformulation. Considering the popularity of web IC problems and
the generality of our FloatCascade, we expect that FloatCascade is
very promising for many web mining applications.

We highlight the importance of feature to learning framework of
imbalanced web classification in two aspects: 1) it should extract
specific features in specific mining tasks. For example, in the task of
web page categorization, it can use common word feature; however,
in the scenario of citation matching, it ought to extract similarity
metric features from citation pair. 2) it should enhance the
discrimination and diversity of available features as possible. The
decision-tree scheme might be a good option. We will verify the
feature importance for FloatCascade learning in the following
experiments.

4. EXPERIMENTS
We evaluate FloatCascade on the tasks of web page categorization
and citation matching, two typical web IC applications. We first
introduce experimental methodology in Section 4.1. Then, we
present the experiments on web page categorization in Section 4.2
and citation matching in Section 4.3 respectively.

4.1 Experimental Methodology
We evaluate all the classification algorithms in terms of efficiency
as well as effectiveness. The testing time (millisecond) is recorded
for each algorithm, keeping the computer in the same situation as
possible, e.g., CPU usage and memory usage. We use such recorded
time to distinguish the two algorithms in classification efficiency if
there is an evident gap between them. The computer used for our
experiments is equipped with Intel Core2 processor 2.66GHz and
2.0 GB memory.

Table 1. The distribution of the examples after classification.

After classification, testing examples fall into four cases shown in
Table 1, where NTP and NTN respectively denotes the number of
the positive and negative examples correctly predicted, while NFN
and NFP respectively denotes the number of the misclassified
positive and negative examples. We evaluate the accuracy of
imbalanced classification in two aspects. One is about retrieving
positive examples and the other is about classifying all the examples.
The standard measures are adopted for both aspects. Specifically,
retrieval accuracy is evaluated with precision (P), recall (R) and F1-
measure (F1), and classification accuracy is evaluated with false
negative rate (FN), false positive rate (FP) and error rate (ER).
These measures are calculated as follows:

P=NTP/(NTP+NFP), R=NTP/(NTP+NFN), F1=2PR/(P+R),

FN=NFN/(NTP+NFN), FP=NFP/(NTN+NFP),

ER=(NFP+NFN)/(NTP+NTN+NFP+NFN).

F1and ER are the two overall measures. The higher F1 is, the better
the retrieval accuracy is. The lower ER is, the better the
classification accuracy is. Though the sum of R and FN is 1 by their
definitions, we still list all these measures in the experiments for the
sake of completeness and convenient comparison.

In the experiment of web page categorization, two popular methods
including NB and SVM are implemented. NB assumes a generative
model and uses the joint probability of words in document to
estimate the possibility of a document belonging to a category.
SVM seeks a hyper-plane in a high dimensional kernel space to
discriminate the positive and negative examples with maximum
margin. Besides, a popular IC method, Weighted SVM (WSVM)
[23], is implemented where positive examples out-weight negative
examples in their training cost. We implement SVM and WSVM
with linear kernel using SVMlight [40]. In the experiment of citation
matching, SVM and WSVM are carried out for comparison. We use
our own implementation of AdaBoost (Ada), AsyBoost (AA),
AsyCascade (AC) and FloatCascade (FC).

4.2 Experiment on Web Page Categorization
10116

5365

4076 3935
3509

2260
1707 1705 1679

1309 1075 888

0

2000

4000

6000

8000

10000

R
ef

er
en

ce

H
ea

lth

So
cie

ty
R

ec
re

at
io

n

N
ew

s

Sh
op

pi
ng

C
om

pu
te

rs

Sp
or

ts
K

id
s_

an
d_

Te
en

s

A
du

lt

A
rt

s

G
am

es

Category

N
u
m
b
e
r

o
f

w
e
b

p
a
g
e
s

Figure 6. The web pages crawled from the ODP web directory

in its 12 first-level categories.
Web page categorization is a typical multi-class and multi-label
classification problem [13, 27]. Besides the inherent imbalance of
web categories, imbalance effect is enhanced by the one-against-all
learning strategy for transforming such a multi-class and multi-label
classification problem into a binary classification problem, where
training examples belonging to one category are taken as positive
examples and training examples not belonging to this category as
taken as negative examples. We also follow this popular way to
train the investigated classifiers except NB. We first introduce the
dataset with the stress of the imbalanced categories and then give
the experimental results.

