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ABSTRACT 
This paper is concerned with the problem of Imbalanced 
Classification (IC) in web mining, which often arises on the web 
due to the “Matthew Effect”. As web IC applications usually need 
to provide online service for user and deal with large volume of data, 
classification speed emerges as an important issue to be addressed. 
In face detection, Asymmetric Cascade is used to speed up 
imbalanced classification by building a cascade structure of simple 
classifiers, but it often causes a loss of classification accuracy due to 
the iterative feature addition in its learning procedure.  In this paper, 
we adopt the idea of cascade classifier in imbalanced web mining 
for fast classification and propose a novel asymmetric cascade 
learning method called FloatCascade to improve the accuracy. To 
the end, FloatCascade selects fewer yet more effective features at 
each stage of the cascade classifier. In addition, a decision-tree 
scheme is adopted to enhance feature diversity and discrimination 
capability for FloatCascade learning. We evaluate FloatCascade 
through two typical IC applications in web mining: web page 
categorization and citation matching. Experimental results 
demonstrate the effectiveness and efficiency of FloatCascade 
comparing to the state-of-the-art IC methods like Asymmetric 
Cascade, Asymmetric AdaBoost and Weighted SVM. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Data 
Mining; I.2.6 [Artificial Intelligence]: Learning  

General Terms: Algorithms, Experimentation 

Keywords: Fast imbalanced classification, Float Searching, 
Cascade learning, Web page categorization, Citation matching 

1. INTRODUCTION 
In this paper, we are concerned with the problem of Imbalanced 
Classification (IC) in web mining, which often arises on the web 
due to the “Matthew Effect”: the rich get richer and the poor get 
poorer. As a result, the positive and negative examples exhibits 
distinct imbalance in web IC applications, i.e., the number of 
positive examples is far smaller than that of negative examples. One 
typical example is web directory (see Figure 1) where huge web 
pages are manually organized into hierarchical categories, such as 

ODP (Open Directory Project) [38], Yahoo! Directory [39] and 
Google Directory [40]. It has been observed that the category 
distribution is highly unbalanced on these popular web directories. 
For instance, on ODP directory, the maximum second-level 
category (“Society/religion and spirituality”) contains about 80,000 
pages, whereas some minimum second-level categories contain only 
one page (“Home/News and media”, “News/chats and forums”). 
Another prominent example is citation matching (see Figure 2), 
which aims to identify whether two citations actually refer to the 
same publication [24, 34, 35].  It is a crucial step for online paper 
services such as Google Scholar [41] and CiteSeer [42]. Among a 
large amount of candidate pairs of citations, only a very few pairs 
are target co-references.  

 
Figure 1. The example of web directory: ODP. 

 
Figure 2. The example of citation matching: Google Scholar. 
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Previous work has shown that imbalanced data would adversely 
affect classification accuracy. Classifiers without consideration of 
imbalance tend to be overwhelmed by major negative examples [1, 
2]. Some IC approaches have been proposed in the fields of text 
mining and pattern classification, mainly including discarding 
negative examples [3, 4, 5], synthesizing positive examples [18] and 
assigning greater costs on positive examples than negative ones [6, 
20, 21, 22, 23]. These methods primarily focused on improving the 
classification accuracy with particular concern on minor positive 
examples [16]. However, classification speed becomes an important 
issue to be addressed in many cases, especially for those web IC 
applications which need to deal with large volume of data and those 
online web services which require rapid response to the user request.  

In real-time face detection, the classifier is required to locate the 
very few faces quickly and accurately among millions of image 
regions [9]. Asymmetric Cascade (AsyCascade) can greatly speed 
up face detection by building a cascade structure of simple 
classifiers [10]. It uses a small number of features in the early stages 
to exclude the large majority of non-face regions. Complex 
computation is only reserved for the small number of face-like 
regions. As a result, the classification speed is significantly raised. 
Unfortunately, AsyCascade usually achieves fast classification at 
the expense of classification accuracy. This is mainly due to the 
iterative feature addition in its learning process. Classifiers with 
more features run the risk of poorer generalization and more 
computation time.  

In this paper, we adopt the idea of cascade classifier in imbalanced 
web mining for fast classification, and propose a new asymmetric 
cascade learning method called FloatCascade to improve the 
accuracy. Compared with AsyCascade, FloatCascade can select 
fewer but more effective features at each stage of the cascade 
classifier. It uses a float searching scheme [30] to remove and/or 
replace features that cause higher false positive rates. The quantity 
and quality of available features become the key factors to the 
success of FloatCascade. A decision-tree scheme is hereby adopted 
to enhance feature diversity and discrimination capability. We 
evaluate FloatCascade on two typical web IC applications: web 
page categorization and citation matching. Experimental results 
demonstrate that: 1) the classification time of FloatCascade is 
further reduced compared with AsyCascade because fewer features 
are required for classification; 2) FloatCascade is consistently 
superior to AsyCascade and even better than non-cascade 
asymmetric methods like Asymmetric AdaBoost [9] and Weighted 
SVM [6, 23] because more effective features are found for 
classification. 

The remainder of the paper is organized as follows. Related work is 
reviewed in Section 2. Section 3 presents our FloatCascade learning. 
Experiments, evaluation and analysis are conducted in Section 4. 
Finally, the conclusion is given in Section 5. 

