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ABSTRACT
Ontology population is prone to cause inconsistency because
the populating process is imprecise or the populated data
may conflict with the original data. By assuming that the
intensional part of the populated DL-based ontology is fixed
and each removable ABox assertion is given a removal cost,
we repair the ontology by deleting a subset of removable
ABox assertions in which the sum of removal costs is min-
imum. We call such subset a minimum cost diagnosis. We
show that, unless P=NP, the problem of finding a minimum
cost diagnosis for a DL-Lite ontology is insolvable in PTIME
w.r.t. data complexity. In spite of that, we present a feasi-
ble computational method for more general (i.e. SHIQ) on-
tologies. It transforms a SHIQ ontology to a set of disjoint
propositional programs, thus reducing the original problem
into a set of independent subproblems. Each such subprob-
lem computes an optimal model and is solvable in logarith-
mic calls to a SAT solver. Experimental results show that
the method can handle moderately complex ontologies with
over thousands of ABox assertions, where all ABox asser-
tions can be assumed removable.

Categories and Subject Descriptors
I.2.3 [Artificial Intelligence]: Deduction and Theorem
Proving; I.2.4 [Artificial Intelligence]: Knowledge Rep-
resentation Formalisms and Methods

General Terms
Algorithms

Keywords
Ontologies, Description Logics, Disjunctive Datalog, Diag-
nosis

1. INTRODUCTION
Nowadays OWL [22] has been established as a core stan-

dard in the Semantic Web. It comes in three layers in as-
cending expressivity, i.e., OWL Lite, OWL DL and OWL
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Full, where the former two coincide semantically with cer-
tain description logics (DLs) [1]. A DL-based ontology con-
sists of an intensional part and an extensional part. The
intensional part consists of a TBox and an RBox, and con-
tains knowledge about concepts and relations (called roles)
between the elements of the domain. The extensional part
consists of an ABox, and contains knowledge about individ-
uals and how they relate to the concepts and roles from the
intensional part. In this paper, the knowledge in intensional
parts is called axioms, whilst the knowledge in extensional
parts is called ABox assertions or simply assertions.

A crucial question in the vision of Semantic Web is how
to support and ease the process of creating and maintaining
DL-based ontologies. An important task within this process
is ontology population, which adds instances of concepts and
relations to the ontology. In recent years, there has been
a great surge of interest in methods for populating ontolo-
gies from textual resources. To name a few, Text2Onto [3]
and KITE [30] are frameworks that integrate algorithms for
populating ontologies from textual data. The algorithms
include information extraction algorithms that assign anno-
tations carrying some semantics to regions of the data, and
co-reference algorithms that identify annotated individuals
in multiple places. As for populating DL-based ontologies,
the information extraction process behaves as adding con-
cept/role assertions, whilst the co-reference process behaves
as adding equality/inequality assertions. The populated on-
tology, however, may become inconsistent because the infor-
mation extraction/co-reference process is imprecise or the
populated data possibly conflict with the original data. In
order to repair the populated ontology, we propose to delete
a subset of assertions in which the sum of removal costs is
minimum, based on the following considerations. First, the
intensional part should not be changed, because in general
it is well prepared and coherent (i.e., having no unsatisfiable
concepts) before the population. Second, for changing the
extensional part, only the deletion of assertions is consid-
ered because there is generally no criteria for revising asser-
tions. Third, for deleting assertions, some minimal criteria
on removable assertions (e.g., the cost of losing informa-
tion) should be considered. Fourth, the certainty informa-
tion on an assertion, given by the information extraction/co-
reference process, can be used as the cost of losing informa-
tion (called the removal cost), because deleting a more cer-
tain assertion generally loses more information. Fifth, the
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collective removal cost of a set of assertions can be approx-
imated by the sum of removal costs in the set.

Therefore, we in this paper address computing a minimum
cost diagnosis for an inconsistent ontology KB, i.e. a subset
of removable assertions whose removal turns KB consistent
and in which the sum of removal costs is minimum. We show
that, unless P=NP, the problem of finding a minimum cost
diagnosis for a DL-Lite ontology is insolvable in polynomial
time (PTIME) w.r.t. data complexity, i.e. the complexity
measured in the size of the ABox only. Note that DL-Lite
is a fairly inexpressive DL language such that the consis-
tency checking problem for DL-Lite ontologies is in PTIME
in the size of the ontology [2]. This complexity result im-
plies that the problem of finding minimum cost diagnoses
is in general intractable. In spite of that, we develop a fea-
sible computational method for more general (i.e. SHIQ)
ontologies. It transforms a SHIQ ontology to a set of dis-
joint propositional programs by applying an existing trans-
formation method (from SHIQ to disjunctive datalog) [12,
21] and new grounding and partitioning techniques. Thus
our method reduces the problem of finding a minimum cost
diagnosis into a set of independent subproblems. Each such
subproblem computes an optimal model and is solvable in
O(log2 n) calls to a satisfiability (SAT) solver, by assum-
ing that removal costs have been scaled to positive integers
polynomial in n the number of removable assertions.

We implement our method and experiment on several orig-
inally consistent, real/benchmark ontologies. Each test on-
tology has over thousands of assertions. We implement a
tool to inject conflicts into a consistent ontology, where a
conflict, caused by several inserted assertions, violates a
functional restriction or a disjointness constraint. Exper-
imental results show that, even when all assertions are as-
sumed removable, our method can handle all the test ontolo-
gies with injected conflicts. Especially, our method scales
well on the extended benchmark ontologies with increasing
number (from 1000) of conflicts.

2. RELATED WORK
There are some works that address repairing DL-based

ontologies. Kalyanpur et al. [13] extended Reiter’s Hitting
Set Tree (HST) algorithm [24] to compute a minimum-rank
hitting set, which is a subset of axioms that need to be re-
moved/fixed to correct an unsatisfiable concept, such that
the sum of axiom ranks in the subset is minimum. The no-
tion of minimum-rank hitting set is similar to that of min-
imum cost diagnosis, except that the former is on axioms
while the latter is on assertions. Schlobach [26] applied Re-
iter’s HST algorithm to compute a minimal subset of axioms
that need to be removed/fixed to correct an unsatisfiable
concept or an incoherent TBox. The above methods require
all minimal conflict sets be computed beforehand, where a
minimal conflict set is a minimal subset of axioms responsi-
ble for the unwanted consequence. Though the above meth-
ods can work with ABoxes as well (by viewing assertions
as axioms), it is impractical to adapt them to computing
minimum cost diagnoses. First, the problem of finding a
minimum hitting set from minimal conflict sets is intrinsi-
cally intractable [15]. Second, though there exist efficient
methods for computing a minimal conflict set (e.g., [27, 14,
20]), computing all minimal conflict sets is still hard because
the number of minimal conflict sets can be exponential in
the number of assertions, as shown in the following example.

Example 1. Let the intensional part consist of two axioms
A � ∀P.¬A�∀Q.¬A and ¬A � ∀P.A�∀Q.A, and the ABox
be {A(a1), P (an, a1), Q(an, a1)} ∪ {P (ai, ai+1), Q(ai, ai+1) |
1 ≤ i ≤ n − 1}, where n is an odd number. Then the
ontology is inconsistent, because ¬A(a1) is one of its con-
sequences but conflicts with A(a1). The minimal conflict
sets over the ABox are of the form {A(a1), U1(a1, a2), . . . ,
Un−1(an−1, an), Un(an, a1)}, where Ui is either P or Q. So
the number of minimal conflict sets is 2n.

Hence, a method that computes minimum cost diagnoses
from minimal conflict sets may work in exponential time
and exponential space w.r.t. data complexity (e.g., when it
handles an ontology that is the union of the ontology in
the above example and the ontology given in the proof of
Theorem 2). In contrast, our method works in exponential
time (more precisely, in logarithmic calls to an NP oracle)
and polynomial space w.r.t. data complexity.