4.2.1 Dataset
The web pages used in our experiment are crawled from the ODP
web directory. On the ODP, all the web pages have been manually
classified into hierarchical taxonomy. We have crawled totally
37,624 web pages from its 12 first-level categories. The dataset
exhibits highly imbalanced distribution as plotted in the Figure 6.

Positive Negative
TRUE NTP NTN

FALSE NFP NFN

76

WWW 2008 / Refereed Track: Data Mining - Learning April 21-25, 2008 · Beijing, China

The maximum category contains 10116 pages while the minimum
category only contains 888 pages. In the experiments, all the web
pages are preprocessed by the following steps: (1) passing all words
through the word stemmer; (2) tossing out all the stop tokens; (3)
normalizing the documents into TFIDF vectors.

4.2.2 Result
The dataset is randomly split into 10 groups. Eight groups are used
as the training set and the remained two ones are used as the
validation and testing sets respectively. We repeat such trails for 20
times using the three-level decision-tree feature. The experimental
results averaged over both 12 categories and 20 runs are reported in
Table 2. We can see that:

Table 2. The experimental results on the ODP dataset.

 AdaBoost and SVM vs. NB. AdaBoost and SVM both
significantly outperform NB in classification accuracy. It may
suggest that a discriminative model is more suitable for
imbalanced web page categorization than a generative model.

 AdaBoost vs. SVM. AdaBoost is slightly better than SVM in
terms of F1 and ER. However, AdaBoost is faster than SVM
more than 2 (3913/1750) times, which benefits from simple
threshold decision in its weak classifier rather than expensive
kernel mapping in SVM. It implies that AdaBoost is a better
choice than SVM for cascade learning since the classification
speed of ensemble classifiers is very important to it.

 IC vs. balanced classification (BC). IC is much better than BC
in recall (from 66.17% to 69.46% when AA vs. Ada and from
62.55% to 65.52% when WSVM vs. SVM). It verifies that IC
can surely retrieve more positive examples than BC.

 Cascade vs. Non-cascade. Cascade method can greatly reduce
the classification time. The classification speed of AC is raised
by at least 23.57% (405/1718) comparing to Ada and AA and at
least 66.45% (2600/3913) comparing to SVM and WSVM. It
mainly benefits from the fact that the considerable number of
negative examples is excluded at the early stages in AC just
using a small number of features.

 FC vs. other methods.

FC vs. AC. Unfortunately, AC observably performs worse than
non-cascade IC methods in terms of both F1 and ER. For
example, F1 is decreased by 8.11% in F1 (0.045/0.5548) and ER
is decreased as much as 21.07% (0.0248/0.1177) compared with
AA. The improvement in retrieving positive examples is
counteracted by the misclassification of too many negative
examples, and the overall classification accuracy is remarkably
decreased. That is to say, AC achieves fast classification at the
expense of classification accuracy. By contraries, the accuracy of
FC is significantly improved compared with AC, with 8.33%
increase in F1 and 18.52% increase in ER. The misclassification
of negative examples is effectively controlled. Moreover, FC
successfully seeks a balance between the false positive rate and

the false negative rate resulting in an evident improvement in
overall classification accuracy. In fact, FC approaches the
classification accuracy of AA in terms of F1 and ER. Further, the
classification time of FC is reduced by as much as 54.84%
(720/1313) compared with AC. It attributes to the fact that FC
successfully uses fewer and more effective features in the early
stages to get rid of more negative examples.

FC vs. Non-cascade. The most distinct advantage of FC over
non-cascade IC methods is its distinct fast classification speed,
being almost 3 (1718/593) times faster than Ada and AA and
over 6 (3913/593) times faster than SVM and WSVM. At the
same time, the classification accuracy is well comparable to AA
and WSVM. Delightedly, FC is even slightly better than SVM
and WSVM in F1. It manifests the effectiveness and efficiency of
FC comparing to the state-of-the-art IC methods.