2. RELATED WORK 
2.1 Imbalanced Classification Problem 
The IC problem has attracted considerable attention in the fields of 
text mining and pattern classification, e.g., text categorization [6, 17, 
23, 25], reference matching [24, 31], spam detection [27], duplicate 
detection [32], medical diagnosis [27] and oil spills detection [33]. 
Existing IC approaches can be broadly divided into two categories: 
re-sampling and re-weighting methods. Re-sampling methods 
artificially balance the two classes by over-sampling positive 
examples or down-sampling negatives ones [1, 2, 3, 4, 5]. Re-

weighting methods are also known as cost-sensitive methods [6, 20, 
21, 22, 23], where positive examples are assigned greater costs than 
negative ones. However, until now, the IC problem has not received 
much attention in the community of web mining, though it occurs 
very often on the web. 

Since manual categorization is prohibitively time-consuming and 
labor-expensive for web-scale applications, there has been much 
work on automatic web page categorization. Generally, there are 
two major kinds of automatic categorization approaches [11, 12, 13]: 
content-based and context-based methods. Content-based methods 
build the classifier using words or phrases in web pages. Naive 
Bayes (NB) [11, 15] and Support Vector Machine (SVM) [11, 14] 
have been approved to be effective methods along this line. 
Context-based methods additionally exploit hyperlink and hypertext 
among web pages [12, 13]. However, most of these approaches 
ignore imbalanced distribution of web categories, which results in 
adverse classification accuracy [1]. Some works on text 
categorization have noticed this problem and attempted to improve 
the accuracy by exploring imbalanced text distribution, e.g., SVM 
on re-sampled data [17, 25] and Weighted SVM with asymmetric 
cost [6, 23]. Though these works might achieve better classification 
accuracy, they fundamentally neglect the important issue of 
classification efficiency, which makes them inapplicable to the web-
scale applications. By contrast, FloatCascade considers both 
classification effectiveness and classification efficiency by taking 
advantage of the inherent imbalance of web categories. 

Citation matching aims to identify whether two citations actually 
refer to the same publication [31]. It is not a trivial problem since 
various data inconsistencies may occur between citations, e.g., name 
abbreviation, incorrect spellings, different formatting and citation 
mistakes. Citation matching is a crucial problem for paper search 
engines, where fast classification is highly desirable for online 
response to user queries. An efficient two-stage method called 
Canopy was proposed for citation matching in [24]. It first places 
the citations which are potential co-references into the same cluster 
using a rough metric, and then conduct complex computation in 
each cluster using a rigorous metric. In some sense, Canopy can be 
regarded as a simplified two-stage AsyCascade classifier, but 
AsyCascade differs from it in two essential aspects: 1) the two 
metrics used in Canopy are manually determined while all the 
features used in AsyCascade are automatically selected; 2) Canopy 
reduces the classification time by excluding the citation pairs 
between different clusters while AsyCascade achieves fast 
classification by quickly discarding the majority of negative 
examples in early stages. 

2.2 Asymmetric Cascade 
Simple classifier at each stage of AsyCascade is trained using 
Asymmetric AdaBoost (AsyBoost) whose learning objective is to 
reserve as many positive examples. AsyBoost is an extension of 
AdaBoost [9] which combines multiple weak classifiers to form a 
strong ensemble classifier [8]. Mostly, a weak classifier is just a 
single feature. AdaBoost provides an effective feature selection 
mechanism by iteratively re-weighting the training examples. It 
selects the feature with the lowest weighted error at each round and 
adds it to the ensemble classifier. As re-weighting proceeds, the 
weights of correctly classified examples are decreased while the 
weights of misclassified ones are increased. This forces the 
subsequent weak classifiers to gradually focus on hard examples. 
AsyBoost [9] further assigns greater costs to false negatives than 
false positives by up-weighting the positive examples. This forces 
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the subsequent weak classifiers to asymmetrically focus on positive 
examples. As a result, AsyBoost can effectively reduce the 
misclassification of positive examples.  

The main learning objective of AsyCascade is to achieve radically 
reduced classification time as well as increased detection rate. 
Toward this end, AsyCascade leverages the inherent imbalanced 
data distribution from two aspects: 1) Re-weighting. Each simple 
classifier is trained using AsyBoost for reserving more positive 
examples. The process of re-weighting all examples is repeated once 
adding a new feature to the ensemble classifier. 2) Re-sampling. 
Each stage is trained on all positive examples and on a subset of 
negative examples. The process of re-sampling negative examples is 
repeated once adding a new stage to the cascade classifier. In 
moving from the previous stage to the next one, correctly classified 
negative examples are replaced with the unused ones while 
misclassified negative examples are retained. This poses a more 
challenging classification task for the next stage, and thus a more 
complex classifier is usually learned. As seen, AsyCascade 
combines the advantages of the re-sampling and re-weighting 
techniques to achieve fast classification. It has been improved by 
some subsequent works in two ways. The first way attempts to 
improve AsyBoost using a better re-weighting scheme [26, 27] 
while the second one tries to build a better cascade classifier [28, 
29]. Unfortunately, all of these works achieved fast classification at 
the cost of decreased accuracy. As compared, FloatCascade can 
achieve better classification accuracy as well as higher classification 
speed simultaneously. 

3. FLOATCASCADE LEARNING 
In this paragraph, we first highlight the learning objective of 
FloatCascade in Section 3.1. Then, we present FloatCascade 
learning from its training and testing in Section 3.2. After that, in 
Section 3.3, we build the decision-tree feature for FloatCascade 
learning. Finally, in Section 3.4, we discuss some related issues. 