There exist some heuristics-based methods for repairing
DL-based ontologies. Schlobach [25] proposed an approxi-
mate approach to computing a subset of axioms whose re-
moval corrects an unsatisfiable concept or an incoherent
TBox. Dolby et al. [4] exploited summarization and refine-
ment techniques to compute a subset of assertions whose
removal turns an inconsistent ontology consistent. Their
proposed methods, however, cannot guarantee minimality
for the set of removed axioms/assertions.

There also exist some methods for revising problematic
axioms (e.g., [19, 13, 16, 23]). But they cannot be adapted
to revising assertions, because assertions are assumed atomic
in our work. We only consider the deletion of assertions.

As for dealing with inconsistency in DL-based ontologies,
there is another approach that simply avoids/tolerates the
inconsistency and applies a non-standard reasoning method
to obtain meaningful answers (e.g., [11, 17]). We can also
adapt our method to this approach, by defining a consistent
consequence of an inconsistent ontology as a consequence
invariant under all minimum cost diagnoses. This is out of
the scope of this paper and is not discussed here.

3. PRELIMINARIES

3.1 SHIQ and DL-Lite
The SHIQ description logic [10] is a syntactic variant of

OWL DL [22] without nominals and concrete domain spec-
ifications, but allowing qualified number restrictions.

A SHIQ RBox KBR is a finite set of transitivity axioms
Trans(R) and role inclusion axioms R � S, where R and S
are roles. Let �∗ be the reflexive transitive closure of {R �
S, Inv(R) � Inv(S) | R � S ∈ KBR}, where Inv(R) = R−

and Inv(R−) = R for a role R. A role S is simple if there is
no role R such that R �∗ S and either Trans(R) ∈ KBR or
Trans(Inv(R)) ∈ KBR. The set of SHIQ concepts is the
smallest set containing �, ⊥, A, ¬C, C �D, C 
D, ∃R.C,
∀R.C, ≤n S.C and ≥n S.C, where A is a concept name (i.e.
an atomic concept), C and D SHIQ concepts, R a role, S a
simple role, and n a positive integer. A SHIQ TBox KBT
is a finite set of concept inclusion axioms C � D, where C
and D are SHIQ concepts. A SHIQ ABox KBA is a set
of concept assertions C(a), role assertions R(a, b), equality
assertions a ≈ b and inequality assertions a �≈ b, where C
is a SHIQ concept, R a role, and a and b individuals. A
SHIQ ontology KB is a triple (KBR, KBT , KBA), where
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KBR is an RBox, KBT a TBox, and KBA an ABox. In
this paper, by KB we simply denote (KBR, KBT , KBA)
if there is no confusion.

DL-Lite [2] is a sub-language of SHIQ. The set of DL-
Lite concepts is the smallest set containing A, ∃R, ∃R−, ¬B
and C1 �C2, where A is a concept name, R a role name, B
a basic concept (i.e. a concept of the form A, ∃R or ∃R−),
and C1 and C2 DL-Lite concepts. ∃R is actually an un-
qualified existential restriction ∃R.�. A DL-Lite ontology
KB = (KBT , KBA) consists of a TBox KBT and an ABox
KBA. KBT is a finite set of inclusion axioms B � C and
functionality axioms (func R) and (func R−), where B is a
basic concept, C a DL-Lite concept and R a role. KBA is
a set of concept assertions B(a) and role assertions R(a, b),
where B is a basic concept, R a role, and a and b individuals.

The semantics of a SHIQ ontology KB is given by a
mapping π that translates KB into first-order logic. Due to
space limitation, we refer readers to [12] for the definition
of π. KB is said to be consistent/satisfiable if there exists
a first-order model of π(KB). The semantics of a DL-Lite
ontology KB can still be given by the same mapping π,
because a functionality axiom (func R) is a syntactic variant
of � �≤1 R.�. Note that the unique name assumption
(UNA) [1] on individuals is applied in DL-Lite but not in
SHIQ. UNA can be explicitly axiomatized by appending
to the ABox all inequality assertions a �≈ b for any two
individuals a and b that have different URIs.

In our work we assume that all concept assertions are at-
tached to atomic concepts only, due to the following reasons.
First, the representation of non-atomic concept assertions
is not supported by the RDF/XML syntax of OWL (cf.
http://www.w3.org/TR/owl-ref), which is the main syn-
tax for representing DL-based ontologies nowadays. Sec-
ond, a non-atomic concept assertion C(a) can be reduced to
an atomic one by replacing C(a) with Q(a) and appending
C ≡ Q to the TBox, where Q is a new atomic concept.

3.2 Disjunctive Datalog
A disjunctive datalog program with equality [6] P is a finite

set of rules without function symbols of the form A1 ∨ . . . ∨
An ← B1, . . . , Bm (where Ai and Bi are atoms). Each rule
must be safe, i.e., each variable occurring in a head atom
Ai must occur in some body atom Bj . For a rule r, the
set of head atoms is denoted by head(r), whereas the set
of body atoms is denoted by body(r). A rule r is called a
constraint if |head(r)| = 0; a fact if |body(r)| = 0. An atom
is called negated if it leads with negation-as-failure. Typical
definitions of a disjunctive datalog program, such as [6], al-
low negated atoms in the body. In our work, negated atoms
cannot occur in a transformed program that we consider, so
we omit negation-as-failure from the definitions. Disjunc-
tive datalog programs without negation-as-failure are often
called positive programs.

The set of all ground instances of rules in P is denoted
by ground(P ). An interpretation M of P is a subset of
ground atoms in the Herbrand base of P . An interpreta-
tion M is called a model of P if (i) body(r) ⊆ M implies
head(r) ∩M �= ∅ for each rule r ∈ ground(P ), and (ii) all
atoms from M with the equality predicate ≈ yield a con-
gruence relation, i.e. a relation that is reflexive, symmetric,
transitive, and T (a1, . . . , ai, . . . , an) ∈ M and ai ≈ bi ∈ M
imply T (a1, . . . , bi, . . . , an) ∈ M for each predicate symbol
T in P . P is said to be satisfiable if it has a model.

3.3 Reducing SHIQ to Disjunctive Datalog
Since SHIQ is a subset of first-order logic, SHIQ ax-

ioms can first be translated into logical formulas, then into
clausal form. The resulting clauses can be represented as dis-
junctive rules without negation-as-failure. However, due to
possible skolemization steps in the clausal form translation,
the resulting rules may contain function symbols. Standard
logic program engines, however, may not terminate in the
presence of function symbols. To cope with this problem,
Hustadt et al. [12, 21] developed the KAON2 transforma-
tion method to get rid of function symbols without losing
ABox consequences.

The method reduces a SHIQ ontology KB to a positive
disjunctive datalog program DD(KB) = Γ(KBR, KBT ) ∪
Ξ(KBA) ∪ Δ(KB). Γ(KBR, KBT ) is a set of disjunctive
datalog rules computed from the intensional part of KB by
translating SHIQ axioms into clauses, adding logical con-
sequences, and translating clauses into disjunctive datalog
rules. Ξ(KBA) is a set of facts translated from KBA, where
each inequality assertion (of the form a �≈ b) is translated
into a ground constraint (of the from ← a ≈ b), and other
assertions are directly translated into ground facts. Δ(KB)
is a set of facts of the form HU(a),HU(af ) and Sf (a, af ),
which are introduced to remove function symbols and in-
stantiated for each individual a occurring in KB and each
function symbol f .

Theorem 1 ([21]). For KB a SHIQ ontology, KB is
unsatisfiable if and only if DD(KB) is unsatisfiable.

4. MINIMUM COST DIAGNOSIS
Given a possibly inconsistent SHIQ ontology KB in which

some assertions are removable and assigned removal costs,
our goal is to find a subset of removable assertions whose
removal turns KB consistent and in which the sum of re-
moval costs is minimum. Such subset is called a minimum
cost diagnosis, formally defined below.