4.2.3 Efficiency Analysis
In order to better explain why FC is faster than AA, Ada and AC,
we figure out the average number of the features used in these
classifiers. These algorithms all take the decision-tree feature as the
weak classifier. If we assume that each tree feature takes the equal
time to classify an example, we can approximately compare the
classification efficiency of these algorithms using the times of
decision-tree classification. In the above experiment, there are
averagely 43 features in Ada, 42 features in AA, 89 features in AC
and 55 features in FC. As seen, the number of features in FC is
reduced by 38.20% (34/89) compared with AC. This demonstrates
that FC can effectively remove some unfavorable features from AC.
Though Ada and AA use fewer features than AC and FC for
classification, they treat all the examples indiscriminatingly. That is,
all the positive and negative examples are evaluated using all the
decision-tree features. As comparison, it is found that over 80% of
negative examples are discarded in the first stage of AC and FC
with less than 3 trees. Decision-tree classification in the later stages
is only conducted on the minor promising examples. As a result, the
required times of decision-tree classification in AC and FC are
greatly reduced compared with AA and Ada.

FC is further faster than AC for classification. As an illustration, we
examine the cascade classifier of FC and AC for the category of
“News”. The number of features at each stage of FC is 1, 2, 3, 4, 5,
5, 6, 7, and 8, while 3, 6, 7, 8, 9, 13, and 18 in AC. As observed, FC
successfully uses fewer features than AC at all stages. Importantly,
it is found that that some features in AC are replaced by FC with
more effective ones for classification. Consequently, more negative
examples are quickly excluded by FC than AC at earlier stages. In
summary, the reduced number and the enhanced effectiveness of the
features both contribute to the faster classification of FC than AC.

4.2.4 Experiment on Text Data and Feature Analysis
We also apply FloatCascade to the traditional text document for
categorization in order to further investigate its imbalanced
classification performance. The experiment is conducted on the
Reuters-21578, a benchmark corpus for text categorization. The
corpus consists of 7769 training documents and 3019 testing
documents, both belonging to the common 90 categories. All the
training and testing examples belonging to one category are merged
to the larger category and then randomly split into 10 groups to
construct the training, testing and validation sets like last experiment.
We also repeat evaluation trials for 20 times in all.

P R F1 FN FP ER Time
NB 0.3115 0.7293 0.4365 0.2707 0.1742 0.1704 3501
SVM 0.4526 0.6255 0.5252 0.3745 0.0770 0.0929 3913
WSVM 0.4483 0.6552 0.5324 0.3448 0.0733 0.0959 4200
Ada 0.4761 0.6617 0.5537 0.3383 0.0808 0.0931 1750
AA 0.4618 0.6946 0.5548 0.3054 0.0736 0.0929 1718
AC 0.3904 0.7344 0.5098 0.2656 0.1043 0.1177 1313
FC 0.4999 0.6167 0.5522 0.3833 0.0762 0.0959 593
Improv 8.33% 18.52% 54.84%

77

WWW 2008 / Refereed Track: Data Mining - Learning April 21-25, 2008 · Beijing, China

In our work, we are mainly concerned with IC problem. In order to
enhance the effect of data imbalance and analyze the effectiveness
of FloatCascade to hard IC problems, we specially select 10 small
categories from the Reuters-21578 for reporting experimental result
averaged over these 10 categories. The selected categories are listed
in the Table 3 and the experimental result is shown in the Table 3.
Note that these results are also averaged over 20 runs. We can draw
the similar conclusion to the last experiment, which indicates that
FloatCascade is adaptable to various types of imbalanced data. In
particular, FC outperforms AC in F1 by 6.75% and in ER by
39.51%. One again, FC is two times faster than AC and many times
than non-cascade methods.

Table 3. The 10 small categories selected from the Reuters-
21578 corpus for the experiment.

Table 4. The experimental results on the Reuters-21578 corpus.

