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ABSTRACT

A large body of work has been devoted to identifying com-
munity structure in networks. A community is often though
of as a set of nodes that has more connections between its
members than to the remainder of the network. In this
paper, we characterize as a function of size the statistical
and structural properties of such sets of nodes. We define
the network community profile plot, which characterizes the
“best” possible community—according to the conductance
measure—over a wide range of size scales, and we study
over 70 large sparse real-world networks taken from a wide
range of application domains. Our results suggest a signifi-
cantly more refined picture of community structure in large
real-world networks than has been appreciated previously.
Our most striking finding is that in nearly every network
dataset we examined, we observe tight but almost trivial
communities at very small scales, and at larger size scales,
the best possible communities gradually “blend in” with the
rest of the network and thus become less “community-like.”
This behavior is not explained, even at a qualitative level,
by any of the commonly-used network generation models.
Moreover, this behavior is exactly the opposite of what one
would expect based on experience with and intuition from
expander graphs, from graphs that are well-embeddable in
a low-dimensional structure, and from small social networks
that have served as testbeds of community detection algo-
rithms. We have found, however, that a generative model,
in which new edges are added via an iterative “forest fire”
burning process, is able to produce graphs exhibiting a net-
work community structure similar to our observations.

Categories and Subject Descriptors: H.2.8 Database
Management: Database applications — Data mining

General Terms: Measurement; Experimentation.

Keywords: Social networks; Graph partitioning; Commu-
nity structure; Conductance; Random walks.

1. INTRODUCTION

In this paper, we explore from a novel perspective several
questions related to identifying meaningful communities in
social and information networks, and we come to several
surprising conclusions that have theoretical and practical
implications for community detection.
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1.1 Overview of our approach

At the risk of oversimplifying the large body of work on
community detection in complex networks, the following
five-part story describes the general methodology:

(1) Data are modeled by an “interaction graph.” In par-
ticular, part of the world gets mapped to a graph
in which nodes represent entities and edges represent
some kind of interaction between pairs of those enti-
ties. For example, nodes may represent individual peo-
ple and edges may represent friendships, interactions
or communication between pairs of those people.

The hypothesis is made that the world contains groups
of entities that interact more strongly amongst them-
selves than with the outside world, and hence the in-
teraction graph should contain sets of nodes, i.e., com-
munities, that have more and/or better-connected “in-
ternal edges” connecting members of the set than “cut
edges” connecting the set to the rest of the world.

A objective function or metric is chosen to formalize
this idea of groups with more intra-group than inter-
group connectivity.

An algorithm is then selected to find sets of nodes
that exactly or approximately optimize this or some
other related metric. Sets of nodes that the algo-
rithm finds are then called “clusters,” “communities,”
“groups,” “classes,” or “modules”.

The clusters (communities) are then evaluated in some
way. For example, one may map the sets of nodes
back to the real world to see whether they appear to
make intuitive sense as a plausible social community.
Alternatively, one may attempt to acquire some form
of “ground truth,” in which case the set of nodes output
by the algorithm may be compared with it.

With respect to points (1)—(4), we will follows the usual
path in this paper. For point (3), we choose a natural and
widely-adopted notion of community goodness called con-
ductance, also known as the normalized cut metric [6, 31,
16]. Since there exist a rich suite of both theoretical and
practical algorithms to optimize this quantity [32, 20, 4, 17,
37, 10], we can for point (4) compare and contrast several
methods to approximately optimize it.

However, it is in point (5) that we deviate from previous
work. Instead of focusing on individual groups of nodes and
trying to interpret them as “real” communities, we investi-
gate statistical properties of a large number of communities
over a wide range of size scales in real-world social and in-
formation networks. We take a step back and ask questions
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such as: How well do real graphs split into communities?
What is a good way to measure and characterize presence
or absence of communities in networks? What are typical
community sizes and typical community qualities?

To address these and related questions, we introduce the
concept of a network community profile (NCP) plot. In-
tuitively, the network community profile plot measures the
quality of “best” community as a function of community size
in a network. To measure the quality of a community we
use conductance [6]. By this measure, the best communities
are densely linked sets of nodes attached to the rest of the
network via few edges. Fig. 1(a) gives a typical NCP plot.

‘We compare our results across over 70 large social and in-
formation networks, numerous commonly-studied small so-
cial networks, and also expanders and low-dimensional mesh-
like objects. We also compare our results on each network
with what is known from the field from which the network
is drawn. To our knowledge, this makes ours the most ex-
tensive such analysis of the community structure in large
real-world social and information networks. By comparing
and contrasting these plots for a large number of networks,
and by computing other related structural properties, we
obtain results that suggest a significantly more refined pic-
ture of the community structure in large real-world networks
than has been appreciated previously.

1.2 Summary of our results

Main Empirical Findings: Our results suggest a rather
detailed and somewhat counterintuitive picture of the com-
munity structure in large networks. Several qualitative prop-
erties of community structure are nearly universal:

e Up to a size scale, which empirically is roughly 100
nodes, there not only exist well-separated communi-
ties, but also the slope of the network community pro-
file plot is generally sloping downward. (See Fig. 1(a).)
This latter point suggests, and empirically we often ob-
serve, that smaller communities can be combined into
meaningful larger communities.

e At size scale of 100 nodes, we often observe the global
minimum of the network community profile plot. (Al-
though these are the “best” communities in the entire
graph, they are usually connected to the remainder of
the network by just a single edge.)

e Above the size scale of roughly 100 nodes, the network
community profile plot gradually increases, and thus
there is a nearly inverse relationship between commu-
nity size and community quality. (See Fig. 1(a).) This
upward slope suggests, and empirically we often ob-
serve, that as a function of increasing size, the best
possible communities as they grow become more and
more “blended into” the remainder of the network.