Definition 1. Let KB be a possibly inconsistent SHIQ
ontology and RKB ⊆ KBA a set of removable assertions
such that each assertion α ∈ RKB is given a removal cost
c(α) > 0. Then, a subset of assertions R ⊆ RKB is called a
diagnosis for KB w.r.t. RKB if (KBR, KBT , KBA \ R) is
consistent. A diagnosis R is called a minimum cost diagnosis
for KB w.r.t. RKB if there is no diagnosis R′ for KB w.r.t.
RKB such that

∑
α∈R′ c(α) <

∑
α∈R c(α). R is simply called

a diagnosis/minimum cost diagnosis if KB and RKB are
clear from the context.

We consider the time complexity for finding a minimum
cost diagnosis. Complexity results in this paper refer to data
complexity, i.e. the complexity measured as a function of
the number of assertions in the ontology. Theorem 2 shows
that, unless P=NP, there is no polynomial time algorithm
for finding a minimum cost diagnosis for a DL-Lite ontology
KB w.r.t. KBA. It implies that the problem of finding
minimum cost diagnoses for SHIQ ontologies is in general
intractable.

Theorem 2. Given a positive integer k and a possibly
inconsistent DL-Lite ontology KB = (KBT , KBA) where
each assertion α ∈ KBA is given a removal cost c(α) = 1,
deciding if there is a diagnosis R for KB w.r.t. KBA such
that

∑
α∈R c(α) ≤ k is NP-hard w.r.t. data complexity.
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Proof. Given an arbitrary instance I of the SAT prob-
lem, we transform it into an instance I ′ of the given decision
problem. Let I be the formula f = C1 ∧ . . . ∧ Cm with m
clauses and n boolean variables x1, . . . , xn. We construct I ′

as follows. (1) KBT consists of the following axioms:
∃T � ¬∃S, ∃T− � ¬∃S−, (func T−), (func S−).

(2) For each boolean variable xi in f , KBA contains a cor-
responding constant ai. (3) For each clause Cj contain-
ing nj literals lj,1, . . . , lj,nj whose corresponding constants
in KBA, introduced in (2), are aj,1, . . . , aj,nj respectively,
KBA contains a corresponding constant cj for Cj and nj

assertions U(aj,1, cj), . . . , U(aj,nj , cj), where U(aj,k, cj) is
T (aj,k, cj) if lj,k is positive, or S(aj,k, cj) otherwise. (4) Let
k =

∑m
j=1(nj − 1).

Now we prove that f is satisfiable if and only if there is a
diagnosis R for KB = (KBT , KBA) w.r.t. KBA such that∑

a∈R c(a) ≤ k, i.e., |R| ≤ k. (⇒) Since f is satisfiable,
for each clause Cj there is a literal lj,k assigned true. We
append to R all assertions in KBA of the form U(aj,p, cj)
(p �= k), where U(aj,p, cj) is T (aj,p, cj) if lj,p is positive, or
S(aj,p, cj) otherwise. Clearly, R is a diagnosis for KB w.r.t.
KBA such that |R| ≤ k. (⇐) Suppose R is a diagnosis for
KB w.r.t. KBA such that |R| ≤ k. It is not hard to see
that any set of assertions of the form U(aj,k, cj) (U is either
T or S) must have exactly nj − 1 assertions in R and one in
KBA \R. To see that f is satisfiable, for each U(aj,k, cj) ∈
KBA \ R (j = 1, . . . , m), if U is T , we assign xj,k (i.e. the
corresponding variable of aj,k in f) true; otherwise we assign
xj,k false. The above (partial) assignment on {x1, . . . , xn} is
consistent and ensures lj,k = true for all j = 1, . . . , m. Thus
f is satisfiable.

Since the construction of KB is accomplished in PTIME
and the SAT problem is NP-complete, and since KBT has
a fixed size, this theorem follows.

5. COMPUTING MINIMUM COST
DIAGNOSES

As analyzed in related work, a method that computes
minimum cost diagnoses based on minimal conflict sets is
impractical, because it may require both exponential time
and exponential space. We thus consider methods that need
not compute minimal conflict sets. A näıve method is the
black-box method, which searches minimum cost diagnoses
over all subsets of removal assertions by applying a DL rea-
soner to check diagnoses. However, the black-box method
cannot compute a minimum cost diagnosis for a DL-Lite
ontology in polynomial calls to a DL reasoner, otherwise a
minimum cost diagnosis can be computed in PTIME w.r.t.
data complexity, contradicting Theorem 2. In order to find
a practical computational method, we consider transforming
the input ontology KB into a positive program Π such that
for any subset S of RKB the set of removable assertions,
KB \ S is consistent if and only if Π ∪ {assign(α−) = 1 |
α ∈ S} ∪ {assign(α−) = 0 | α ∈ RKB \ S} is satisfiable,
where α− is a fresh ground atom corresponding to ground
atom α in Π, and assign(β) denotes the 0-1 truth value of β.
Then, a minimum cost diagnosis corresponds to a valuation
of X such that

∑
α−∈X c(α) · assign(α−) is minimum and Π

is satisfiable, where X = {α− | α ∈ RKB}.
To find such a valuation of X, we need to handle pseudo-

boolean constraints (PB-constraints) of the form
∑

i cixi ≤ d
with constants ci, d ∈ Z and variables xi ∈ {0, 1}, or a linear

optimization function of the form minimize
∑

i cixi with
constants ci ∈ Z and variables xi ∈ {0, 1}, where Z denotes
the integer domain. The SAT problems with PB-constraints
and linear optimization functions are well studied in the SAT
community (cf. http://www.cril.univ-artois.fr/PB07/).
A SAT problem with linear optimization functions can be
translated into a set of SAT problems with PB-constraints.
A SAT problem with PB-constraints can be either solved
by standard SAT solvers after translating PB-constraints to
SAT clauses [5], or solved by extended SAT solvers that
support PB-constraints natively (e.g., PUEBLO [28]).

Now, the remaining problems are how to transform a
SHIQ ontology to the intended positive program and how
to efficiently compute minimum cost diagnoses. We address
these problems in the following subsections.

5.1 Constructing a Repair Program
Given a possibly inconsistent SHIQ ontology KB, we

first employ the KAON2 transformation method [12, 21],
described in Preliminaries, to reduce KB to a disjunctive
datalog program DD(KB) = Γ(KBR, KBT ) ∪ Ξ(KBA)
∪ Δ(KB), but introduce a special treatment. The original
KAON2 transformation method allows equality atoms (of
the form X ≈ Y or a ≈ b, where X, Y denote variables and
a, b denote constants) to occur in rule bodies in DD(KB)
while disallows inequality atoms (of the form X �≈ Y or
a �≈ b) to occur in DD(KB). To handle inequality assertions
in a similar way as other assertions, we first move equality
atoms (X ≈ Y or a ≈ b) in any rule body in DD(KB) to the
corresponding rule head and replace them with inequality
atoms (X �≈ Y or a �≈ b), then append to DD(KB) a con-
straint ← X ≈ Y, X �≈ Y (written R�≈), so that Ξ(KBA) is
simplified to a direct translation from assertions in KBA to
ground facts in DD(KB). Having such treatment we simply
denote Ξ(KBA) as KBA. The modified rules in DD(KB)
are still safe due to the restricted form of the original rules
that have equality atoms in the body. In essence, our treat-
ment views an inequality atom as an ordinary one and does
not impact the satisfiability of DD(KB). Then, we convert
DD(KB) to a repair program R(KB) defined below. Intu-
itively, the decision atom α− is introduced to weaken KB,
so that α− = true (resp. α− = false) implies that α is re-
moved from (resp. kept in) KB. Note that decision atoms
in R(KB) are treated as nullary ground atoms.

Definition 2. For KB a possibly inconsistent SHIQ on-
tology and RKB ⊆ KBA a set of removable assertions such
that each assertion α ∈ RKB is given a removal cost c(α) >
0, a repair program of KB w.r.t. RKB , written R(KB), is
a disjunctive datalog program converted from DD(KB) as
follows: for each assertion α ∈ RKB , we introduce a corre-
sponding decision atom α− and give it a cost c(α−) = c(α),
then replace the ground fact α in DD(KB) with α∨α−. We
simply call R(KB) a repair program if RKB is clear from
the context.

