WWW 2008 / Refereed Track: Security and Privacy - Web Client Security April 21-25, 2008 - Beijing, China

SessionLock:
Securing Web Sessions against Eavesdropping

Ben Adida
Center for Research on Computation and Society (CRCS), Harvard University
Children’s Hospital Informatics Program (CHIP), Harvard Medical School
Cambridge, MA, USA
ben@eecs.harvard.edu

ABSTRACT

Typical web sessions can be hijacked easily by a network
eavesdropper in attacks that have come to be designated
“sidejacking.” The rise of ubiquitous wireless networks, often
unprotected at the transport layer, has significantly aggra-
vated this problem. While SSL can protect against eaves-
dropping, its usability disadvantages often make it unsuit-
able when the data is not considered highly confidential.
Most web-based email services, for example, use SSL only
on their login page and are thus vulnerable to sidejacking.

We propose SessionLock, a simple approach to securing
web sessions against eavesdropping without extending the
use of SSL. SessionLock is easily implemented by web devel-
opers using only JavaScript and simple server-side logic. Its
performance impact is negligible, and all major web browsers
are supported. Interestingly, it is particularly easy to imple-
ment on single-page AJAX web applications, e.g. Gmail or
Yahoo mail, with approximately 200 lines of JavaScript and
60 lines of server-side verification code.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Authentication

General Terms

Design, Human Factors, Security

1. INTRODUCTION

The core component of the World Wide Web, HTTP [6],
began its life as a stateless protocol: the page’s HTML and
all images were each downloaded using a new HTTP re-
quest made over its own TCP/IP connection. To provide a
personalized user experience, early web “sessions” were im-
plemented using tokens inserted into individual URLs, so
that every click would send this session token back to the
server. The tediousness of this approach and the fact that
a new browser window would not automatically inherit this
token made web sessions fairly unreliable.

In 1995, Netscape introduced cookies, small chunks of
data that a web server can assign to a browser using HTTP
return headers, which the browser is expected to send back
to the server on every subsequent request. Using cookies,

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.

WWW 2008, April 21-25, 2008, Beijing, China.

ACM 978-1-60558-085-2/08/04.

517

the web was made stateful. Over the years, in order to pro-
tect users’ security and privacy, the details of cookie han-
dling have become quite intricate, but the basic function-
ality remains: the server assigns the browser a token, and
the browser sends this token back to that specific server on
every subsequent request.

Web sessions are vulnerable to eavesdropping. A static
token sent over a plaintext channel is obviously insecure: a
network eavesdropper can easily read this token and replay
it to tap into the victim’s session, effectively impersonating
the user for the length of the session. Interestingly, web
sessions have not evolved much since the first days of web
cookies: they remain quite vulnerable to eavesdropping.

Wi-fi networks make things worse. Wireless (“wi-fi”) net-
works are now ubiquitous. Though wireless standards pro-
vide for password-based access-control and transport-layer
encryption, wireless base stations found in hotels, conference
lobbies, coffee shops, and airports are configured without
this level of protection. Users connect freely to the wireless
base station, and only then are asked to provide login cre-
dentials. This approach allows wireless operators to manage
per-user password-based access control, rather than a single
password for the wireless base station.

In this setting, eavesdropping on HTTP traffic and steal-
ing web session tokens is so easy that it has recently re-
ceived a new name: “sidejacking” [9]. Numerous common
web applications, including most online webmail providers,
are vulnerable to these trivial eavesdropping attacks.