This last point is particularly significant, and it is our
main empirical finding: at larger and larger size scales the
best possible communities gradually “blend in” more and
more with the rest of the network and thus gradually become
less and less community-like (less well-expressed /separated).
Eventually, even the existence of large well-defined commu-
nities is quite questionable if one models the world with an
interaction graph, as in point (1) above, and if one also de-
fines good communities as densely linked clusters that are
weakly-connected to the outside, as in hypothesis (2) above.
This is important if one asserts that cut and density based
intuitions will find “true” communities.

696

Rewired network Whiskers

[ .\.
Figure 1: (a) Typical NCP plot. (b) Network struc-
ture as suggested by our experiments.
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We have also examined in detail the structure of our so-
cial and information networks. We have observed that an
“jellyfish” or “octopus” model [33, 7] provides a rough first
approximation to structure of many of the networks we have
examined. That is, most networks may be viewed as having
a “core,” with no obvious underlying geometry and which
contains a constant fraction of the nodes, and then there
are a large number of relatively small “whiskers” that are
only tenuously connected to the core. (See Fig. 1(b).)

Main Modeling Results: The observed properties of
the network community profile plot are not reproduced, at
even a qualitative level, by any of the commonly-used net-
work generation models we have examined, including but
not limited to preferential attachment, copying, and hier-
archical network models. Moreover, this behavior is qual-
itatively different than what is observed in networks with
an underlying mesh-like or manifold-like geometry (which is
significant as these structures are often used as a scaffold-
ing upon which to build other models), in networks that are
good expanders (which may be surprising, since it is often
observed that large social networks are expander-like), and
in small social networks often used as testbeds for commu-
nity detection algorithms (which may have implications for
the applicability of these methods to detect large community-
like structures in networks). For the commonly-used net-
work generation models, as well as for expander-like, low-
dimensional, and small social networks, the network com-
munity profile plots are generally downward sloping or rela-
tively flat.

We, however, make the following modeling observations:

e Very sparse random graph models with no underlying
geometry have relatively deep cuts at small size scales,
the best cuts at large size scales are very shallow, and
there is a relatively abrupt transition in between. This
is a consequence of the extreme sparsity of the data.

e A “forest fire” generative model [21], in which edges
are added in a manner that imitates a fire-spreading
process, reproduces not only the deep cuts at small
size scales and the absence of deep cuts at large size
scales but other properties as well: the small barely
connected pieces are significantly larger and denser
than random; and for appropriate parameter settings
the network community profile plot increases relatively
gradually as the size of the communities increases.

Intuitively, the structure of the whiskers (See Fig. 1(b).),
which are not unlike small social networks that have been
extensively studied, are responsible for the downward part
of the network community profile plot, while the core of the
network and the manner in which the whiskers root them-
selves to the core helps to determine the upward part of the
network community profile plot.
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e Social nets | Nodes | Edges | Description
LivEJOURNAL | 4,843,953 [ 42,845,684 | Blog friendships [5]
EPINIONS 75,877 405,739 | Trust network [28]
CA-DBLP 317,080 1,049,866 | Co-authorship [5]
e Information (citation) networks

CIT-HEP-TH 27,400 352,021 | Arxiv hep-th [14]
AMAZONPROD 524,371 1,491,793 | Amazon products [8]
e Web graphs

WEB-GOOGLE 855,802 4,291,352 | Google web graph
WeB-wrl0G | 1,458,316 | 6,225,033 | TREC WT10G

e Bipartite affiliation (authors-to-papers) networks
ATp-DBLP 615,678 944,456 | DBLP [21]
ATM-IMDB 2,076,978 5,847,693 | Actors-to-movies

e Internet networks

ASSKITTER 1,719,037 | 12,814,089 | Autonom. sys.
GNUTELLA 62,561 147,878 | P2P network [29]

Table 1: Some of the network datasets we studied.

2. BACKGROUND AND OVERVIEW

In this section, we will provide background on our data
and methods. There exist a large number of reviews on top-
ics related to those discussed in this paper. For example, see
the reviews on community identification [24, 9], graph and
spectral clustering [13, 30], and the monographs on spectral
graph theory and complex networks [6, 7].

2.1 Network datasets

We have examined a large number of real-world complex
networks. Table 1 gives a subset of the networks that we
use in this paper. (We refer to the extended version of the
paper [23] for a complete list of networks.) In all cases, we
consider networks as undirected, and we extract the largest
connected component. We have grouped the networks into
5 categories: social networks which consist of on-line social
networks and co-authorship networks of computer science
(DBLP) and various areas of physics; information networks
which contain citation networks of physics and blogosphere;
web-graphs which contain networks with nodes representing
web-pages and hyperlinks being the edges; bipartite social
affiliation networks which contain mainly authors-to-papers
networks of computer science and physics; and finally, inter-
net networks which consist of autonomous systems network
and Gnutella P2P file sharing network.