Example 2. Let A, E, H , P , S, T , me and pa abbre-
viate Artificer, Engineer, Human, Professor, Student,
Teacher, mentor and parent respectively. Given a SHIQ
ontology KB = (∅, KBT , KBA), where KBT = {S �≤1

me � ∃me.P � H , H � ∀pa.H , P � E, ∃me.E � ¬A,
E � ¬T} and KBA = {S(s1), S(s2), me(s1, t1), me(s1, t2),
A(s2), T (t1), T (t2), T (p1), E(p2), pa(s1, p1), pa(s2, p1), t1 �≈
t2, p1 ≈ p2}, and a set of removable assertions RKB =
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{S(s2), A(s2), T (t1), T (t2), E(p2), t1 �≈ t2, p1 ≈ p2} such
that c(α) = 1 for each assertion α ∈ RKB , we construct the
repair program R(KB) as follows.

First, by applying the KAON2 transformation method
with our special treatment, we reduce KB to DD(KB) =
Γ(KBR, KBT ) ∪ {R�≈} ∪KBA ∪Δ(KB), where Δ(KB) =
{Sf (s1, s1f ), Sf (s2, s2f ), Sf (t1, t1f ), Sf (t2, t2f ), Sf (p1, p1f )}
and Γ(KBR, KBT ) = {R1, . . . , R9} as given below.

R1: Y1 ≈ Y2 ← S(X), me(X,Y1), me(X, Y2).

R2: P (Xf )← S(X), Sf (X, Xf ).

R3: me(X, Xf )← S(X), Sf (X, Xf ).

R4: H(X)← S(X).

R5: H(Y )← H(X), pa(X, Y ).

R6: E(X)← P (X).

R7: ← A(X),me(X, Y ), E(Y ).

R8: ← T (X), E(X).

R9: ← A(X), S(X).

Then, by introducing decision atoms and converting ground
facts in DD(KB), we obtain R(KB) = {R1, . . . , R9, R�≈}∪
Δ(KB) ∪ {S(s1), me(s1, t1), me(s1, t2), T (p1), pa(s1, p1),
pa(s2, p1), S(s2) ∨ S(s2)

−, A(s2) ∨ A(s2)
−, T (t1) ∨ T (t1)

−,
T (t2) ∨ T (t2)

−, E(p2) ∨ E(p2)
−, (t1 �≈ t2) ∨ (t1 �≈ t2)

−,
(p1 ≈ p2) ∨ (p1 ≈ p2)

−}.
There exists a correspondence between minimum cost di-

agnoses for KB w.r.t. RKB and X-MC models of R(KB),
where X = {α− | α ∈ RKB} (see Theorem 3). A model
M of a positive program P is called an X-MC model of P
if there is no model M ′ of P such that

∑
β∈M′∩X c(β) <

∑
β∈M∩X c(β), where X is a set of ground atoms and c is a

predefined cost function over X.

Theorem 3. Let KB be a SHIQ ontology, RKB ⊆ KBA
a set of removable assertions such that each assertion α ∈
RKB is given a removal cost c(α) > 0, R(KB) a repair
program of KB w.r.t. RKB , and X = {α− | α ∈ RKB}.
(Soundness) For each X-MC model M of R(KB), {α |
α− ∈M} is a minimum cost diagnosis for KB w.r.t. RKB;

(Completeness) For each minimum cost diagnosis R for KB
w.r.t. RKB, there exists an X-MC model M of R(KB) such
that R = {α | α− ∈M}.
Proof sketch. (Soundness) Let M be an X-MC model

of R(KB), R = {α | α− ∈M} and M ′ = M \ {α−|α ∈ R}.
It can be shown that M ′ is a model of DD(KB)\R. By The-
orem 1, R is diagnosis of KB w.r.t. RKB . Further, R must
be a minimum cost diagnoses, otherwise it can be shown that
there exists a model M ′′ ofR(KB) s.t.

∑
α−∈M′′∩X c(α−) <

∑
α−∈M∩X c(α−).
(Completeness) Let R be a minimum cost diagnosis for

KB w.r.t. RKB . By Theorem 1, DD(KB) \R is satisfiable
and thus has a model, say M . It can be shown that M ′ =
M ∪ {α− | α ∈ R} is a model of R(KB). Further, M ′

must be an X-MC model of R(KB), otherwise it can be
shown that there exists a diagnosis R′ for KB w.r.t. RKB

s.t.
∑

α∈R′ c(α) <
∑

α∈R c(α).

5.2 Computing X-MC Models
By Theorem 3, the problem of finding minimum cost di-

agnoses for KB w.r.t. RKB is reduced to the problem of
computing X-MC models of R(KB), which can be realized
by applying SAT solvers. However, SAT solvers take a pos-
itive propositional program as input and do not distinguish

equality atoms from other atoms. To treat the equality pred-
icate ≈, which is interpreted as a congruence relation, as
an ordinary predicate, we use a well-known transformation
from [8]. For a disjunctive datalog program P , let P≈ denote
the program consisting of the rules stating that the equal-
ity predicate is reflexive, symmetric and transitive, and the
replacement rules given below, instantiated for each predi-
cate T in P (excluding ≈) and each position i. Note that
the reflexive rule is not safe and is instead represented as a
set of ground facts of the form a ≈ a, instantiated for each
constant a in P . Then, appending P≈ to P allows to treat
≈ as an ordinary predicate.

T (X1, . . . , Yi, . . . , Xn)← Xi ≈ Yi, T (X1, . . . , Xi, . . . , Xn).

For the input issue, we need to ground R(KB) before
applying SAT solvers. A well-known grounding technique is
intelligent grounding (IG) [7], which only applies to equality-
free disjunctive datalog programs. That is, if the equality
predicate ≈ is present in a disjunctive datalog program P ,
we must append P≈ to P before grounding P using the IG
technique. The IG technique has been implemented in a dis-
junctive datalog engine DLV [18], but the current implemen-
tation cannot handle large disjunctive datalog programs due
to memory limitation1, especially when the equality predi-
cate is present. On the other hand, current implementa-
tions of SAT solvers lack scalability for large propositional
programs. To address these problems, we develop two disk-
based algorithms for grounding R(KB) to Π(KB) and for
partitioning Π(KB) to disjoint subprograms respectively, so
that the computation of minimum cost diagnoses can be sep-
arately performed over each subprogram.

Algorithm 1 is our algorithm for grounding a repair pro-
gram P . By Mdef we denote the unique minimal model of
the definite fragment of P , i.e. {R ∈ P | |head(R)| = 1}. C
is actually the set of congruence classes {C1, . . . , Cm} occur-
ring in P , where Ci = {b | a ≈ b ∈ Mdef} for an arbitrary
constant a occurring in some equality atom in Mdef that is
not of the form a ≈ a. fc(a, C) denotes the congruence class
in C that contains constant a. minc(C) denotes the con-
stant a ∈ C having the smallest value in {occ(a) | a ∈ C},
where occ(a) is the occurrence order of a in P . Ddef is
actually a set of non-equality atoms in Mdef such that for
each non-equality atom T (a1, . . . , ak) ∈Mdef , there exists a
unique ground atom T (b1, . . . , bk) ∈ Ddef such that for each
i = 1, . . . , k, ai and bi are either the same or together in
some C ∈ C. D is the set of ground atoms occurring in the
grounded program Π.

Let S and S′ be two sets of ground atoms. S≈ denotes the
subset of S consisting of all equality atoms in S; S\≈ denotes
S \ S≈. For a rule R, the function GetSubstitutes(R, S,
S′) returns the set of all ground substitutes σ such that
body(Rσ) ⊆ S, head(Rσ)\≈ ∩ S′ = ∅ and head(Rσ)≈ does
not contain equality atoms of the form a ≈ a. The function
Rewrite(S, C) rewrites all constants a in S such that fc(a, C)
exists to minc(fc(a, C)), and returns the modified S.