Besides, to all compared algorithms, the classification accuracy of
text categorization is distinctly much better than that of web page
categorization. It should attribute to the availability of good features
on text data. The documents in Reuters-21578 corpus are news
articles edited by human and generally have better quality than web
pages. Thus, it is more likely to extract effective decision-tree
features from such text data. To further validate the importance of
decision-tree feature for the cascade learning, we also conduct the
experiments of Ada, AA, AC and FC using just a single term feature
on Reuters-21578 collection. The experimental results on the
selected 10 categories are also listed in Table 3 for convenient
comparison. It can be observed that: 1) all four algorithms perform
much worse with a singe feature. Using features with poor
discrimination capability, Ada and AA fail to achieve good
accuracy though they combine multiple features. FC and AC are
also hard to achieve a satisfactory accuracy though they combine
multiple AA classifiers; 2) the classification time of Ada and AA is
superficially reduced to almost half. This is only because a decision
tree requires approximately 2 times time of a single feature for
classifying an example; 3) FC merely approaches the accuracy and
speed of AC. This is mainly owing to that FC almost cannot remove
or replace the features used in AC. These experimental results bear
out the significance of features to the success of FloatCascade
learning.

4.3 Experiment on Citation Matching
Experiments on citation matching are done on the Cora dataset, an
extensively used citation corpus. We first introduce this dataset and
then describe the features extracted in our experiment. After that, we
give the experimental results and analysis.

4.3.1 Dataset

Figure 7. An example of citations that refer to the same paper.

Unbalanced distribution of candidate

citation pairs

17958:13%

116235:87% Positive: Co-references

Negative: Non co-references

Figure 8. Unbalanced distribution of candidate citation pairs.

In Cora, there are 1295 distinct citations to 122 computer science
research papers. Each citation was composed of multiple fields
including author, title and venue etc. Figure 7 shows several
citations referring to the same paper in spite of many literal
differences. We perform citation matching by identifying whether a
pair of citations actually refers to the same one publication. The
number of pair-wise similarity computations grows quadratically
with the size of the dataset. It is prohibitively expensive to
accomplish this computation on the Cora (2

1295C pairs) dataset.
Fortunately, the majority of citation pairs are obviously dissimilar.
We sort out candidate citation pairs sharing at least one term.
Finally, we obtain 17,958 target co-references and 116,235 non co-
references, which is under a distinct imbalanced distribution as
illustrated in Figure 8.

4.3.2 Features
In this section, we briefly describe the features used in our
experiments. These features are extracted from each citation pair

Topic corn wheat oilseed soybean sugar
Topic nat-gas cpi bop alum dlr

P R F1 FN FP ER Time
NB 0.6845 0.5064 0.5821 0.4936 0.0038 0.0118 3015
SVM 0.7651 0.6433 0.6990 0.3567 0.0030 0.0078 3813
WSVM 0.8048 0.6936 0.7375 0.3064 0.0027 0.0071 4000
Ada 0.8331 0.6278 0.7160 0.3722 0.0027 0.0071 641
AA 0.7985 0.6823 0.7358 0.3177 0.0035 0.0071 625
AC 0.5819 0.8725 0.6982 0.1275 0.0149 0.0162 188
FC 0.6615 0.8534 0.7453 0.1466 0.0081 0.0098 94
Improv 6.75% 39.51% 50.00%

P R F1 FN FP ER Time
Ada 0.5793 0.3315 0.4217 0.6685 0.0011 0.0105 328
AA 0.6335 0.5001 0.5590 0.4999 0.0031 0.0095 360
AC 0.4292 0.9300 0.5874 0.0700 0.1844 0.1830 125
FC 0.4398 0.9300 0.5880 0.0700 0.1843 0.1830 123

Text categorization using decision-tree feature

Text categorization using single feature

78

WWW 2008 / Refereed Track: Data Mining - Learning April 21-25, 2008 · Beijing, China

under the help of SecondString [32] and SimMetrics [41], two open
source toolkit for calculating distance metrics between short strings.
The adopted features can be loosely grouped into several categories.
The first category refers to character-based metric, such as edit
distance and Jaro metric. The second one is token-based metric,
such as Jaccard metric and TFIDF cosine metric. The third one
involves statistics-based metric, such as Jensen-Shannon metric and
SFS metric. The last category corresponds to hybrid metric,
including two-level metrics and SoftTFIDF metric. The specific
definitions of these metrics can refer to [32]. Finally, we extract
totally 37 similarity metrics as features.
Comparing to a text document and an image, it can only extract a
minority number of features from a citation pair due to the lack of
enough contexts. Like last experiment, we also adopt the decision-
tree to enrich and enhance the feature space for citation matching.