Table 1 also shows the number of nodes and edges in
each network. The sizes of the networks we have studied
range from about 5,000 nodes up to nearly 14 million nodes,
and from about 6,000 edges up to more than 100 million
edges [23]. In addition, all of the networks are quite sparse—
their densities range from an average degree of about 2.5 for
the blog post network, up to an average degree of about
400 in a network of movie ratings from Netflix [23]—and
most of the other networks, including the purely social net-
works, have average degree around 10 (median degree of 6).
In total, we have examined over 100 different networks, in-
cluding over 70 large real-world social and information net-
works, making this, to our knowledge, the largest and most
comprehensive study of such networks. (We will make data
available via a link from the first author’s web page.)

2.2 Clusters and communities in networks

If G = (V, E) denotes a graph, then the conductance ¢ of a
set of nodes S C V, (where S is assumed to contain no more
than half of all the nodes), is defined as follows. Let v be
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the sum of degrees of nodes in S, and let s be the number of
edges with one endpoint in S and one endpoint in S, where
'S denotes the complement of S. Then, the conductance of
S is ¢ = s/v, or equivalently ¢ = s/(s + 2¢), where e is the
number of edges with both endpoints is S. More formally,
if A is the adjacency matrix of the graph G, then:

ZieS,j%S Aij
min{A(S), A(S)}
where A(S) = > ;o> oy Aij, in which case the conduc-
tance of the graph G is

¢c = min ¢(S).

SC

P(S) = (6)

(7)

Thus, the conductance of a set provides a measure for the
quality of the cut (S,S), or relatedly the goodness of a com-
munity S. Indeed, it is often noted that communities should
be thought of as sets of nodes with more and/or better intra-
connections than inter-connections. When interested in de-
tecting communities and evaluating their quality, we pre-
fer sets with small conductances, i.e., sets that are densely
linked inside and sparsely linked to the outside. Although
numerous measures have been proposed for how community-
like is a set of nodes, it is commonly noted—e.g., see [31]
and [16]—that conductance captures the “gestalt” notion of
clustering [36], and so it has been widely-used for graph
clustering and community detection [13, 30].

3. NETWORK COMMUNITY PROFILE PLOT

In this section, we discuss the network community pro-
file plot (NCP plot), which measures the quality of network
communities at different size scales.

3.1 The network community profile plot

In order to resolve more finely community structure in
large networks, we introduce the network community profile
plot (NCP plot). Intuitively, the NCP plot measures the
quality of the best possible community in a large network,
as a function of the size of the purported community. For-
mally, we may define it as the conductance value of the best
conductance set of cardinality k in the entire network, as a
function of k. That is,

(k) = ¢ (). (8)

min
SCV,|S|=k
where |S| denotes the cardinality of the set S and where the
conductance ¢(S) of S is given by (6). Since this quantity is
intractable to compute, we employ well-studied approxima-
tion algorithms for the Minimum Conductance Cut Problem
to compute different approximations to the NCP plot. We
employ two procedures: first, Metis+MQI, i.e., the graph
partitioning package Metis [17] followed by the flow-based
MQI post-processing procedure MQI [19], which taken to-
gether returns sets that have very good conductance values;
and second, the Local Spectral Algorithm [3], which returns
sets that are somewhat “regularized” (more internally “co-
herent”) but that often have worse conductance values.

Just as the conductance of a set of nodes provides a qual-
ity measure of that set as a community, the shape of the
NCP plot provides insight into the community structure of a
graph. For example, the magnitude of the conductance tells
us how well clusters of different sizes are separated from the
rest of the network. One might hope to obtain some sort of
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Figure 2: NCP plots for networks that “live” in low-
dimensional spaces and for an expander-like graph.

“smoothed” measure of the notion of the best community of
size k, e.g., by considering a 95-th percentile, rather than a
minimum. We have not defined such a measure since there
is no obvious way to average meaningfully over all subsets
of size k. Although Metis+MQI finds sets of nodes with
extremely good conductance value, empirically we observe
that they often have little or no internal structure—they
can even be disconnected; on the other hand, since spectral
methods in general tend to confuse long paths with deep
cuts [32], the Local Spectral Algorithm finds sets that are
“tighter” and more “well-rounded” and thus in many ways
more community-like.

3.2 Community profile plots for expander, low-
dimensional, and small social networks

The NCP plot behaves in a characteristic manner for graphs
that are “well-embeddable” into a low-dimensional geometric
structure. To illustrate this, consider Figure 2. The NCP
plot is steadily downward sloping as a function of the num-
ber of nodes in the smaller cluster. Moreover, the curves
are straight lines with a slope equal to —1/d, where d is the
dimensionality of the underlying grids. In particular, as the
underlying dimension increases then the slope of the NCP
plot gets less steep. Of course, this is a manifestation of the
isoperimetric (i.e., surface area to volume) phenomenon. A
steadily downward sloping NCP plot is quite robust for net-
works that “live” in a low-dimensional structure, e.g., on
a manifold or the surface of the earth. For example, Fig-
ure 2(b) shows the NCP plot for a power grid network of
Western States Power Grid [34], and Figure 2(c) shows the
NCP plot for a road network of California. Finally, in con-
trast, Figures 2(d) shows NCP plots for a Gy, graph with
100, 000 nodes and average degrees of 4, 6, and 8, i.e., graphs
that are very good expanders. The NCP plot is roughly flat,
which we also observed in Figure 2(a) for a clique, which is
to be expected since the minimum conductance cut in the
entire graph cannot be too small for a good expander [15].