3.1 Learning Objective 
Web data often manifests two distinct characteristics with respect to 
data distribution: 1) there are a large amount of examples; 2) there 
are a small number of positive examples in comparison with a large 
quantity of negative ones. Such web data poses some great 
challenges for learning a classifier, including 

 Balanced classification accuracy: AsyCascade hopes to detect 
as many positive examples in its learning. Formally, the  false 
negative rate ( )fn  at its each stage should be lower than a 
predefined threshold ϑ , i.e., 

ϑ≤fn  

However, a classifier with enough low fn  is still useless in real-
world applications if it has too high false positive rate ( )fp . In an 
extreme case, all the examples can be simply classified as 
positive examples. In this way, all the positive examples are 
reserved, but all the negative examples are misclassified. In order 
to control the misclassification of negative examples, 
FloatCascade wants to locate the minimum fp on condition that 
fn  is not greater thanϑ . Specifically, the learning objective at 

each stage of FloatCascade learning can be formulated as 

( ) ϑ≤fntsfp ..min  

As a consequence, FloatCascade can achieve not only very low 
false negative rate to avoid missing minor positive examples but 
also very low false positive rate to avoid introducing too many 
negative examples. The overall classification accuracy is well 
balanced and favorably raised. 

 Fast classification speed: fast classification is required to deal 
with the huge number of examples. FloatCascade achieves this 
goal by exploiting the natural unbalanced distribution of the 
positive and negative examples. It hopes to find more effective 
features to quickly exclude more obvious negative examples with 
simple computation. In the mean time, it hopes to use fewer 
features at each stage of the cascade classifier, which further 
reduces the computation time in classification. 

3.2 Float Searching for Cascade Learning 
3.2.1 Motivation 
The training procedure of AsyCascade is automatic and adaptive, 
which is conducted by the predefined accuracy requirement of the 
ensemble classifier at each stage [10]. It requires each ensemble 
classifier to achieve very high detection rate (which is near 100%) 
and only modest false positive rate (which is not over 50%). In this 
paper, detection rate refers to false negative rate and recall. The 
detection rate is usually satisfied by lowering the threshold of the 
ensemble classifier. However, a lower threshold would yield a 
classifier with more false positives. It has to add more features to 
reduce the false positive rate. As a result, it will introduce some 
unnecessary and even deleterious features. The building of 
AsyCascade classifier is just such a stage-wise process adding 
features in greedy manner. Unfortunately, two problems may arise 
in the classifier dependent on more features: 1) the classifier 
becomes less efficient since more computation time is needed to 
classify an example; 2) the classifier becomes less effective since 
over-fitting problem is more likely to occur in a complex classifier.  

To attack these problems, we propose a new asymmetric cascade 
learning method called FloatCascade. It successfully uses less but 
more effective features at each stage by adopting a float searching 
scheme [33]. Float searching is an efficient feature selection method 
with a backtrack mechanism. Backtracks are performed to remove 
some previous features that cause accuracy drops when a new 
feature is added. FloatCascade adopts the detection rate and false 
positive rate to conduct such backtrack process. In specific, it 
removes the features causing higher false positive rates given that 
the required detection rate is attained. Next, we introduce 
FloatCascade learning in details from its training and testing 
procedures respectively. 

3.2.2 Training Procedure of FloatCascade 
Give a training set ( ) ( ) ( ){ }nn yxyxyxZ ,,,,,, 2211 L=  where 

ban +=  of which a  examples have 1+=iy  and b  examples 
have 1−=iy . In web IC problems, ba << .  

The training process of FloatCascade is described in Figure 3. In the 
figure, ettF arg denotes the target false positive rate for the overall 

cascade classifier; ϑ  is the acceptable minimum false negative rate 
and f  is the acceptable maximum false positive rate for each stage; 
P  is the set of training positive examples, V is the set of training 
positive examples and N  is a subset of training negative examples 
by re-sampling all the training negative examples with the 
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maximum number maxb ; maxM  is the maximum number of features 
at each stage. Asymmetrically, false negatives cost k  times more 
than false positives. MH denotes the ensemble classifier of M th 
stage in the cascade classifier, which linearly combines multiple 
weak classifiers { }ih . 

 
Figure 3. The training process of FloatCascade.  

As described, FloatCascade includes two-level learning: cascade 
learning and stage learning. Cascade learning adds a new stage to 
the cascade classifier if ettF arg  is not achieved. It mainly includes 
stage learning in Step 3 and re-sampling in Step 4. The essential 
difference between FloatCascade and AsyCascade just lies in stage 
learning. Stage learning in AsyCascade continuously adds new 
features to the ensemble classifier if f  is not satisfied. Differently, 
FloatCascade adopts a backtrack method to remove some pervious 
features for the minimum false positive rate when ϑ  is satisfied. 
Feature addition in Step 3.1 is accomplished by AsyBoost assigning 
greater costs to positive examples, and feature deletion in Step 3.2 is 
accomplished by float searching removing features that cause higher 
false positive rates. It should be noted that, for the purpose of 
enhancing the generalization capability of the learned classifier, the 
accuracy of each ensemble classifier is evaluated on the validation 
set V rather than the training set itself in Step 3.2.2. 

3.2.3 Testing Procedure of FloatCascade 
The testing process of FloatCascade is depicted in Figure 4. When 
an example is input, a negative decision made at any stage leads to 
the immediate rejection of the example, while a positive decision 
from the previous stage triggers the evaluation of the next stage. So, 
the input example is classified as positive only if it passes the tests 
of all the stages. Simple classifiers are used to exclude the majority 
of negatives examples before more complex classifiers are called 
upon. Even though there are possibly many stages in the final 
FloatCascade classifier, most are not evaluated for a typical negative 
example since it has been excluded by the early stages. As a 
consequence, the classification speed is raised greatly. Though the 
testing process of FloatCascade is seemingly similar to AsyCascade, 
FloatCascade has two important improvements in classification 
performance: 1) the classification time is further reduced because 
fewer features are required for classification; 2) the classification 
accuracy is further raised because more effective features are found 
for classification.  