4.3.3 Result
For evaluation, all the positive and negative examples are equally
divided into the three subsets. These three subsets are alternately
taken as the training, testing and validation set. We repeat all
possible combinations for experiments, totally 6 times
(1

1
1
2

1
3 CCC ××). The averaged results are shown in Table 4. The

main conclusions made in the web page and text data still hold here.
In specific, 1) AC is much faster than non-cascade methods (SVM,
WSVM, Ada and AA), and FC is further faster than AC; 2) IC
methods (AA and WSVM) retrieve more co-references than BC
methods (Ada and SVM); 3) The overall accuracy of AC is
significantly decreased in comparison with non-cascade methods; 4)
FC achieves a much better classification accuracy than AC. It is
comparable to or even better than the non-cascade methods.

Table 5. The experimental results on the Cora dataset.

However, it also reveals some difference with the last experiments:
1) AA method performs worse than Ada methods in terms of F1 and
ER. As an asymmetric learning method, AA fails to seek a balance
between false negative rate and false positive rate. 2) The
classification time of FC is merely reduced by 8.56% (16/187)
compared with AC, much smaller than 54.84% and 50% in the
previous experiments. The main reason is that the metric feature
used in citation matching has better discrimination capability than
the term feature used in the last two experiments. In this case, AC
itself contains just a small number of features and it leaves not much
room for FC to reduce the number of the features. Even so, FC still
makes a significant accuracy improvement by replacing some
features with more effective ones.

5. CONCLUSIONS
The problem of imbalanced classification may occur very often on
the web due to extensive impact of “Matthew Effect”. Fast
classification is in urgent need for those large-scale and on-line web
IC applications. In this paper, we investigate the feasibility of
cascade learning for fast imbalanced classification in web mining,
and propose a novel asymmetric cascade learning algorithm called

FloatCascade to improve the accuracy of AsyCascade. Our key
insight is that feature refinement (namely feature deletion in
FloatCascade) can remedy the accuracy loss caused by continuous
feature addition in AsyCascade. FloatCascade successfully selects
less yet more effective features at each stage of the cascade
classifier by minimizing the corresponding false positive rate, which
meets the actual objective of asymmetric cascade learning. Besides,
the quality and quantity of available features is critically important
to the success of FloatCascade learning. A decision-tree feature is
adopted to enhance feature diversity and discrimination capability
for FloatCascade learning.
Encouraging experimental results on web page categorization and
citation matching demonstrate the effectiveness and efficiency of
FloatCascade learning for imbalanced web classification. Some
important experimental findings include: 1) FloatCascade can
achieve much higher classification speed than AsyCascade. 2)
FloatCascade can significantly improve the classification accuracy
of AsyCascade. It is even comparable to some non-cascade methods.
3) FloatCascade can attain a favorable balance between the false
negative rate and the false positive rate and ensures the significant
increase in the overall classification accuracy.
The main contributions of this paper are summarized as follows:
1. We propose to study the problem of imbalanced web mining, and

investigate the applicability of cascade learning for fast
imbalanced classification in web mining.

2. We propose a new asymmetric cascade learning method called
FloatCascade to achieve higher classification speed and better
classification accuracy than AsyCascade, and we also highlight
the importance of feature for FloatCascade learning.

Considering the popularity of web IC problems and the generality of
our FloatCascade learning, we expect that FloatCascade is very
promising for many imbalanced web mining applications. In the
future, we will go on improving FloatCascade in two directions:
better classification accuracy and higher classification speed. And
we will apply FloatCascade to more web IC problems for fast and
accurate classification.

6. REFERENCES
[1] N. Japkowicz. Learning from Imbalanced Data Sets: A

Comparison of Various Strategies, In Learning from
imbalanced data sets: The AAAI Workshop 10-15. Technical
Report WS-00-05, Menlo Park, CA: AAAI Press, 2000.

[2] H. Liu and H. Motoda. On Issues of Instance Selection. In
Journal of Data Mining and Knowledge Discovery, pp. 115-
130, 2002.