Interestingly, a steadily decreasing downward NCP plot is
also seen for small social networks that have been extensively
studied for validating community detection algorithms. T'wo
examples are shown in Figures 3. For these networks, the
interpretation is the hierarchical organization, where smaller
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Figure 3: Depiction of several small social networks
that are common test sets for community detection
algorithms and their network NCP plots.

communities are sparsely embedded in larger communities.
Empirically we observe that local minima in the NCP plot
correspond to sets of nodes that are plausible communities.
Consider, e.g., Zachary’s karate club [35], an extensively-
analyzed social network [24, 26]. Figure 3(a) depicts the
karate club network, and Figure 3(b) shows its NCP plot.
Note that Cut B, which separates the graph roughly in half,
has better conductance value than Cut A (note also commu-
nity A is included in B). This corresponds with the intuition
about the NCP plot derived from studying low-dimensional
graphs. The karate network corresponds well with the intu-
itive notion of a community, where nodes of the community
are densely linked among themselves and there are few edges
between nodes of different communities. In a similar man-
ner, Figure 3(c) depicts Newman’s network of 379 scientists
who conduct research on networks [25]. In this latter case,
we see a hierarchical structure, in which the community de-
fined by Cut C' is included in a larger community that has
better conductance value.

3.3 Community profile plots of large social and
information networks

We have examined NCP plots for over 70 real-world social
and information networks, and in Figure 4 we present NCP
plots for six of these. The most striking feature is that the
NCP plot is steadily increasing for nearly its entire range.

Consider, the NCP plot for the LIVEJOURNAL social net-
work in Figure 4(a), and focus first on the red curve, which
presents the results of Local Spectral Algorithm. Up to a
size scale, which empirically is roughly 100 nodes, the slope
of the NCP plot is generally sloping downward. At that
size scale, we observe the global minimum of the NCP plot
(denoted by a purple square). This set of nodes as well
as others achieving local minima of the NCP plot in the
same size range are the “best” communities, according to
the conductance measure, in the entire graph. Moreover,
they are barely connected to the rest of the graph, e.g., they
are typically connected to the rest of the nodes by 1 (or
2, or perhaps 3—we will return to this issue in Section 4)
edges. Above the size scale of roughly 100 nodes, the NCP
plot gradually increases over several orders of magnitude.
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Figure 4: [Best viewed in color.] NCP plots for a
representative sample of large networks. Red curves
plot the Local Spectral Algorithm; green curves plot
Metis+MQI; blue curves plot the Bag of Whiskers
Heuristic; and black curves plot the Local Spectral
Algorithm applied to a randomly rewired network.

The “best” communities in the entire graph are quite good
(in that they have size roughly 10% nodes and conductance
scores less than 107°) whereas the “best” communities of
size 10° or 10° have conductance scores of about 1071, In
between these two size extremes, the conductance scores get
gradually worse, although there are numerous local dips.
(The green curve plots the Metis+MQI, and the blue curve
the results of Bag of Whiskers Heuristic, as described in Sec-
tion 4.3.) Note that both axes in Figure 4 are logarithmic,
and thus the upward trend of the NCP plot is over a wide
range of size scales.

The black curve in Figure 4(a) plots the Local Spectral
Algorithm applied to a rewired version of the LIVEJOUR-
NAL network, i.e., to a random graph conditioned on the
same degree distribution as the original network. Interest-
ingly, the rewired network also has an initially decreasing
and then increasing/flattening NCP plot. Several things
should be noted. (1) The original LIVEJOURNAL network
has considerably more structure, i.e., deeper/better cuts,
than its rewired version, even up to the largest size scales.
(2) Relative to the original network, the “best” community in
the rewired graph, i.e., the global minimum of the conduc-
tance curve, shifts upward and towards the left. This means
that in rewired networks the best conductance clusters get
smaller and have worse conductance scores. (3) The sets at
and near the minimum are small trees that are connected to
the core of the random graph by a single edge. (4) After the
small dip at a very small size scale (= 10 nodes), the NCP
plot increases to its high level rather quickly. This is due to
the absence of structure in the (expander-like) core.
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We have observed qualitatively similar results in other
large social and information networks we have examined.
Several additional examples are presented in Figure 4: an-
other social network, (EPINIONS, in Fig. 4(b)); an informa-
tion/citation network (CrT-HEP-TH, in Fig. 4(c)); a Web
graph (WEB-GOOGLE, in Fig. 4(d)); a Bipartite affiliation
network (ATP-DBLP, in Fig. 4(e)); and an Internet network
(GNUTELLA, in Fig. 4(f)). Qualitative observations are con-
sistent across the range of network sizes, densities and differ-
ent domains from which the networks are drawn. Of course,
these six networks are very different than each other—some
of these differences are hidden due to the definition of the
NCP plot, whereas others are evident. An example of the
latter is that even the best cuts in GNUTELLA are not signif-
icantly smaller or deeper than in the corresponding rewired
network, whereas for WEB-GOOGLE we observe cuts that are
orders of magnitude deeper.

These findings mean that best-expressed network commu-
nities are rather small, their size being practically indepen-
dent of network size (ca. 100 nodes). Moreover, as the
community size grows the community blends into the rest
of the network, which makes them very difficult to detect
using cut-based ideas. (We come back to this in Section 7.)