 
Figure 4. The testing process of FloatCascade. 

From Figure 4, we can find out why FloatCascade can achieve 
better classification accuracy than AsyCascade. Assuming that all 
ensemble classifiers { }iH  are constructed independently, the 
detection rate and the false positive rate of the overall cascade 
classifier are respectively given by ∏=

n

i id
1

and ∏=

n

i if1
. Since 

each ensemble classifier of FloatCascade is trained to achieve lower 
false positive rate if  than AsyCascade under the same threshold 
ϑ of the detection rate id , FloatCascade is able to beat AsyCascade 
in overall classification accuracy hopefully. 

3.3 Decision-tree Feature 
FloatCascade attempts to use fewer but more effective features to 
build the ensemble classifier. At this time, the quantity and quality 
of available features become the key factors to its success.  

 Feature quantity. The success of AsyCascade applied to face 
detection benefits from a very large and varied set of features 
available. For example, over six million Harr-like features were 
extracted in [9, 10]. Unfortunately, in many web mining tasks, it 
is hard to extract so many features. In the case of citation 
matching, a citation only consists of several short text fields, so it 
lacks of enough contexts for feature extraction. For web page 
categorization, each term is commonly used as a feature. Even so, 
the total number of terms is generally far smaller than six million. 
The issue of feature quantity is more important to FloatCascade. 
The limited number of features reduces the possibility of finding 
fewer but more effective features.  

 Feature quality. Even though there have been a lot of features 
available, it is still difficult to find effective features if each of 
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them has weak discrimination capability. The useable features 
should exhibit sufficient diversity, which requires that each 
feature should capture the different characteristic of the data. 
Classification speed and classification accuracy of the first few 
stages is critically important to the overall performance of the 
cascade classifier, because it needs to find a very few features in 
these early stages for rejecting many negative examples and 
meanwhile accepting almost all positive ones. The issue of 
feature quality is especially significant to FloatCascade. Only 
when there are enough effective features, the number of required 
features at each stage could be reduced and the accuracy of the 
ensemble classifier could be raised.  

 
Figure 5. A three-level decision-tree feature. 

To enhance feature diversity and discrimination capability, a three-
level decision scheme is adopted to build a tree feature for 
FloatCascade learning. Such a kind of decision-tree feature has also 
been successfully used in [27, 28] for text categorization. A 
decision-tree feature consists of seven nodes, which is illustrated in 
the Figure 5. Each node contains a single feature, e.g., a term feature 
in web page categorization and a metric feature in citation matching. 
Since each node can select a different feature and each feature can 
set a different threshold, a considerable number of decision trees 
could be generated and the available decision-tree features are 
vastly enriched. In addition, since a variety of features are now 
combined as an overall decision-tree feature, the feature 
discriminative power is significantly enhanced. In fact, a single 
feature can be viewed as a one-level decision-tree feature just 
corresponding to the root note, which is extensively used in the 
community of face detection [9, 10]. 

3.4 Discussion 
3.4.1 Comparison and Analysis 
Float searching scheme has also been used in FloatBoost [19] to 
remove features resulting in higher error rates. Nevertheless, 
FloatCascade and FloatBoost are different in principle. Essentially, 
the former improves AsyCascade while the latter improves 
AsyBoost. FloatBoost follows AsyBoost in the way of minimizing a 
quantity related to error rate [19], which is at best an indirect way of 
meeting the learning objective of cascade learning as pointed out in 
[31, 32]. In the context of cascade learning, the learning objective of 
the ensemble classifier is to achieve high false negative rate and 
moderate false positive rate instead of a minimum error rate [9]. 
FloatCascade is specially designed to improve the cascade classifier 
using float searching. It makes the largest improvement in the false 
positive rate of each ensemble classifier when the detection rate is 

satisfied, which is directly consistent with the learning goal of 
asymmetric cascade classifier. 

It is well known that most of algorithms have to trade efficiency for 
effectiveness, or vice versa. But, our FloatCascade can achieve high 
classification speed as well as good classification accuracy. Based 
on the following experiments, the classification accuracy of 
FloatCascade is even comparable to non-cascade methods. In 
AsyCascade, it focuses too much on the positive examples at the 
cost of too many misclassified negative examples, which results in 
an unfavorable decrease in overall classification accuracy. By 
contrast, FloatCascade attains a satisfactory balance between false 
negative rate and false positive rate and ensures that the overall 
classification accuracy is not decreased and even slightly raised. 

Notably, asymmetric cascade learning is essentially independent of 
AsyBoost. In other words, AsyCascade and FloatCascade can be 
implemented without AsyBoost. In fact, any feature addition 
method (even random addition) can be used to provide candidate 
features for ensemble classifiers. After that, FloatCascade adopts 
float searching to remove some deleterious features for enhanced 
ensemble classifiers. Its key insight is that feature refinement (i.e., 
feature deletion in FloatCascade) can remedy the accuracy loss 
caused by continuous feature addition in the way of directly 
maximizing the learning objective of the cascade learning.  