The algorithm consists of three steps. Step 1 (lines 1–13)
computes Mdef in a standard iterative manner, but repre-
sents Mdef as Ddef and C. Step 2 (lines 14–16) rewrites
the constants occurring in disjunctive ground facts (of the
form α ∨ α−) in P , because some constants occurring in α

1The current implementation with DB support, DLVDB

(http://www.mat.unical.it/terracina/dlvdb/), does not
work with DBs if the input program has disjunctions.
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are represented by other constants in step 1. At a word, in
step 1 and step 2, all constants in a congruence class are
replaced with a same constant, so as to reduce the number
of instantiated rules in step 3. Step 3 (lines 17–26) grounds
P+, i.e. P ∪ P≈ excluding the definite ground facts, in a
standard iterative manner based on Mdef . Each instanti-
ated rule r such that head(r) ∩Mdef �= ∅ is ignored (line
22), because r has no impact on computing models of P . If
a �≈ b ∈ Ddef , the equality atom a ≈ b in an instantiated
rule head is not appended to D (line 24), because it cannot
occur in any model of P . The ground atoms in Mdef are
removed from the body of any instantiated rule (lines 25–
26), because they are in every model of P . Note that the
function GetSubstitutes can be realized by applying a SQL
engine and its results can be stored in disk, so the algorithm
is disk-based. In what follows, by Π(KB) we denote the
grounded repair program returned by Ground(R(KB)).

Algorithm 1. Ground(P )
Input: A repair program P .
Output: A set C of sets of constants and a positive propositional

program Π.
1. C := ∅; Ddef := ∅; D′

def := {⊥}; // to enforce Ddef �= D′
def

2. while Ddef �= D′
def do

3. D′
def := Ddef ;

4. for each rule R ∈ P s.t. |head(R)| = 1 do
5. Θ := GetSubstitutes(R, Ddef , Ddef );
6. for each σ sequentially retrieved from Θ do
7. Ddef := Ddef ∪ head(Rσ)\≈ ;

8. if head(Rσ)≈ = {a ≈ b} for some constants a and b
that are not together in some C ∈ C then

9. if fc(a, C) does not exist then Set fc(a, C) as {a};
10. if fc(b, C) does not exist then Set fc(b, C) as {b};
11. C := fc(a, C) ∪ fc(b, C);
12. C := (C \ {fc(a, C), fc(b, C)}) ∪ {C};
13. Ddef := Rewrite(Ddef , C); // executed once for Θ

14. for each disjunctive ground fact α ∨ α− in P do
15. for each constant a in α (or α−) s.t. fc(a, C) exists do
16. Rewrite a in α (or α−) to minc(fc(a, C));
17. P+ := {R ∈ P ∪ P≈ | |head(R)| > 1 or R is non-ground};
18. Π := ∅; D := Ddef ∪ {a ≈ a | a occurs in P}; D′ := ∅;
19. while D �= D′ do
20. D′ := D;
21. for each rule R ∈ P+ do
22. Θ := GetSubstitutes(R, D, Ddef );
23. for each σ sequentially retrieved from Θ do
24. D := D ∪ head(Rσ)\≈ ∪ {a ≈ b ∈ head(Rσ)≈ | a �≈

b �∈ Ddef};
25. B := body(Rσ) \ (Ddef ∪ {a ≈ a | a occurs in Rσ});
26. Π := Π ∪ {∨ head(Rσ) ← ∧

B};
27. return (C, Π);

Example 3. Continue with Example 2. We now demon-
strate how Ground(R(KB)) works. In step 1, we compute
the unique minimal model Mdef ofR(KB)def in an iterative
manner, obtaining C = {{t1, t2, s1f}} and Ddef = {S(s1),
me(s1, t1), T (p1), pa(s1, p1), pa(s2, p1), Sf (s1, t1), P (t1),
H(s1), H(p1), E(t1), Sf (s2, s2f ), Sf (t1, t1f ), Sf (t1, t2f ),
Sf (p1, p1f )}. In step 2, according to C, we replace the set of
disjunctive ground facts in R(KB) with {S(s2) ∨ S(s2)

−,
A(s2) ∨ A(s2)

−, T (t1) ∨ T (t1)
−, E(p2) ∨ E(p2)

−, (t1 �≈
t1) ∨ (t1 �≈ t1)

−, (p1 ≈ p2) ∨ (p1 ≈ p2)
−}. In step 3, we

ground R(KB) ∪ R(KB)≈ (excluding the definite ground

facts) in an iterative manner, obtaining a propositional pro-
gram Π(KB) = {r1, . . . , r22}, where r14 is instantiated from
← X ≈ Y, X �≈ Y (i.e. R�≈), r15, . . . , r20 are instantiated
from R(KB)≈. Note that for instantiating a rule that con-
tains X ≈ Y in the body, we only consider all ground sub-
stitutes σ such that occ(Xσ) ≤ occ(Y σ), where occ(a) is the
occurrence order of constant a in R(KB).
r1 : S(s2) ∨ S(s2)

−. r2 : A(s2) ∨A(s2)
−.

r3 : (t1 �≈ t1) ∨ (t1 �≈ t1)
−. r4 : T (t1) ∨ T (t1)

−.
r5 : (p1 ≈ p2) ∨ (P1 �≈ p2)

−. r6 : E(p2) ∨E(p2)
−.

r7 : P (s2f )← S(s2). r8 : me(s2, s2f )← S(s2).
r9 : H(s2)← S(s2). r10 : E(s2f )← P (s2f ).

r11 :← A(s2), me(s2, s2f ), E(s2f ). r12 :← T (t1).
r13 :← A(s2), S(s2). r14 :← t1 �≈ t1.

r15 : p2 ≈ p1 ← p1 ≈ p2. r16 : T (p2)← p1 ≈ p2.
r17 : E(p2)← p1 ≈ p2, E(p1). r18 : pa(s1, p2)← p1 ≈ p2.
r19 : E(p1)← p1 ≈ p2, E(p2). r20 : pa(s2, p2)← p1 ≈ p2.
r21 :← E(p1). r22 :← T (p2), E(p2).

Algorithm 2. Partition(Π, X)
Input: A positive propositional program Π and a set X of ground

atoms occurring in Π.
Output: A set of disjoint subprograms of Π.
1. Set map(α) as 0 for all ground atoms α occurring in Π;
2. Move constraints in Π in front of other rules in Π; k := 0;
3. repeat
4. merged := false;
5. for each rule r sequentially retrieved from Π s.t. head(r) =
∅ or map(α) > 0 for all α ∈ head(r) \X do

6. for each α ∈ head(r) ∪ body(r) s.t. map(α) = 0 do
7. k := k + 1; map(α) := k;
8. if |map(r)| > 1 then
9. merged := true; minid := min(map(r));
10. for each α ∈ head(r)∪ body(r) do map(α) := minid;
11. until not merged;
12. for i = 1, . . . , k do
13. Πi := {r ∈ Π | ∀α ∈ head(r) ∪ body(r) : map(α) = i};
14. return {Πi �= ∅ | 1 ≤ i ≤ k};

Algorithm 2 is our algorithm for partitioning a positive
propositional program Π based on a set X of ground atoms
occurring in Π. The basic idea is to filter out rules that have
no impact on M ∩X when constructing an X-MC model M
of Π and put together remaining rules that have common
ground atoms to form disjoint subprograms. In the algo-
rithm, each ground atom α occurring in Π is mapped to a
partition identifier map(α). For a rule r, we use map(r)
to denote {map(α) | α ∈ head(r) ∪ body(r)}. To simplify
explanation, we call a rule r ∈ Π ready if head(r) = ∅ or
map(α) > 0 for all α ∈ head(r) \X. Before a ground atom
is detected in some ready rule, it is mapped to 0 (line 1). To
process ready rules as early as possible, constraints (which
are ready rules) are moved in front of other rules in Π (line
2). Then, {map(α) | α occurs in Π} is adjusted in an itera-
tive manner until {map(r) | r ∈ Π} reaches a fixpoint (lines
3–11). Each ground atom α first detected in ready rules is
initially mapped to a unique partition identifer (lines 6–7).
All ground atoms in a ready rule r are mapped to the same
partition identifier (lines 8–10). After the loop is finished,
all ready rules in Π mapped to the same partition identifier
are put together, yielding a set of nonempty subprograms
{Πi}1≤i≤n (lines 12–13).
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It can be seen that the number of iterations (lines 3–11)
is at most |Π|, because the mapping adjustment (lines 9–10)
ensures that in each iteration, a ready rule rm having the
smallest value of min(map(r)) among {r ∈ Π | r is ready
and |map(r)| > 1} must reach a state that |map(rm)| = 1
and that map(rm) is unchanged in subsequent iterations.
Furthermore, Π0 = Π\⋃n

i=1 Πi is the intended set of filtered
rules (see Lemma 1); Πi and Πj contain no common ground
atoms for all 1 ≤ i < j ≤ n. Since Π is sequentially accessed
in each iteration, the algorithm is also disk-based.