4. MORE STRUCTURAL OBSERVATIONS

Next we describe the results of examining the networks in
greater detail to understand which structural properties are
responsible for the observed properties of the NCP plot.

4.1 General statistics on our network datasets

In nearly every network we have examined, there is a sub-
stantial fraction of nodes that are barely connected to the
main part of the network, i.e., that are part of a small clus-
ter of around 100 nodes that are attached to the remainder
of the network via a small number of edges. In particular, a
large fraction of the network is made out of nodes that are
not in the (2-edge-connected) core, i.e., they are in compo-
nents attached to the core of the network via a single edge.
For example, the core of EPINIONS network contains only
47% of the nodes and 80% of the edges. Averaging over all
our networks, we see that the network core contains around
only 60% of the nodes and 80% of the edges of the original
network. This is somewhat akin to the so-called “Jellyfish”
model [33] and “Octopus” models [7], which we describe in
more detail in Section 6.2. Moreover, the global minimum
of the NCP plot is nearly always one of these pieces that is
connected to the rest of the network by only a single edge.
Since these small barely-connected pieces seem to have a dis-
proportionately large influence on the community structure
of our network datasets, we examine them in greater detail.

4.2 “Whiskers” and the “core” in our networks

We define whiskers, or more precisely 1-whiskers, to be
maximal subgraphs that can be detached from the rest of the
network by removing a single edge. To find 1-whiskers, we
employ the following algorithm. Using a depth-first search
algorithm, we find the largest 2-edge-connected component
B of the graph G. (A graph is 2-edge-connected if the re-
moval of any single edge does not disconnect the graph.) We
then delete all the edges that have one of the end points in
B. We call the connected components of this new graph G’
1-whiskers, since they correspond to largest subgraphs that
can be disconnected from G by removing just a single edge.
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Figure 5: Five largest whiskers of Epinions network.

Not surprisingly, there is a wide range of whisker sizes
and shapes. Empirically, 1-whisker distribution is heavy-
tailed, with the largest whisker size ranging from around
less than 10 to well above 100. (See extended version [23]
for plots.) The largest whiskers in co-authorship and citation
networks have around 10 nodes, whiskers in bipartite graphs
also tend to be small, and very large whiskers are found in
a web graph. In rewired networks the whiskers tend to be
much smaller than in the original network. A particularly
noteworthy exception is found in the Autonomous systems
networks and the GNUTELLA network. Here, whiskers are so
small that even the rewired version of the network has more
and larger whiskers. This makes sense, given how those net-
works were designed: many large whiskers would have bad
effects on the Internet connectivity in case of link failures.

Figure 5 shows the five largest whiskers of the EPINIONS
social network. The whiskers have on the order of 50 nodes,
and they are seen to have a rich internal structure. Similar
but substantially more complex figures could be generated
for networks with larger whiskers. In general, the results we
observe are consistent with a knowledge of the fields from
which the particular datasets have been drawn. For exam-
ple, in WEB-GOOGLE we see very large whiskers. This prob-
ably represents a well-connected network between the main
categories of a website (e.g., different projects), while the in-
dividual project websites have a main index page that then
points to the rest of the documents.

4.3 Bags and communities of whiskers

Empirically, if one looks at the sets of nodes achieving the
minimum in the NCP plot (usually the green Metis+MQI
curve), then before the global NCP minimum communities
are whiskers and above that size scale they are often unions
of disjoint whiskers. To understand the extent to which
these whiskers and unions of them are responsible for the
“best” conductance sets of different sizes, we have developed
the Bag-of-Whiskers Heuristic. Suppose we have a set W =
{w1,wa, ...} of whiskers. In order to construct the optimal
conductance cluster of size k, we need to solve the following
problem: find a set C' of whiskers such that .. N(w;) =k

and >, d%"") is maximized, where N(w;) is the number
of nodes in w; and d(w;) is its total internal degree. We then
use a dynamic programming heuristic to get an approximate
solution to this problem. This way, we find a cluster of a par-
ticular size that is composed solely from whiskers. Figure 4
(blue curve) shows the results of Bag-of-Whiskers.

First, notice that the largest whisker (denoted with pur-
ple square) is the lowest point in all plots. This means that
the best conductance community is in a sense trivial as it is
connected via just a single edge, and in addition a very sim-
ple heuristic can find it. Second, note that above that size
scale the Bag-of-Whiskers finds sets of extremely good con-
ductance. Third, this heuristic often agrees with the results
from Metis+MQI. This means that the best communities
are indeed disconnected. Thus, if one only cares about find-
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Figure 6: [Best viewed in color.] NCP plots with
(in red) and without (in green) l-whiskers, for two
of the six networks shown Figure 4.

ing good cuts then best cuts in these large sparse graphs
are obtained by composing unrelated disconnected pieces,
which suggests that community goodness scores need to be
reevaluated by also considering the community “coherence”.

4.4 Networks with no whiskers

One might wonder whether we see something different if
we consider a network in which these barely-connected pieces
have been removed. Thus, we found all whiskers and re-
moved them from the network, using procedure described in
Sec. 4.2, i.e., we kept the largest 2-edge-connected compo-
nent. Again, we computed the NCP plots in Figure 6.