SSL is not for everyone. One way to prevent eavesdrop-
ping is to use SSL to encrypt all web traffic. This approach is
employed by financial institutions that cannot afford to have
their clients’ web sessions hijacked so trivially (or their cus-
tomers’ financial data read as easily as sniffing the network).
When traffic is encrypted, an eavesdropper is powerless.
Unfortunately, delivering a web application over SSL trig-
gers numerous complications. Even with significant server-
side computational power, SSL’s caching behavior, its need
to download a complete resource and verify it before dis-
playing any part of it, and its all-or-nothing nature result in
a significantly more “sluggish” experience for the user.
Services like Gmail, Yahoo, Hotmail, Facebook could eas-
ily afford to deploy SSL: all of them use SSL to secure users’
password at login time, acceleration hardware for SSL makes
the server-side computational overhead quite manageable,
and Gmail happily lets adventurous users access their mail

WWW 2008 / Refereed Track: Security and Privacy - Web Client Security April 21-25, 2008 - Beijing, China

at https://google.com/mail/. However, likely because of
the usability issues described above, all have chosen to de-
liver the bulk of their features over plain HTTP, leaving
session tokens available for any eavesdropper to hijack.

Better security without SSL. We propose SessionLock, a
method to improve the security of plain HTTP sessions. We
use SSL in exactly the same way that Gmail, Yahoo, Hot-
mail, and Facebook already do: only to set up the session.
In addition to the session identifier, we generate a session
secret which is never sent over plain HT'TP. This session se-
cret is used by the browser to generate an authentication
code for every HTTP request. The secret is passed from the
HTTPS login page to the HTTP portion of the site, and
from one page to another under HTTP, by way of the URL
fragment identifier. Thus, although all URLs after login are
requested over HT'TP, the secret is never sent in plaintext
over the network. Details are shown in Figure 1.

With SessionLock, the properties of HT'TP, including pro-
gressive rendering of images and efficient caching, are pre-
served. With only private-data-containing URLs affected,
images, scripts, stylesheets can all be delivered over HTTP
without additional overhead, exactly as they are delivered
today without SessionLock.

We implemented SessionLock using only a small JavaScript
library and a simple server-side filter on protected requests.
No browser add-on is required, and all major modern browsers
are supported: web applications like Gmail can deploy this
solution immediately, with very little code, and no action
(or even awareness) required of their users.

Getting Closer to User Intuition. 1t is relatively intuitive
for average users to understand that unencrypted wireless
traffic can be “overheard”: browsing over HTTP at a confer-
ence is a bit like having a private phone conversation on a
crowded bus, where your neighbors might easily catch snip-
pets. Session hijacking, on the other hand, is quite unintu-
itive: after all, login pages are usually served using SSL, the
padlock icon is visible in the browser, and the average user
would be justified in thinking that her session is safe from
attackers. One goal of SessionLock is to make sure that real-
ity matches this intuition more closely: having one’s HTTP
traffic overheard is still a concern, but having one’s session
hijacked is not.

1.1 This Paper

In Section 2, we review the current approaches that web
developers can take to secure their users’ sessions. In Section
3, we consider the simple SessionLock building blocks, and in
Section 4 we describe SessionLock in detail. In Section 5, we
consider some immediate extensions to the basic scheme. We
evaluate implementation and performance issues in Section
6, highlight a number of points for discussion in Section 7,
and review related work in Section 8.

2. CURRENT PRACTICES

Though techniques for maintaining web sessions have evolved

since the early days of the Web, they have remained surpris-
ingly stable.
2.1 Web Sessions

Maintaining web session state requires having the web
client provide some unique identifier to the web server on

every request, so that the server can identity each HTTP
request more precisely. The earliest solution to this prob-
lem required the server to dynamically embed this unique
token in every URL of every HTML page. A number of web
development frameworks still offer a way to automate this
URL-token embedding.

Since Netscape 1.1 in 1995, web browsers support cookies,
which allow a web server to send, in an HTTP response, a
special header:

Set-Cookie: session_id=8b3xdvdf3jg;

This header can also specify a number of additional fields,
including:

e an expiration date,

e a secure flag, indicating whether this cookie should
only be sent back over SSL,

e the domain, so that foo.example.com and example.com
can share cookies if they so choose,

e the path, so that different sections of a site, e.g. /foo/*
and /bar/* can have different cookies.

On every subsequent request, the web client will include
all the pertinent name-value pairs it has received from that
specific server. The security of these data is highly depen-
dent on the transport layer: cookies sent over HTTP are
easily accessible to a network eavesdropper.