[3] D. Fragoudis, D. Meretakis, and S. Likothanassis. Integrating
Feature and Instance Selection for Text Classification. In Proc.
of ACM SIGKDD 2002, pp. 501-506, Canada, 2002.

[4] M. Kubat and S. Matwin. Addressing the Curse of Imbalanced
Training Sets: One Sided Selection. In Proc. of ICML 1997, pp.
179-186, 1997.

[5] C. Chen, H. Lee, and M. Kao. Multi-class Svm with Negative
Data Selection for Web Page Classification. In Proc. of IEEE
Joint Conf. on Neural Networks, pp. 2047- 2052, Budapest,
Hungary, 2004.

[6] J. Brank, M. Grobelnik, N. M. Frayling, and D. Mladenic.
Training Text Classifiers with SVM on Very Few Positive

P R F1 FN FP ER Time
SVM 0.9007 0.8922 0.8964 0.1078 0.0180 0.0319 9975
ASVM 0.8591 0.9390 0.8973 0.0610 0.0281 0.0332 10236
Ada 0.8126 0.9739 0.8860 0.0261 0.0411 0.0387 5563
AA 0.7923 0.9761 0.8745 0.0239 0.0469 0.0433 5408
AC 0.6838 0.9902 0.8080 0.0098 0.0848 0.0732 187
FC 0.7976 0.9702 0.8747 0.0298 0.0456 0.0431 171
Improv 9.31% 41.06% 8.56%

79

WWW 2008 / Refereed Track: Data Mining - Learning April 21-25, 2008 · Beijing, China

Examples. Technical Report MSR-TR-2003-34, Microsoft
Research, April 2003.

[7] G. Wu and E. Y. Chang, Kba: Kernel Boundary Alignment
Considering Imbalanced Data Distribution. IEEE Trans. on
Knowledge and Data Engineering (TKDE), 17(6): pp. 786-
795, June 2005.

[8] E. S. Robert. A Brief Introduction to Boosting. In Proc. of
IJCAI 1999, pp. 1401-1405, Stockholm, Sweden, 1999.

[9] V. Paul and J. Michael, Fast and Robust Classification Using
Asymmetric AdaBoost and a Detector Cascade. In Proc. of
NIPS 2001. pp. 1311-1318, 2001.

[10] V. Paul and J. Michael, Robust Real-Time Face Detection. In
Journal of International Journal of Computer Vision (IJCV),
pp. 137-154. Kluwer Academic Publishers, Netherlands, 2004.

[11] D. Shen, J. Sun, Q. Yang, and Z. Chen. A Comparison of
Implicit and Explicit Links for Web Page Classification. In
Proc. of WWW 2006, pp. 643-650, 2006.

[12] E. J. Glover, K. Tsioutsiouliklis, S. Lawrence, D. M. Pennock,
and G. W. Flake. Using Web Structure for Classifying and
Describing Web Pages. In Proc. of WWW 2002, pp. 562-569,
Honolulu, Hawaii, USA, 2002.

[13] H. Oh, S Myaeng, and M. Lee. A Practical Hypertext
Categorization Method using Links and Incrementally
Available Class Information. In Proc. of SIGIR 2000, pp. 264-
271, Athens, Greece, 2000.

[14] T. Joachims. Text Categorization with Support Vector
Machines: Learning with Many Relevant Features. In Proc. of
ECML 1998, pp. 137-142, Chemnitz, Germany, 1998.

[15] A. McCallum and K. Nigam. A Comparison of Event Models
for Naive Bayes Text Classification. In AAAI-98 Workshop on
Learning for Text Categorization, pp. 22-28, 1998.

[16] S. Lessmann. Solving Imbalanced Classification Problems
with Support Vector Machines. In Proc. of the Int. Conf. on
Artificial Intelligence (IC-AI’04), pp. 214-220, Las Vegas,
Nevada, USA,

[17] A. Sun, E. Lim, B. Benatallah, and M. Hassan. FISA: Feature-
Based Instance Selection for Imbalanced Text Classification.
In Proc. of PAKDD 2006. pp. 250-254, 2006.

[18] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer. SMOTE: Synthetic Minority Over-sampling
Technique. In Journal of Artificial Intelligence Research, 16:
pp. 321-357, 2002.