Notice that whisker removal does not change the NCP plot
much: the plot shifts slightly upward, but the general trends
remain the same. Upon examination, the global minimum
occurs with a “whisker” that is connected by two edges to
the rest of the network. Intuitively, the network core has a
large number of barely connected pieces—connected now by
two edges rather than by a single edge. Since the “volume”
for these pieces is similar to that for the original whiskers,
whereas the “surface area” is a factor of two larger, the con-
ductance value is roughly a factor of two worse. Thus, al-
though we have been discussing 1-whiskers in this section,
one should really view them as the simplest example of
weakly-connected pieces that exert a significant effect on
the community structure in large real-world networks.

5. RESULTS FROM OTHER ALGORITHMS

We we have employed a range of other algorithmic tech-
niques to be confident that we are computing quantities fun-
damental to the networks we are considering, rather than
artifacts of the heuristics and approximation algorithms we
employ. Due to space limitations, much of this technical
material and its associated discussion is omitted from this
conference paper, but full details may be found in the jour-
nal version of this paper [23].

6. MODELS FORNETWORK COMMUNITY
STRUCTURE

In this section, we address modeling issues in order to
understand the properties of generative models sufficient to
reproduce the phenomena we have observed.

6.1 Commonly-used network models

We have studied a wide range of commonly-used network
generative models in an effort to reproduce the upward-
sloping NCP plots and to understand the structural proper-
ties of the real-world networks that are responsible for this
phenomenon. In each case, we have experimented with a
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Figure 7: [Best viewed in color.] NCP for networks
from commonly network generation models. Red
curves are Local Spectral Algorithm on the original
network, and black curves are Local Spectral Algo-
rithm applied to a randomly rewired network.

range of parameters, and in no case have we been able to
reproduce our empirical observations, at even a qualitative
level. In Figure 7, we summarize these results.

Figure 7(a) shows the NCP plot for a 10,000 node network
generated according to the original preferential attachment
model [1], where at each time step a node joins the graph
and connects to m = 2 existing nodes. Note that the NCP
plot is very shallow and flat (even more than the correspond-
ing rewired graph), and thus the network that is generated
is very expander-like at all size scales. In a different type
of generative model edges are added via a copying mecha-
nism [18]. Figure 7(b) shows the results for a network with
50,000 nodes, generated with m 2 and 8 = 0.05. Al-
though the copying model aims to produce communities by
linking a new node to neighbors of a existing node, this does
not seem to be the right mechanism to reproduce the NCP
plot since potential attachment nodes are all treated equally
and since new nodes always create same number of edges.

Next, in Figure 7(c), we consider a network that was de-
signed to have a recursively hierarchical community struc-
ture [27]. In this case, however, the NCP plot is sloping
downwards, and the local dips in the plot correspond to mul-
tiples of the size of the basic module of the graph. Finally,
Figure 7(d) shows the NCP plot for a geometric preferential
attachment model [12]. This model aims to achieve a heavy-
tailed degree distribution as well as deep cuts, and it does
so by making the connection probabilities depend both on
the two-dimensional geometry and on the preferential at-
tachment scheme. As we see, the effect of the underlying
geometry eventually dominates the NCP plot since the best
bi-partitions are fairly well-balanced [12].

6.2 A very sparse random graph model

We have studied a random graph model with given ex-
pected degrees, as described by Chung and Lu [7]. Let
n, the number of nodes in the graph, and a vector w =
(wi,...,wy), which will be the expected degree sequence
vector (where we will assume that max; wi < 3, wy), be
given. Then, in this random graph model, an edge be-
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tween nodes ¢ and j is added, independently, with probabil-
ity pij = wiw;/ Y., wp. We use G(w) to denote a random
graph generated in this manner.

The special case of the G(w) model in which w has a
power law distribution is of interest to us here. Given the
number of nodes n, the power-law exponent 3, and the pa-
rameters w and Wmax, Chung and Lu [7] give the degree
sequence for a power-law graph:

wi = ci VPV for i s, dp < i < n + o,

9)
where, for the sake of consistency with their notation, we
index the nodes from ig to n+i9—1, and where ¢ = ¢(8, w,n)
and i9 = i0(8, w, N, Wmax) are as follows:
B-1
)
B_

where we have defined o = Tf In this case, one can verify
that the number of vertices that have expected degree in the
range (k — 1, k] is proportional to k=%,

The following theorem will characterize the shape of the
NCP plot for this G(w) model when the degree distribution
follows Equation (9), with 8 € (2,3). The theorem makes
two complementary claims: (1) the model has clusters of log
size with logarithmically deep cuts; (2) once we get beyond
this size scale there do not exist any such deep cuts.

1/(8-1 .
¢ = awn'/® )andm:n o
wnlax

THEOREM 1. Consider the random power-law graph model
G(w), where w is given by Equation (9), where w > 5.88,
and the power-law exponent (B satisfies 2 < 3 < 3. Then,
then with probability 1 — o(1):

1. There exists a cut of size ©(logn) whose conductance
is © (%)
ogmn
2. There exists ¢, e > 0 such that there are no sets of size
larger than ¢’ logn having conductance smaller than e.

PROOF. See the journal version of this paper [23]. [

Recall that when w > 2 and 3 € (2,3) then a typical
graph in this model is not fully connected but does have a
giant component [7]. (The well-studied G, random graph
model also has a similar regime when p € (1/n,logn/n).)
In addition, under certain conditions, the average distance
between nodes is in O (loglogn) and yet the diameter of
the graph is © (logn). Thus, in this case, the graph has an
“octopus” structure, with a subgraph containing n® (1°&1°gm)
nodes constituting a deep core of the graph [7], and numer-
ous “whiskers” attached.