The implementation of AdaBoost, AsyBoost, AsyCascade and 
FloatCascade are relatively easier than other popular classification 
models, such as SVM. AdaBoost has only one parameter, namely 
the iteration number. In the experiment, we set it be 100 and report 
the best accuracy. AsyBoost has an additional parameter k  for 
asymmetric cost. We automatically set it to be the ratio of negative 
examples over positive examples in each category. FloatCascade 
and AsyCascade have the same parameter settings. As explained in 
Section 3.2.3, some important parameters such as ettF arg ,ϑ  and f  
can be determined according to the learning objective of cascade 
classifier. In our experiment, we set 61arg −= eF ett , 99.0=ϑ  

and 5.0=f . Once these parameters are set, the training of 
FloatCascade and AsyCascade is fully data-driven requiring no any 
manual intervention and inspection. 

3.4.2 The Generality of FloatCascade Learning for 
Imbalanced Web Miming 
Arising from the extensive impact of “Matthew Effect” on the social 
web, the problem of imbalanced classification occurs very often in 
web mining. Besides web page categorization and citation matching, 
there are also many other web IC applications, such as 

 Web search. Though there are a great number of web pages, only 
a very small number of ones are really relevant to a search query, 
even if search engines have filtered so many irrelevant ones in 
their searching results. 

 Spam detection. Generally, there are only a very small amount of 
spam documents compared with a very large amount of 
legitimate ones, such as spam emails and spam web pages.  

 Keyword extraction. Usually, only several terms occurring in 
web pages can be served as their keywords, even if the web page 
contains many textual terms in its body.  

Fortunately, all of these web mining tasks could be solved in the 
framework of learning to classification. The general solution is to 
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define some task-specific features, extract features from the web 
example, and accomplish the classification in the feature space. 
Some prior work has actually complied with this paradigm to attack 
these problems, such as fRank for static ranking [42], SVM for 
spam detection [43] and learning to extract keywords from web 
pages [44]. Our FloatCascade also follows this learning framework, 
but more importantly, it additionally exploits the imbalance nature 
in these web IC problems to achieve desirable improvement in both 
classification effectiveness and classification efficiency. In fact, 
many web mining problems can be attacked in the framework of 
imbalanced classification by proper and subtle problem 
reformulation. Considering the popularity of web IC problems and 
the generality of our FloatCascade, we expect that FloatCascade is 
very promising for many web mining applications. 

We highlight the importance of feature to learning framework of 
imbalanced web classification in two aspects: 1) it should extract 
specific features in specific mining tasks. For example, in the task of 
web page categorization, it can use common word feature; however, 
in the scenario of citation matching, it ought to extract similarity 
metric features from citation pair. 2) it should enhance the 
discrimination and diversity of available features as possible. The 
decision-tree scheme might be a good option. We will verify the 
feature importance for FloatCascade learning in the following 
experiments. 

4. EXPERIMENTS 
We evaluate FloatCascade on the tasks of web page categorization 
and citation matching, two typical web IC applications. We first 
introduce experimental methodology in Section 4.1. Then, we 
present the experiments on web page categorization in Section 4.2 
and citation matching in Section 4.3 respectively. 

4.1 Experimental Methodology 
We evaluate all the classification algorithms in terms of efficiency 
as well as effectiveness. The testing time (millisecond) is recorded 
for each algorithm, keeping the computer in the same situation as 
possible, e.g., CPU usage and memory usage. We use such recorded 
time to distinguish the two algorithms in classification efficiency if 
there is an evident gap between them. The computer used for our 
experiments is equipped with Intel Core2 processor 2.66GHz and 
2.0 GB memory. 

Table 1. The distribution of the examples after classification. 

 
After classification, testing examples fall into four cases shown in 
Table 1, where NTP and NTN respectively denotes the number of 
the positive and negative examples correctly predicted, while NFN 
and NFP respectively denotes the number of the misclassified 
positive and negative examples. We evaluate the accuracy of 
imbalanced classification in two aspects. One is about retrieving 
positive examples and the other is about classifying all the examples. 
The standard measures are adopted for both aspects. Specifically, 
retrieval accuracy is evaluated with precision (P), recall (R) and F1-
measure (F1), and classification accuracy is evaluated with false 
negative rate (FN), false positive rate (FP) and error rate (ER). 
These measures are calculated as follows: 

P=NTP/(NTP+NFP), R=NTP/(NTP+NFN), F1=2PR/(P+R), 

FN=NFN/(NTP+NFN), FP=NFP/(NTN+NFP), 

ER=(NFP+NFN)/(NTP+NTN+NFP+NFN). 

F1and ER are the two overall measures. The higher F1 is, the better 
the retrieval accuracy is. The lower ER is, the better the 
classification accuracy is. Though the sum of R and FN is 1 by their 
definitions, we still list all these measures in the experiments for the 
sake of completeness and convenient comparison. 

In the experiment of web page categorization, two popular methods 
including NB and SVM are implemented. NB assumes a generative 
model and uses the joint probability of words in document to 
estimate the possibility of a document belonging to a category. 
SVM seeks a hyper-plane in a high dimensional kernel space to 
discriminate the positive and negative examples with maximum 
margin. Besides, a popular IC method, Weighted SVM (WSVM) 
[23], is implemented where positive examples out-weight negative 
examples in their training cost. We implement SVM and WSVM 
with linear kernel using SVMlight [40]. In the experiment of citation 
matching, SVM and WSVM are carried out for comparison. We use 
our own implementation of AdaBoost (Ada), AsyBoost (AA), 
AsyCascade (AC) and FloatCascade (FC).  