Lemma 1. Let P be the set of subprograms returned by
Partition(Π, X) and Π0 = Π \ ⋃P. For any X-MC
model M of

⋃P, M ′ = M ∪ ⋃
r∈Π0
{α ∈ head(r) | α �∈

X, map(α) = 0} is an X-MC model of Π such that M ∩X =
M ′ ∩X.

Proof. Let M0 =
⋃

r∈Π0
{α ∈ head(r) | α �∈ X, map(α) =

0}. Since M0 ∩head(r) �= ∅ for every r ∈ Π0, M ′ = M ∪M0

satisfies every rule in Π0. Moreover, since map(α) > 0 for
every ground atom α occurring in

⋃P , M0 ∩M = ∅ and
thus M ′ still satisfies every rule in

⋃P as M . It follows that
M ′ is a model of Π. Since M0 ∩ X = ∅, M ′ is an X-MC
model of Π such that M ∩X = M ′ ∩X.

Example 4. Continue with Example 3. Let X� be the set
of ground atoms of the form α− in Π(KB). We now demon-
strate how Partition(Π(KB), X�) works. We first move
r11, . . . , r14, r21, r22 in front of other rules in Π(KB), then
map each ground atom in Π to a partition identifier. In the
first iteration for processing rules r ∈ Π, map(r) is set as
follows (for every ground atom α, αj:k denotes map(α) = j
before processing r at line 8 in Algorithm 2, and map(α) = k
after the first iteration).
r11 :← A(s2)1:1, me(s2, s2f )2:1, E(s2f )3:1. r12 :← T (t1)4:4.

r13 :← A(s2)1:1, S(s2)5:1. r14 :← (t1 �≈ t1)6:6.
r21 :← E(p1)7:7. r22 :← T (p2)8:7, E(p2)9:7.
r1 : S(s2)1:1 ∨ S(s2)

−
10:1. r2 : A(s2)1:1 ∨A(s2)

−
11:1.

r3 : (t1 �≈ t1)6:6 ∨ (t1 �≈ t1)
−
12:6. r4 : T (t1)4:4 ∨ T (t1)

−
13:4.

r5 : (p1 ≈ p2)14:7 ∨ (p1 ≈ p2)
−
15:7. r6 : E(p2)8:7 ∨E(p2)

−
16:7.

r7 : P (s2f )0:1 ← S(s2)1:1. r8 : me(s2, s2f )1:1 ← S(s2)1:1.
r9 : H(s2)0:0 ← S(s2)1:1. r10 : E(s2f )1:1 ← P (s2f )17:1.

r15 : (p2 ≈ p1)0:0 ← (p1 ≈ p2)14:7.
r16 : T (p2)8:7 ← (p1 ≈ p2)14:7.
r17 : E(p2)8:7 ← (p1 ≈ p2)8:7, E(p1)7:7.
r18 : pa(s1, p2)0:0 ← (p1 ≈ p2)7:7.
r19 : E(p1)7:7 ← (p1 ≈ p2)7:7, E(p2)7:7.
r20 : pa(s2, p2)0:0 ← (p1 ≈ p2)7:7.

In the second iteration, it is detected that |map(r)| = 1 for
all ready rules r ∈ Π, so the loop is finished. Finally we
obtain four disjoint subprograms from the resulting map-
ping: Π1 = {r11, r13, r1, r2, r7, r8, r10}, Π2 = {r12, r4}, Π3 =
{r14, r3} and Π4 = {r21, r22, r5, r6, r16, r17, r19}.

In what follows, we call a ground atom of the form α−

a translated decision atom. Let C be the set of congru-
ence classes returned by Ground(R(KB)), and {Πi}1≤i≤n

the set of subprograms returned by Partition(Π(KB), X�),
where X� is the set of translated decision atoms occurring
in Π(KB). We intend to compute X-MC models of R(KB)
over each of {Πi}1≤i≤n, where X is the set of decision atoms
occurring in R(KB). However, some decision atoms are re-
placed with other atoms in

⋃n
i=1 Πi, because all constants in

a congruence class in C are replaced with a same constant.

Let X ′ be the set of translated decision atoms occurring in⋃n
i=1 Πi. X ′ is said to be soundly converted from X w.r.t. C

if each ground atom T (a1, . . . , ak)− ∈ X ′ has been given a
cost c′(T (a1, . . . , ak)−) =

∑
T (b1,...,bk)−∈X,b1

.
=Ca1,...,bk

.
=Cak

c(T (b1, . . . , bk)−), where bi
.
=C ai means that constants bi

and ai are the same or together in some C ∈ C. Such conver-
sion is reasonable because all decision atoms T (b1, . . . , bk)−

∈ X such that b1
.
=C a1, . . . , bk

.
=C ak for some T (a1, . . . , ak)−

∈ X ′ must be present or absent together in every model of
R(KB). Moreover, given a subset S of X ′, we define a decod-
ing of S w.r.t. X and C, written d(S,X, C), as {T (b1, . . . , bk)−

∈ X | T (a1, . . . , ak)− ∈ S, b1
.
=C a1, . . . , bk

.
=C ak}. Then,

a minimum cost diagnosis of KB corresponds to a disjoint
union of models in each subprogram (see Theorem 4).

Example 5. Continue with Example 4. Let X be the set
of decision atoms in R(KB). In

⋃4
i=1 Πi, the set of ground

atoms soundly converted from X w.r.t. C = {{t1, t2, s1f}}
is X ′ = {S(s2)

−, A(s2)
−, (t1 �≈ t1)

−, T (t1)
−, (p1 ≈ p2)

−,
E(p2)

−}, where each ground atom α− ∈ X ′ is given a cost
c′(α−) = 1 except that c′(T (t1)

−) = 2. Let Xi (i = 1, . . . , 4)
be the subsets of X ′ that occur in Πi. It is easy to see that
Π1 has two X1-MC models M1,1 = {S(s2)

−, A(s2)} and
M1,2 = {S(s2), A(s2)

−, P (s2f ), me(s2, s2f ), E(s2f )}; Π2

has a unique X2-MC model M2 = {T (t1)
−}; Π3 has a unique

X3-MC model M3 = {(t1 �≈ t1)
−}; Π4 has two X4-MC

models M4,1 = {(p1 ≈ p2)
−, E(p2)} and M4,2 = {E(p2)

−,
p1 ≈ p2, T (p2)}. Hence, d(M1,1 ∩ X1, X, C) = {S(s2)

−};
d(M1,2∩X1, X, C) = {A(s2)

−}; d(M2∩X2, X, C) = {T (t1)
−

T (t2)
−}; d(M3∩X3, X, C) = {(t1 �≈ t2)

−}; d(M4,1∩X4, X, C)
= {(p1 ≈ p2)

−}; d(M4,2 ∩X4, X, C) = {E(p2)
−}. By The-

orem 4, we obtain four minimum cost diagnoses for KB
w.r.t. RKB : {S(s2), T (t1), T (t2), t1 �≈ t2, p1 ≈ p2}, {A(s2),
T (t1), T (t2), t1 �≈ t2, p1 ≈ p2}, {S(s2), T (t1), T (t2), t1 �≈ t2,
E(p2)} and {A(s2), T (t1), T (t2), t1 �≈ t2, E(p2)}.