2.2 Digest Authentication

HTTP offers protocol-level authentication, including the
particularly interesting digest mode [7], which all modern
browsers now support. In digest auth, just like in plain
auth, the web browser provides a distinct user interface to
prompt the user for her username and password. Unlike in
plain auth, digest auth provides a challenge-response mech-
anism for sending along the password, which ensures that
a network eavesdropper cannot extract the password. Web
services could use digest auth as a way to secure sessions
against eavesdropping.

Unfortunately, HT'TP-based authentication has been shunned

by most web services for a number of reasons [18]:

1. The HTTP-password-entry user interface cannot be
customized or integrated into a more complete form,
making it difficult for users to proceed if they’ve forgot-
ten their password or want to register a new account.

2. On the server side, authentication is handled by the
HTTP stack which must have direct access to a user-
name/password database, since it needs to handle the
challenge-response before handing over processing to
the application code.

3. The server cannot easily trigger a logout, for example
after some period of inactivity.

As a result, HTTP authentication, even in digest mode, is
not likely to provide a deployable defense against eavesdrop-
ping.

2.3 Locking Sessions to IP Address

One natural reaction to the eavesdropping problem is to
bind web sessions to the user’s IP address at the time of
session initiation: if a session token is received from a dif-
ferent IP address, the web server can prompt the user to

WWW 2008 / Refereed Track

Web Server

: Security and Privacy - Web Client Security April 21-25, 2008 - Beijing, China

| —

>

Web Browser

Loads #[8bncn3kdf] from fragment
and stores in JavaScript scope.

Loads #[8bncn3kdf] from fragment
and stores in JavaScript scope.

Locally adds timestamp and
computes HMAC
on clicks and form submits.

Locally adds timestamp and
computes HMAC
on clicks and form submits.

Figure 1: The SessionLock Protocol: An initial SSL exchange sets up the session secret, which is passed from
HTTPS to HTTP, and then from one HTTP page to the next, using the fragment identifier. Note how the
use of the fragment identifier effectively creates a client-only channel from one page to the next. Each HTTP
request is then timestamped and HMAC’ed with this secret for authentication. SSL portions are noted in
green. The secure cookie stays around in case the secret needs to be recovered and resent into the HTTP

realm (a process not represented here.)

re-authenticate. Unfortunately, especially in our important
wi-fi use case, many users surf the web behind a Network
Address Translator so that many users are effectively using
the same IP address. In our specific use case, the attacker on
the same wi-fi network is, by default, already using the same
external IP address as the victim. From the point of view of
the server, if an attacker can steal a victim’s cookie behind a
network router, there is no detectable difference between the
victim and the attacker, and IP-address-binding is useless.

24 SSL

SSL provides end-to-end encryption between the web server
and browser, clearly foiling passive eavesdroppers. Unfortu-
nately, SSL requires more work on the server side and, more
importantly, triggers a number of sub-optimal behaviors on
the client side.

An SSL server must run on its own IP address (no virtual
hosting), because the SSL certificate handshake occurs be-
fore the browser is able to specify a virtual hostname [2] *.
In addition, an SSL server must deliver all resources, includ-
ing static graphical layout elements that typically require no
protection, under computationally intensive SSL in order to
prevent browser warnings about mixed content. This typi-

!Server Name Indication (SNI), a TLS extension [4], pro-
vides support for virtually hosted secure web sites, but not
all browsers and servers support it yet.

519

cally prohibits the use of latency-reducing, geography-based
caching by content-delivery networks.

In addition, web browsers behave differently under SSL.
Resources are not cached nearly as well or as often, increas-
ing the average page load time over the course of a web
session. Resources cannot be displayed until they are fully
loaded and their signature verified, preventing progressive
loading and generally making the application feel more slug-
gish than the identical site over plain HT'TP.