4.2 Experiment on Web Page Categorization 
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Figure 6. The web pages crawled from the ODP web directory 

in its 12 first-level categories. 
Web page categorization is a typical multi-class and multi-label 
classification problem [13, 27]. Besides the inherent imbalance of 
web categories, imbalance effect is enhanced by the one-against-all 
learning strategy for transforming such a multi-class and multi-label 
classification problem into a binary classification problem, where 
training examples belonging to one category are taken as positive 
examples and training examples not belonging to this category as 
taken as negative examples. We also follow this popular way to 
train the investigated classifiers except NB. We first introduce the 
dataset with the stress of the imbalanced categories and then give 
the experimental results. 

4.2.1 Dataset 
The web pages used in our experiment are crawled from the ODP 
web directory. On the ODP, all the web pages have been manually 
classified into hierarchical taxonomy. We have crawled totally 
37,624 web pages from its 12 first-level categories. The dataset 
exhibits highly imbalanced distribution as plotted in the Figure 6. 

Positive Negative
TRUE NTP NTN

FALSE NFP NFN
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The maximum category contains 10116 pages while the minimum 
category only contains 888 pages. In the experiments, all the web 
pages are preprocessed by the following steps: (1) passing all words 
through the word stemmer; (2) tossing out all the stop tokens; (3) 
normalizing the documents into TFIDF vectors.  

4.2.2 Result 
The dataset is randomly split into 10 groups. Eight groups are used 
as the training set and the remained two ones are used as the 
validation and testing sets respectively. We repeat such trails for 20 
times using the three-level decision-tree feature. The experimental 
results averaged over both 12 categories and 20 runs are reported in 
Table 2. We can see that: 

Table 2. The experimental results on the ODP dataset. 

 
 AdaBoost and SVM vs. NB. AdaBoost and SVM both 
significantly outperform NB in classification accuracy. It may 
suggest that a discriminative model is more suitable for 
imbalanced web page categorization than a generative model.  

 AdaBoost vs. SVM. AdaBoost is slightly better than SVM in 
terms of F1 and ER. However, AdaBoost is faster than SVM 
more than 2 (3913/1750) times, which benefits from simple 
threshold decision in its weak classifier rather than expensive 
kernel mapping in SVM. It implies that AdaBoost is a better 
choice than SVM for cascade learning since the classification 
speed of ensemble classifiers is very important to it. 

 IC vs. balanced classification (BC). IC is much better than BC 
in recall (from 66.17% to 69.46% when AA vs. Ada and from 
62.55% to 65.52% when WSVM vs. SVM). It verifies that IC 
can surely retrieve more positive examples than BC. 

  Cascade vs. Non-cascade. Cascade method can greatly reduce 
the classification time. The classification speed of AC is raised 
by at least 23.57% (405/1718) comparing to Ada and AA and at 
least 66.45% (2600/3913) comparing to SVM and WSVM. It 
mainly benefits from the fact that the considerable number of 
negative examples is excluded at the early stages in AC just 
using a small number of features.  

 FC vs. other methods.  

FC vs. AC. Unfortunately, AC observably performs worse than 
non-cascade IC methods in terms of both F1 and ER. For 
example, F1 is decreased by 8.11% in F1 (0.045/0.5548) and ER 
is decreased as much as 21.07% (0.0248/0.1177) compared with 
AA. The improvement in retrieving positive examples is 
counteracted by the misclassification of too many negative 
examples, and the overall classification accuracy is remarkably 
decreased. That is to say, AC achieves fast classification at the 
expense of classification accuracy. By contraries, the accuracy of 
FC is significantly improved compared with AC, with 8.33% 
increase in F1 and 18.52% increase in ER. The misclassification 
of negative examples is effectively controlled. Moreover, FC 
successfully seeks a balance between the false positive rate and 

the false negative rate resulting in an evident improvement in 
overall classification accuracy. In fact, FC approaches the 
classification accuracy of AA in terms of F1 and ER.  Further, the 
classification time of FC is reduced by as much as 54.84% 
(720/1313) compared with AC. It attributes to the fact that FC 
successfully uses fewer and more effective features in the early 
stages to get rid of more negative examples.   

FC vs. Non-cascade. The most distinct advantage of FC over 
non-cascade IC methods is its distinct fast classification speed, 
being almost 3 (1718/593) times faster than Ada and AA and 
over 6 (3913/593) times faster than SVM and WSVM. At the 
same time, the classification accuracy is well comparable to AA 
and WSVM. Delightedly, FC is even slightly better than SVM 
and WSVM in F1. It manifests the effectiveness and efficiency of 
FC comparing to the state-of-the-art IC methods. 

4.2.3 Efficiency Analysis 
In order to better explain why FC is faster than AA, Ada and AC, 
we figure out the average number of the features used in these 
classifiers. These algorithms all take the decision-tree feature as the 
weak classifier. If we assume that each tree feature takes the equal 
time to classify an example, we can approximately compare the 
classification efficiency of these algorithms using the times of 
decision-tree classification. In the above experiment, there are 
averagely 43 features in Ada, 42 features in AA, 89 features in AC 
and 55 features in FC. As seen, the number of features in FC is 
reduced by 38.20% (34/89) compared with AC. This demonstrates 
that FC can effectively remove some unfavorable features from AC. 
Though Ada and AA use fewer features than AC and FC for 
classification, they treat all the examples indiscriminatingly. That is, 
all the positive and negative examples are evaluated using all the 
decision-tree features. As comparison, it is found that over 80% of 
negative examples are discarded in the first stage of AC and FC 
with less than 3 trees. Decision-tree classification in the later stages 
is only conducted on the minor promising examples. As a result, the 
required times of decision-tree classification in AC and FC are 
greatly reduced compared with AA and Ada. 