6.3 A more realistic model of network com-
munity structure

We have seen that commonly-studied models, including
preferential attachment models, copying models, simple hi-
erarchical models, and models in which there is an under-
lying mesh-like or manifold-like geometry are not the right
way to think about the network community structure. We
have also seen that the extreme sparsity of the networks
might be responsible for the deep cuts at small sizes.

The question arises as to whether we can find a simple gen-
erative model that can explain both the existence of small
well-separated whisker-like clusters and also an expander-
like core whose best clusters get gradually worse as the pur-
ported communities increase in size. Intuitively, a satisfac-
tory network generation model must successfully take into
account the following two mechanisms:
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Figure 8: [Best viewed in color.] NCP plots for
the Forest Fire Model at various parameter settings.
The backward burning probability is p, = 0.3, and we
increase (left to right, top to bottom) the forward
burning probability py = {0.26,0.33,0.35,0.40}. Note
that the largest and smallest values for p; lead to
less realistic community profile plots.

(a) The model should produce a relatively large number of
relatively small—but still large when compared to ran-
dom graphs—well connected and distinct whisker-like
communities. (This should reproduce the downward
part of the community profile plot and the minimum
at small size scales.)

The model should produce a large expander-like core,
which may be thought of as consisting of intermingled
communities, perhaps growing out from the whisker-
like communities, the boundaries of which get less and
less well-defined as the communities get larger and
larger and as they gradually blend in with rest of the
network. (This should reproduce the gradual upward
sloping part of the community profile plot.)

The so-called Forest Fire Model [21, 22] captures exactly
these two competing phenomena. The Forest Fire Model is a
model of graph generation (that generates directed graphs—
an effect we will ignore) in which new edges are added via a
recursive “burning” mechanism in an epidemic-like fashion.

Two properties of this model are particularly significant.
First, although many nodes might form one or a small num-
ber of links, certain nodes can produce large conflagrations,
burning many edges and thus forming a large number of
out-links before the process ends. Such nodes will help gen-
erate a skewed out-degree distribution, and they will also
serve as “bridges” that connect formerly disparate parts of
the network. Second, there is a locality structure in that as
each new node v arrives over time, it is assigned a “center of
gravity” in some part of the network, i.e., at the ambassador
node w, and the manner in which new links are added de-
pends sensitively on the local graph structure around node
w. See [21, 22] for details.

The Forest Fire Model is parameterized by a forward burn-
ing probability py and a backward burning probability ps,
and, not surprisingly, the behavior of the model is sensi-
tive to the choice of py and p,. We have experimented with
a wide range of network sizes and values for these parame-
ters, and in Figure 8, we show the community profile plots
of several 10,000 node Forest Fire networks generated with
py = 0.3 and several different values of py. The first thing
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to note is that since we are varying py the four plots in Fig-
ure 8, we are viewing networks with very different densities.
Next, notice that if, e.g., py = 0.33 or py = 0.35 then we
observe a very natural behavior: the conductance nicely de-
creases, reaches the minimum somewhere between 10 and
100 nodes, and then slowly but not too smoothly increases.
Not surprisingly, it is in this parameter region where the
Forest Fire Model has been shown to exhibit realistic time
evolving graph properties such as densification and shrink-
ing diameters [21, 22]. Next, notice that if py is too low
or too high, then we obtain qualitatively different results.
For example, if py = 0.26, then the community profile plot
gradually decreases for nearly the entire plot. For this choice
of parameters, the forest fire does not spread well since the
forward burning probability is too small, the network is ex-
tremely sparse and is tree-like with just a few extra edges,
and so we get large well separated “communities” that get
better as they get larger. On the other hand, when burning
probability is too high, e.g., py = 0.40, then the NCP plot
has a minimum and then rises extremely rapidly. For this
choice of parameters, if a node which initially attached to a
whisker successfully burns into the core, then it quickly es-
tablishes many successful connections to other nodes in the
core. Thus, the network has relatively large whiskers that
failed to establish such a connection and a very expander-
like core, with no intermediate region, and the increase in
the community profile plot is quite abrupt.

7. DISCUSSION

7.1 Comparison to ground truth communities

A common practice when evaluating community detection
algorithms is to compare extracted communities with some
notion of “ground truth” (in a hope that extracted and true
communities correspond). We have examined four networks
in which we have access to some notion of “ground truth”.

e LIVEJOURNAL [5] is an online blogging community where
users create and then join groups. We view each such
group as defining a “ground truth” community.

e CA-DBLP [5] is a network in which nodes are authors
and edges connect authors co-authoring at least one
paper. Here, publication venues (e.g., journals, con-
ferences) play the role of “ground truth” communities.

e AMAZONPROD [8] is a network linking products often
purchased together at amazon.com. Each item belongs
to one or more hierarchically organized categories, and
products from the same category define a group which
is a “ground truth” community.

e ATM-IMDB is a bipartite actors-to-movies network.
For each movie we also know the language and the
country where it was produced. Countries and lan-
guages may be taken as “ground truth” communities.