Theorem 4. For KB a SHIQ ontology and RKB ⊆
KBA a set of removable assertions such that each asser-
tion α ∈ RKB is given a removal cost c(α) > 0, suppose
Ground(R(KB)) returns (C, Π(KB)) and Partition(Π(KB),
X�) returns {Πi}1≤i≤n, where X� is the set of translated de-
cision atoms occurring in Π(KB). Let X ′ be the set of trans-
lated decision atoms occurring in

⋃n
i=1 Πi which is soundly

converted from X = {α− | α ∈ RKB}, and X1, . . . , Xn be
the subsets of X ′ that occur in Π1, . . . , Πn respectively.

(Soundness) For each Xi-MC model Mi of Πi (i = 1, . . . , n),
{α | α− ∈ ⋃n

i=1 d(Mi ∩Xi, X, C)} is a minimum cost diag-
nosis for KB w.r.t. RKB;

(Completeness) For each minimum cost diagnosis R for KB
w.r.t. RKB, there exists an Xi-MC model Mi of Πi (i =
1, . . . , n) such that R = {α | α− ∈ ⋃n

i=1 d(Mi ∩Xi, X, C)}.
Proof sketch. (Soundness) For i = 1, . . . , n, let Bi be

the set of ground atoms occurring in Πi and Mi an Xi-
MC model of Πi. Let Π0 = Π(KB) \ ⋃n

i=1 Πi and M =
⋃

r∈Π0
{α ∈ head(r) | α �∈ X� ∪ ⋃n

i=1 Bi} ∪ ⋃n
i=1(Mi ∩ Bi).

Let M ′ be the set of ground atoms derived by applying all
rules in R(KB)≈ over M ∪ {a ≈ b | a and b are together
in some C ∈ C}, and M+ = M ∪M ′. It can be seen that⋃n

i=1 d(Mi ∩Xi, X, C) = M+ ∩X. It can further be shown
that M+ is an X-MC model of R(KB). By Theorem 3,
{α|α− ∈ ⋃n

i=1 d(Mi ∩Xi, X, C)} = {α|α− ∈M+} is a mini-
mum cost diagnosis for KB w.r.t. RKB .
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(Completeness) Let R be a minimum cost diagnosis for
KB w.r.t. RKB . By Theorem 3, there exists an X-MC
model M of R(KB) s.t. R = {α|α− ∈ M}. Let M ′ be
a set of ground atoms converted from M by rewriting each
constant a in M s.t. fc(a, C) exists to minc(fc(a,C)). It
can be shown that Mi = M ′ ∩Bi is an Xi-MC model of Πi

(i = 1, . . . , n) s.t. R = {α | α− ∈ ⋃n
i=1 d(Mi∩Xi, X, C)}.

By Theorem 4, the problem of finding minimum cost diag-
noses for KB w.r.t. RKB is reduced to n subproblems, each
of which computes Xi-MC models of Πi (i = 1, . . . , n). We
consider computing Xi-MC models of Πi by applying SAT
solvers that support PB-constraints. We assume that the
cost of each atom in Xi has been scaled to a positive integer
polynomial in |X| the total number of removable assertions.
Then, the first Xi-MC model of Πi can be computed by a bi-
nary search (within range [0,

∑
β∈Xi

c′(β)]) for the minimum

value vmin such that Πi ∪ {∑β∈Xi
c′(β) · assign(β) ≤ vmin}

is satisfiable, taking O(log2

∑
β∈Xi

c′(β)) = O(log2 |X|) calls

to a SAT solver. LetM = {M ∩Xi |M is a previously com-
puted Xi-MC model of Πi}. Then a next Xi-MC model M
of Πi, such that M ∩ Xi �= S for every S ∈ M, can be
computed as a model of Πi ∪ {∑β∈Xi

c′(β) · assign(β) ≤
vmin}∪{← ∧

β∈S β | S ∈M}, by calling a SAT solver once.
Consider the time complexity for computing minimum

cost diagnoses. Under the data complexity assumption, the
number of non-ground rules in R(KB) and the number of
different variables in each rule in R(KB) are bounded by
constants. Thus the number of rules in Π(KB) is polyno-
mial in |KBA|. It follows that Ground(R(KB)) is executed
in PTIME. Let X� be the set of translated decision atoms
occurring in Π(KB). Partition(Π(KB), X�) commits at
most |Π(KB)| iterations over Π(KB), so it is executed in
PTIME too. Let n be the number of removable assertions
in KB and {Πi}1≤i≤m be the set of propositional programs
returned by Partition(Π(KB), X�). Note that the SAT
problem with a PB-constraint is NP-complete. Since Πi and
Πj have no common ground atoms for all 1 ≤ i < j ≤ m, m
calls to a SAT solver over Π1, . . . , Πm respectively amount to
one call to an NP oracle over

⋃m
i=1 Πi. Under the assump-

tion that each removal cost has been scaled to a positive
integer polynomial in n, it follows from Theorem 4 that, the
first minimum cost diagnosis is computed in O(log2 n) calls
to an NP oracle, and a next one, in one more call.

6. EXPERIMENTAL EVALUATION
We implemented the proposed method for computing min-

imum cost diagnoses in GNU C++. In the implementation,
MySQL is used as the back-end SQL engine; ABox asser-
tions and new ground atoms derived in the grounding pro-
cess are maintained in a SQL database; All ground substi-
tutes of rules, retrieved via SQL statements, are maintained
in disk files; The SAT solver MiniSat+ [5], which supports
PB-constraints and linear optimization functions by inter-
nally translating them into SAT clauses, is applied to com-
pute X-MC models. All the experiments were conducted on
a 3.2GHz Pentium 4 CPU 2GB RAM PC running Windows
XP and Cygwin.

6.1 Test Ontologies and Preparations
Semintec2 is an ontology about financial services, created

2http://www.cs.put.poznan.pl/alawrynowicz/

Table 1: The complexity of test ontologies
NC NR NI NA Nr Features

S 59 16 17,941 65,291 221 EQ13,DS0

H 27 49 82,095 154,110 159 EQ7,DS7

L1 86 34 50,253 120,274 168 EQ2,DS0

L10 86 34 629,568 1,293,286 168 EQ2,DS0

Note: S stands for Semintec. H stands for HumanCyc−. L1
stands for LUBM1+. L10 stands for LUBM10+. NC is the
number of concept names. NR is the number of role names.
NI is the number of individuals. NA is the number of ABox
assertions stored in MySQL databases. Nr is the number
of rules transformed from the intensional part. The features
show how many special transformed rules: EQn means there
are n equality rules (i.e. rules containing equality atoms);
DSn means there are n disjunctive rules.

in the SEMINTEC project at the University of Poznan. Its
intensional part contains functional roles and disjointness
constraints.

HumanCyc3 is an ontology on human metabolic pathways
and human genome, created by the SRI International cor-
poration. Since its intensional part contains nomimals and
concrete domain specifications (e.g., a role range is of some
datatype, a concrete role is functional, etc.) that cannot
be handled by our method, we converted nominals to new
atomic concepts and deleted concrete domain specifications.
The weakened intensional part still contains disjunctions,
functional roles/restrictions and disjointness constraints.

LUBM4 is a benchmark ontology developed at the Lehigh
University [9]. Since its intensional part has no functional
roles, number restrictions or disjointness constraints, which
implies that it cannot be inconsistent, we extended it by
adding a functional role headOf and an inverse functional
role isTaughtBy, where headOf (resp. isTaughtBy) is also
defined as an inverse role of isHeadOf (resp. teacherOf),
and adding disjointness constraints X � ¬NonX for each
existing concept name X, where NonX is a new concept
name. LUBM comes with an ABox generator. Let LUBMn
denote the ontology obtained from the generator by setting
the number of universities to n.