FC is further faster than AC for classification. As an illustration, we 
examine the cascade classifier of FC and AC for the category of 
“News”. The number of features at each stage of FC is 1, 2, 3, 4, 5, 
5, 6, 7, and 8, while 3, 6, 7, 8, 9, 13, and 18 in AC. As observed, FC 
successfully uses fewer features than AC at all stages. Importantly, 
it is found that that some features in AC are replaced by FC with 
more effective ones for classification. Consequently, more negative 
examples are quickly excluded by FC than AC at earlier stages. In 
summary, the reduced number and the enhanced effectiveness of the 
features both contribute to the faster classification of FC than AC. 

4.2.4 Experiment on Text Data and Feature Analysis 
We also apply FloatCascade to the traditional text document for 
categorization in order to further investigate its imbalanced 
classification performance. The experiment is conducted on the 
Reuters-21578, a benchmark corpus for text categorization. The 
corpus consists of 7769 training documents and 3019 testing 
documents, both belonging to the common 90 categories. All the 
training and testing examples belonging to one category are merged 
to the larger category and then randomly split into 10 groups to 
construct the training, testing and validation sets like last experiment. 
We also repeat evaluation trials for 20 times in all.  

P R F1 FN FP ER Time
NB 0.3115 0.7293 0.4365 0.2707 0.1742 0.1704 3501
SVM 0.4526 0.6255 0.5252 0.3745 0.0770 0.0929 3913
WSVM 0.4483 0.6552 0.5324 0.3448 0.0733 0.0959 4200
Ada 0.4761 0.6617 0.5537 0.3383 0.0808 0.0931 1750
AA 0.4618 0.6946 0.5548 0.3054 0.0736 0.0929 1718
AC 0.3904 0.7344 0.5098 0.2656 0.1043 0.1177 1313
FC 0.4999 0.6167 0.5522 0.3833 0.0762 0.0959 593
Improv 8.33% 18.52% 54.84%
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In our work, we are mainly concerned with IC problem. In order to 
enhance the effect of data imbalance and analyze the effectiveness 
of FloatCascade to hard IC problems, we specially select 10 small 
categories from the Reuters-21578 for reporting experimental result 
averaged over these 10 categories. The selected categories are listed 
in the Table 3 and the experimental result is shown in the Table 3. 
Note that these results are also averaged over 20 runs. We can draw 
the similar conclusion to the last experiment, which indicates that 
FloatCascade is adaptable to various types of imbalanced data. In 
particular, FC outperforms AC in F1 by 6.75% and in ER by 
39.51%. One again, FC is two times faster than AC and many times 
than non-cascade methods. 

Table 3. The 10 small categories selected from the Reuters-
21578 corpus for the experiment. 

 
Table 4. The experimental results on the Reuters-21578 corpus. 

 
Besides, to all compared algorithms, the classification accuracy of 
text categorization is distinctly much better than that of web page 
categorization. It should attribute to the availability of good features 
on text data. The documents in Reuters-21578 corpus are news 
articles edited by human and generally have better quality than web 
pages. Thus, it is more likely to extract effective decision-tree 
features from such text data. To further validate the importance of 
decision-tree feature for the cascade learning, we also conduct the 
experiments of Ada, AA, AC and FC using just a single term feature 
on Reuters-21578 collection. The experimental results on the 
selected 10 categories are also listed in Table 3 for convenient 
comparison. It can be observed that: 1) all four algorithms perform 
much worse with a singe feature. Using features with poor 
discrimination capability, Ada and AA fail to achieve good 
accuracy though they combine multiple features. FC and AC are 
also hard to achieve a satisfactory accuracy though they combine 
multiple AA classifiers; 2) the classification time of Ada and AA is 
superficially reduced to almost half. This is only because a decision 
tree requires approximately 2 times time of a single feature for 
classifying an example; 3) FC merely approaches the accuracy and 
speed of AC. This is mainly owing to that FC almost cannot remove 
or replace the features used in AC. These experimental results bear 
out the significance of features to the success of FloatCascade 
learning. 

4.3 Experiment on Citation Matching 
Experiments on citation matching are done on the Cora dataset, an 
extensively used citation corpus. We first introduce this dataset and 
then describe the features extracted in our experiment. After that, we 
give the experimental results and analysis.  

4.3.1 Dataset 

 
Figure 7. An example of citations that refer to the same paper. 

Unbalanced distribution of candidate

citation pairs

17958:13%

116235:87% Positive: Co-references

Negative: Non co-references

 
Figure 8. Unbalanced distribution of candidate citation pairs. 

In Cora, there are 1295 distinct citations to 122 computer science 
research papers. Each citation was composed of multiple fields 
including author, title and venue etc. Figure 7 shows several 
citations referring to the same paper in spite of many literal 
differences. We perform citation matching by identifying whether a 
pair of citations actually refers to the same one publication. The 
number of pair-wise similarity computations grows quadratically 
with the size of the dataset. It is prohibitively expensive to 
accomplish this computation on the Cora ( 2

1295C  pairs) dataset. 
Fortunately, the majority of citation pairs are obviously dissimilar. 
We sort out candidate citation pairs sharing at least one term. 
Finally, we obtain 17,958 target co-references and 116,235 non co-
references, which is under a distinct imbalanced distribution as 
illustrated in Figure 8.  