[19] S. Z. Li, Z. Zhang, H. Shum, and H. Zhang. FloatBoost
Learning for Classification. In Proc. of NIPS 2002, pp. 993-
1000, 2002.

[20] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan. Adacost:
Misclassification Cost-sensitive Boosting. In Proc. of ICML
1999, pp. 97-105, 1999.

[21] Y. Ma and X. Q. Ding. Robust Real-time Face Detection based
on Cost-sensitive AdaBoost Method. In Proc. of ICME 2003,
pp. 465-468, 2003.

[22] K. M. Ting and Z. Zheng. Boosting Trees for Cost-sensitive
Classifications. In Proc. of the ECML 1998. pp. 190-195, 1998.

[23] K. Morik, P. Brockhausen, and T. Joachims, Combining
Statistical Learning with a Knowledge-based Approach - A

Case Study in Intensive Care Monitoring. In Proc. of ICML
1999, pp. 268-277, 1999.

[24] A. K. McCallum, K. Nigam, and L. Ungar. Efficient Clustering
of High-dimensional Data Sets with Application to Reference
Matching. In Proc. of KDD2000, pp. 169–178, Boston, MA,
2000.

[25] R. Akbani, S. Kwek, and N. Japkowicz. Applying Support
Vector Machines to Imbalanced Datasets. In Proc. of ECML
2004, pp. 39-50, 2004.

[26] X. Hou, C. Liu, and T. Tan. Learning Boosted Asymmetric
Classifiers for Object Detection. In Proc. of CVPR 2006.
pp.330-338, , New York, 2006.

[27] N. Bobb. BiBoost for Asymmetric Learning. Technical Report,
University of California, 2006.

[28] J. Wu, J. M. Rehg, and M. D. Mullin. Learning a Rare Event
Detection Cascade by Direct Feature Selection. In Proc. of
NIPS 2003, pp. 1523-1530, 2003.

[29] J. Wu, M. D. Mullin, and J. M. Rehg. Linear Asymmetric
Classifier for Cascade Detectors. In Proc. of ICML 2005. pp.
988-995, 2005.

[30] P. Pudil, J. Novovicova, and J. Kittler. “Floating Search
Methods in Feature Selection”. In Journal of Pattern
Recognition Letters, (11): pp. 1119–1125, 1994.

[31] H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser.
Identity Uncertainty and Citation Matching. In Proc. of NIPS
2002. pp. 1401-1408, 2002.

[32] W. W. Cohen. P. Ravikumar, and S. E. Fienberg. A
Comparison of String Distance Metrics for Name-Matching
Tasks. In Proc. of IJCAI 2003 Workshop on Information
Integration on the Web, pp. 73-78, 2003

[33] M. Kubat, R. Holte, and S. Matwin. Machine Learning for the
Detection of Oil Spills in Satellite Radar Images. In Journal of
Machine Learning, pp.195-215, 1998.

[34] K. Sung and T. Poggio. Example-based Learning for View-
based Human Face Detection. IEEE Trans. on Pattern Analysis
and Machine Intelligence (PAMI), 20(1): pp. 39-51, 1998.

[35] http://www.dmoz.org
[36] http://dir.yahoo.com
[37] http://directory.google.com
[38] http://scholar.google.com/
[39] http://citeseer.ist.psu.edu/
[40] http://svmlight.joachims.org/
[41] http://www.dcs.shef.ac.uk/~sam/simmetrics.html
[42] M. Richardson, and A. Prakash, and E. Brill. Beyond

PageRank: Machine Learning for Static Ranking. In Proc. of
WWW2006, pp. 707-715. May 23-26, 2006.

[43] H. Drucker, D. Wu, and V. N. Vapnik, Support Vector
Machines for Spam Categorization, IEEE Trans. on Neural
Networks, 20(5): pp. 1048-1054, 1999.

[44] W. Yih, J. Goodman, and V. R. Carvalho. Finding Advertising
Keywords on Web Pages. In Proc. of WWW 2006, pp 213-222.
2006.

80

WWW 2008 / Refereed Track: Data Mining - Learning April 21-25, 2008 · Beijing, China

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