Before testing the proposed method, the intensional parts
of the above ontologies were offline transformed to datalog
programs using the KAON2 DL reasoner5. Each transfor-
mation was performed in less than one second. Moreover,
ABox assertions of the above ontologies were stored into
MySQL databases, where duplicated ABox assertions were
removed. Table 1 summarizes the complexity of the test on-
tologies and the datalog programs transformed from their
intensional parts, where HumanCyc− denotes the weakened
HumanCyc, and LUBMn+ denotes the extended LUBMn.

We developed a tool, called Injector, to inject a given
number of conflicts into an ontology. Given a consistent
ontology KB and a number ncnf of conflicts to be injected,
Injector first deduces into KB all atomic concept assertions
that are consequences of KB, then injects ncnf conflicts one
by one. Let SF R denote the set of functional/inverse func-

semintec.htm
3http://humancyc.org/
4http://swat.cse.lehigh.edu/projects/lubm/
5http://kaon2.semanticweb.org/
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tional roles, SDC denote the set of atomic concepts that have
disjoint concepts. To inject a conflict, Injector randomly
selects an entity in SF R∪SDC . In case an functional role R is
selected, if there exist role assertions over R in KB, Injec-
tor randomly selects one, say R(a, b), and appends R(a, c)
and b �≈ c to KB, where c is a new individual; otherwise,
Injector appends R(a, b), R(a, c) and b �≈ c to KB, where
a, b, c are new individuals. In case an inverse functional role
R is selected, Injector treats it as R−. In case an atomic
concept C is selected, if there exist concept assertions over
C in KB, Injector randomly selects one, say C(a), and
appends D(a) to KB for a randomly selected disjoint con-
cept D of C; otherwise, Injector appends C(a) and D(a)
to KB, where a is a new individual and D a randomly se-
lected disjoint concept of C. Injector was implemented in
JAVA, using the Pellet [29] API to deduce all atomic concept
assertions that are consequences of a consistent ontology.

6.2 Experimental Results
We injected different number of conflicts to the four test

ontologies using Injector, obtaining a set of inconsistent
ontologies. We consider the hardest case where all asser-
tions in an obtained ontology are assumed removable. We
assume that each assertion is given a removal cost 1. In
order to make the implemented system terminate in an ac-
ceptable time, we set a time limit of 20 minutes for one call
to MiniSat+.

The test results are reported in Table 2. In each block,
the first row lists ncnf , i.e. the number of injected conflicts;
the second row lists the total execution time for computing
the first minimum cost diagnosis, starting from transform-
ing the input ontology. For Semintec and HumanCyc−, the
implemented system cannot handle more injected conflicts
in our test environment, because when ncnf = 140 for Sem-
intec (or ncnf = 60 for HumanCyc−), some call to MiniSat+

exceeds the time limit. In contrast, the implemented system
scales well on LUBM1+/LUBM10+ ontologies with increas-
ing number (from 1000) of conflicts.

We also collected runtime statistics on the partitioning
process. Let KB be an inconsistent ontology reported in Ta-
ble 2. As can be seen, the number of rules in each grounded
repair program Π(KB) is up to millions. In addition, the
number of decision atoms in Π(KB) is at least in thousands.
We experimentally verified that any Π(KB), without being
partitioned, cannot be handled by MiniSat+ because the ex-
ecution exceeds the time or memory limit. This shows the
importance of the partitioning process.

Other statistics show the effectiveness of the partition-

ing process. The percentage of filtered rules, |Π0|
|Π(KB)| , is at

least 11% for all reported ontologies (esp., at least 57% for
LUBM10+ ontologies). The number of disjoint subprograms
of Π(KB) (i.e. the number of partitions), #{Πi}, increases
when the number of conflicts increases. This shows that the
partitioning process improves the scalability.

Table 2 also reports the maximum number of ground rules
in each partition, max(|{Πi}|), and the maximum number
of translated decision atoms in each partition, max(|{Xi}|).
It can be seen that the total execution time is roughly dom-
inated by max(|{Πi}|) and max(|{Xi}|). For Semintec and
HumanCyc−, since max(|{Xi}|) is up to tens of thousands,
the execution of MiniSat+ over the largest partition quickly
exceeds the time limit when the number of conflicts increases
(as max(|{Πi}|) increases too). In contrast, for LUBM1+

Table 2: Test results against different number of
conflicts ncnf

Semintec
ncnf 40 60 80 100 120

Time (sec) 53 191 155 298 1144
|Π(KB)| 159K 241K 230K 371K 636K

|Π0|
|Π(KB)| 73.8% 45.1% 53.1% 35.8% 24.9%

#{Πi} 25 31 40 49 57
max({|Πi|}) 11K 66K 76K 152K 393K
max({|Xi|}) 7054 16114 14687 20241 18794

HumanCyc−

ncnf 10 20 30 40 50
Time (sec) 428 326 531 412 867
|Π(KB)| 598K 607K 620K 604K 639K

|Π0|
|Π(KB)| 26.0% 25.6% 25.1% 25.7% 24.4%

#{Πi} 5 7 10 19 21
max({|Πi|}) 443K 451K 465K 449K 483K
max({|Xi|}) 68155 68159 68175 68181 68197

LUBM1+

ncnf 1000 2000 3000 4000 5000
Time (sec) 202 387 554 814 1010
|Π(KB)| 537K 978K 1490K 2306K 2877K

|Π0|
|Π(KB)| 41.9% 25.9% 18.7% 13.3% 11.4%

#{Πi} 886 1766 2696 3645 4606
max({|Πi|}) 43K 146K 120K 244K 540K
max({|Xi|}) 808 859 895 901 898

LUBM10+

ncnf 1000 2000 3000 4000 5000
Time (sec) 736 851 1070 1250 1618
|Π(KB)| 3893K 4111K 4165K 4338K 4753K

|Π0|
|Π(KB)| 82.3% 70.8% 65.8% 62.8% 57.3%

#{Πi} 963 1860 2713 3605 4423
max({|Πi|}) 26K 24K 31K 43K 34K
max({|Xi|}) 810 1571 1961 2610 1393

Note: |Π(KB)| is the number of rules in the grounded repair

program Π(KB). |Π0|
|Π(KB)| is the percentage of rules filtered

out in our partitioning algorithm. #{Πi} is the number of
partitions. max({|Πi|}) is the maximum number of ground
rules in each partition. max({|Xi|}) is the maximum number
of translated decision atoms in each partition.

and LUBM10+, since max(|{Πi}|) or max(|{Xi}|) is stable
around a relatively small value, the total execution time in-
creases smoothly when the number of conflicts increases.

We can conclude that the performance of our method de-
pends on the effectiveness of the partitioning process. As
for what influences such effectiveness when the number of
assertions and the number of conflicts are fixed, we can see
from Table 1 and Table 2 that, equality rules have a stronger
impact than normal rules; further, disjunctive rules have a
stronger impact than equality rules. Hence, we believe that
our method can handle any real (populated) ontology that
has up to millions of assertions together with a moderately
complex intensional part, which can be transformed to up
to hundreds of datalog rules with a few disjunctive rules and
equality rules.
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7. CONCLUSION AND FUTURE WORK
A DL-based ontology may become inconsistent after it is

populated. In this paper, we proposed a solution to repair
the populated ontology by deleting assertions in a minimum
cost diagnosis. We first showed the intractability of finding
a minimum cost diagnosis, then presented an exact method
for computing minimum cost diagnoses for SHIQ ontolo-
gies. The method transforms a SHIQ ontology to a set of
disjoint propositional programs in PTIME w.r.t. data com-
plexity, thus reducing the original problem into a set of inde-
pendent subproblems. Each such subproblem computes an
X-MC model and is solvable by applying SAT solvers. We
experimentally showed that the method can handle moder-
ately complex ontologies with over thousands of assertions,
where all assertions can be assumed removable. Especially,
the method scales well on the extended LUBM ontologies
with increasing number (from 1000) of conflicts.

For future work, we plan to enhance our method to cope
with concrete domain specifications, seek feasible approaches
to handling nomimals, and work on tractable approximate
methods for computing minimum cost diagnoses.
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