4.3.2 Features 
In this section, we briefly describe the features used in our 
experiments. These features are extracted from each citation pair 

Topic corn wheat oilseed soybean sugar
Topic nat-gas cpi bop alum dlr

P R F1 FN FP ER Time
NB 0.6845 0.5064 0.5821 0.4936 0.0038 0.0118 3015
SVM 0.7651 0.6433 0.6990 0.3567 0.0030 0.0078 3813
WSVM 0.8048 0.6936 0.7375 0.3064 0.0027 0.0071 4000
Ada 0.8331 0.6278 0.7160 0.3722 0.0027 0.0071 641
AA 0.7985 0.6823 0.7358 0.3177 0.0035 0.0071 625
AC 0.5819 0.8725 0.6982 0.1275 0.0149 0.0162 188
FC 0.6615 0.8534 0.7453 0.1466 0.0081 0.0098 94
Improv 6.75% 39.51% 50.00%

P R F1 FN FP ER Time
Ada 0.5793 0.3315 0.4217 0.6685 0.0011 0.0105 328
AA 0.6335 0.5001 0.5590 0.4999 0.0031 0.0095 360
AC 0.4292 0.9300 0.5874 0.0700 0.1844 0.1830 125
FC 0.4398 0.9300 0.5880 0.0700 0.1843 0.1830 123

Text categorization using decision-tree feature

Text categorization using single feature
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under the help of SecondString [32] and SimMetrics [41], two open 
source toolkit for calculating distance metrics between short strings. 
The adopted features can be loosely grouped into several categories. 
The first category refers to character-based metric, such as edit 
distance and Jaro metric. The second one is token-based metric, 
such as Jaccard metric and TFIDF cosine metric. The third one 
involves statistics-based metric, such as Jensen-Shannon metric and 
SFS metric. The last category corresponds to hybrid metric, 
including two-level metrics and SoftTFIDF metric. The specific 
definitions of these metrics can refer to [32]. Finally, we extract 
totally 37 similarity metrics as features. 
Comparing to a text document and an image, it can only extract a 
minority number of features from a citation pair due to the lack of 
enough contexts. Like last experiment, we also adopt the decision-
tree to enrich and enhance the feature space for citation matching. 

4.3.3 Result 
For evaluation, all the positive and negative examples are equally 
divided into the three subsets. These three subsets are alternately 
taken as the training, testing and validation set. We repeat all 
possible combinations for experiments, totally 6 times 
( 1

1
1
2

1
3 CCC ×× ). The averaged results are shown in Table 4. The 

main conclusions made in the web page and text data still hold here. 
In specific, 1) AC is much faster than non-cascade methods (SVM, 
WSVM, Ada and AA), and FC is further faster than AC; 2) IC 
methods (AA and WSVM) retrieve more co-references than BC 
methods (Ada and SVM); 3) The overall accuracy of AC is 
significantly decreased in comparison with non-cascade methods; 4) 
FC achieves a much better classification accuracy than AC. It is 
comparable to or even better than the non-cascade methods.  

Table 5. The experimental results on the Cora dataset. 

 
However, it also reveals some difference with the last experiments: 
1) AA method performs worse than Ada methods in terms of F1 and 
ER. As an asymmetric learning method, AA fails to seek a balance 
between false negative rate and false positive rate. 2) The 
classification time of FC is merely reduced by 8.56% (16/187) 
compared with AC, much smaller than 54.84% and 50% in the 
previous experiments. The main reason is that the metric feature 
used in citation matching has better discrimination capability than 
the term feature used in the last two experiments. In this case, AC 
itself contains just a small number of features and it leaves not much 
room for FC to reduce the number of the features. Even so, FC still 
makes a significant accuracy improvement by replacing some 
features with more effective ones. 

5. CONCLUSIONS 
The problem of imbalanced classification may occur very often on 
the web due to extensive impact of “Matthew Effect”. Fast 
classification is in urgent need for those large-scale and on-line web 
IC applications. In this paper, we investigate the feasibility of 
cascade learning for fast imbalanced classification in web mining, 
and propose a novel asymmetric cascade learning algorithm called 

FloatCascade to improve the accuracy of AsyCascade. Our key 
insight is that feature refinement (namely feature deletion in 
FloatCascade) can remedy the accuracy loss caused by continuous 
feature addition in AsyCascade. FloatCascade successfully selects 
less yet more effective features at each stage of the cascade 
classifier by minimizing the corresponding false positive rate, which 
meets the actual objective of asymmetric cascade learning. Besides, 
the quality and quantity of available features is critically important 
to the success of FloatCascade learning. A decision-tree feature is 
adopted to enhance feature diversity and discrimination capability 
for FloatCascade learning.  
Encouraging experimental results on web page categorization and 
citation matching demonstrate the effectiveness and efficiency of 
FloatCascade learning for imbalanced web classification. Some 
important experimental findings include: 1) FloatCascade can 
achieve much higher classification speed than AsyCascade. 2) 
FloatCascade can significantly improve the classification accuracy 
of AsyCascade. It is even comparable to some non-cascade methods. 
3) FloatCascade can attain a favorable balance between the false 
negative rate and the false positive rate and ensures the significant 
increase in the overall classification accuracy.  
The main contributions of this paper are summarized as follows: 
1. We propose to study the problem of imbalanced web mining, and 

investigate the applicability of cascade learning for fast 
imbalanced classification in web mining. 

2. We propose a new asymmetric cascade learning method called 
FloatCascade to achieve higher classification speed and better 
classification accuracy than AsyCascade, and we also highlight 
the importance of feature for FloatCascade learning.  

Considering the popularity of web IC problems and the generality of 
our FloatCascade learning, we expect that FloatCascade is very 
promising for many imbalanced web mining applications. In the 
future, we will go on improving FloatCascade in two directions: 
better classification accuracy and higher classification speed. And 
we will apply FloatCascade to more web IC problems for fast and 
accurate classification. 
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