To examine the quality of “ground truth” communities
in the these network datasets, one can take all groups and
measure the conductance of the cut that separates the group
from the rest of the network. Thus, we generated NCP plots
in the following way. For every “ground truth” community,
we measure its conductance, from which we obtain a scat-
ter plot of community size versus conductance. Then, we
take the lower-envelope of this plot, i.e., for every k we find
the conductance value of the community of size k£ that has
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Figure 9: [Best viewed in color.] NCP plots for ex-
plicitly “ground truth” communities (green), com-
pared with that for the original network (red) and
a rewired version of the network (black).

the lowest conductance. Figure 9 shows the results for these
network datasets; the figure also shows the NCP plot ob-
tained from using the Local Spectral Algorithm on both the
original network (red) and on the rewired network (black).

Several things should be noted. First, the conductance
of “ground truth” communities follows that for the network
communities up to until size 10-100 nodes, i.e., communities
get successively more community-like. As “ground truth”
communities get larger, their conductance values tend to
get worse and worse, in agreement with network communi-
ties discovered with graph partitioning approximation algo-
rithms. Thus, the qualitative trend we observed in nearly
every large sparse real-world network (of the best communi-
ties blending in with the rest of the network as they grow in
size) is seen to hold for “ground truth” communities. Second,
one might expect that the NCP plot for the “ground truth”
communities (the green curves) will be somewhere between
the NCP plot of the original network (red curve) and that
for the rewired network (black), and this is seen to be the
case in general. The NCP plot for network communities
goes much deeper and rises more gradually than for “ground
truth” communities. This is also very consistent with our
general observation that only small communities tend to be
dense and well separated, and to separate large groups one
has to cut disproportionately many edges. Third, for the two
social networks we studied (LIVEJOURNAL and CA-DBLP),
larger “ground truth” communities have conductance scores
that get quite “random”; i.e., they are as well separated as
they would be in a randomly rewired network (green and
black curves overlap). This is likely associated with the rel-
atively weak and overlapping notion of “ground truth” we
associated with those two network datasets. On the other
hand, for AMAZONPROD and ATM-IMDB networks, the
general trend still remains but large “ground truth” com-
munities have conductance scores that lie well below the
rewired network curve.

7.2 Broader implications

In contrast to numerous studies of community structure,
we find that the best communities are relatively small with
sizes only up to about 100 nodes. We also find that above
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size of about 100, the “quality” of communities get worse and
worse and communities more and more “blend into” the the
graph. Eventually, even the existence of communities (at
least when viewed as sets with stronger internal than exter-
nal connectivity) is rather questionable. This seems to agree
with Dunbar [11] who predicted that 150 is the upper limit
on the size of a human community. Moreover, Allen [2] gives
evidence that on-line communities have around 60 members,
and on-line discussion forums start to break down at about
80 active contributors. Church congregations, military com-
panies, divisions of corporations, all are close to the magic
sum of 150 [2]. We are thus led to ask: Why is community
quality inversely proportional to its size? And why are NCP
plots of small and large networks so different?

Previous studies mainly focused on small networks (e.g.,
see [9]), which are simply not large enough for the clusters to
gradually blend into one another as one looks at larger size
scales. Our results do not disagree with literature at small
sizes. But it seems that in order to make our observations
one needs to look at large networks. Probably it is only
when Dunbar’s limit is passed that we find large communi-
ties blurring and eventually vanishing. A second reason is
that previous work did not measure and examine the net-
work community profile of cluster size vs. cluster quality.

Another explanation could be that in small, carefully col-
lected networks, the semantics of edges is very precise while
in large networks we know much less about each particular
edge, e.g., especially in when online people have very differ-
ent criteria for calling someone a friend. Traditionally social
scientists through questionnaires “normalized” the links by
making sure each link has the same semantics/strength.

There has also been some evidence that hints towards the
findings we make here. For example, Clauset et al. [8] ana-
lyzed community structure of the AMAZONPROD, and found
that 50% of the nodes belonged to the largest “miscella-
neous” community. This agrees with the typical size of the
network core (as defined in Section 4.1), and one could con-
clude that the largest community they found corresponds
to the intermingled core of the network, and the rest of the
communities are whisker-like.

Our work also raises an important question of what is a
natural community size, and whether larger communities (in
a network sense) even exist. It seems that when community
size surpasses some threshold it becomes so diverse, that it
stops existing as a traditionally understood “network com-
munity”. It blends with the network, and intuitions based on
connectivity and cuts seem to fail to identify it. Approaches
that consider both the network structure and node attribute
data might detect communities in these cases.

Also, conductance seems like a very reasonable measure
that satisfies intuition about community quality, but we have
seen that if one only worries about conductance, then bags
of whiskers and other internally disconnected sets have the
best scores. This raises interesting questions about cluster
coherence, regularization and smoothness: what is a good
definition of coherence, and how should this be connected
to the notion of community separability.

8. CONCLUSION

We investigated statistical properties of sets of nodes in
large real-world social and information networks that could
plausibly be interpreted as good communities, and we dis-
covered that community structure in these networks is very
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different than what we expected from the literature and from
what commonly-used models would suggest. The most strik-
ing example of this is that, in nearly every network dataset
we examined, the conductance score of the best possible
set of nodes gets gradually worse and worse as those sets
increase in size. This suggests that that larger and larger
clusters are “blended in” more and more with the rest of the
network. Our interpretation is that if a concept like conduc-
tance captures our intuitive notion of community goodness
and if we model large networks with interaction graphs, then
the best possible communities get less and less community-
like as they grow in size. Our work opens several new ques-
tions about the structure of large social and information
networks in general, and it has implications for the use of
graph partitioning algorithms on real-world networks and
for detecting communities in them.
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