As a result of these complications, especially those which
raw server computational power cannot address, a number
of common web services are delivered over plain HTTP, with
only the login page processed using SSL to protect the pass-
word. Interestingly, even if SSL is offered as an option, the
existence of a service over plain HTTP is sufficient to exploit
the weakness with a minor social engineering attack that
surreptitiously tricks the user into visiting the plain HTTP
URL, thereby leaking the cookie into an insecure network 2.

3. BUILDING BLOCKS

We now cover the SessionLock building blocks. We note
that the technical components are particularly simple and
require only a cursory explanation.

*http://seclists.org/bugtraq/2007/Aug/0070.html

WWW 2008 / Refereed Track: Security and Privacy - Web Client Security April 21-25, 2008 - Beijing, China

3.1 Fragment Identifier

The URL specification [3] defines the fragment identifier,
the portion of the URL that follows the # character. As its
name implies, the fragment identifier designates a portion of
the resource. For example, consider the following URL:

http://host/rest/of /url#paragraphd

Here, #paragraph4 is the fragment identifier. When the
primary resource, in this case http://host/rest/of/url,
is an HTML document, the fragment identifier tells the
browser to scroll the viewport to the section of the docu-
ment that reads:

<div id="paragraph4">
</div>

When no such portion of the document exists, the browser
doesn’t scroll, and the fragment identifier remains in the
URL, unused.

The fragment identifier is never sent over the network:
the browser requests the full resource and uses the fragment
identifier to scroll. In other words, the web server is never
aware of the fragment identifier to which a user navigates: a
user can click from one fragment to another within a page,
with his browser scrolling automatically to the appropriate
location, never performing any additional network request.

Though it is never sent over the network, the fragment
identifier does appear in the browser’s URL bar. As a result,
it is accessible to JavaScript code running within the page
using the command document.location.hash.

3.2 Authenticating Web Requests with HMAC

Simple message authentication between two parties with a
shared secret is easily achievable using a Message Authenti-
cation Code (MAC) [16] algorithm. In particular, HMAC [10]
is a hash-function-based message authentication technique
which is easily implemented and quite efficient in just about
any programming environment, including browser-based
JavaScript.

A number of web-based APIs, including Google APIs *
and the Facebook Platform * already use HMAC for au-
thenticating requests. Typically, web clients and the web
service share a secret. When making an HTTP request,
the client prepares the entire request including all parame-
ters and a timestamp, HMACs the full request string using
the shared secret, and appends to the request an additional
HTTP parameter whose value is the resulting HMAC. The
server verifies the timestamp and re-computes the expected
HMAC on the rest of the parameters (minus the HMAC pa-
rameter itself), checking it against the HMAC submitted by
the client. Though the same result could be accomplished
using digital signatures, HMAC is easier to set up between
two parties that share, during some setup phase, a secure
channel, and it is generally far more efficient.

4. THE SESSIONLOCK PROTOCOL
At a high level, SessionLock functions as follows:

1. At login time over SSL, the web server delivers a ses-
sion secret to the web browser.

3http://code.google. com/more/
‘http://developer.facebook.com

520

2. The web browser uses this secret token to authenticate,
using HMAC, every subsequent, time-stamped plain
HTTP request it makes.

3. The session token is never sent over the network in
the clear: it is communicated from the SSL login page
to the first plain HTTP page, and to each subsequent
plain HTTP page thereafter, using the URL fragment
identifier.

4. An attacker limited to eavesdropping capabilities never
sees the session secret and cannot generate valid HT'TP
requests on behalf of another user’s session, other than
the ones it intercepts.

We now provide additional detail for the above outline.

4.1 Generating the Secret Token

Alice visits her webmail site, example. com. She is directed
to a login page over SSL, where she enters her username
and password. The server sets up her session, sets a non-
SSL session_id cookie, then an SSL-only cookie session_
secret, and redirects Alice to

http://example.com/login/done#[session_secret]

Because this redirect command is sent to Alice’s browser
over SSL, its content is secure against eavesdropping. Then,
when Alice’s browser loads the new, non-SSL URL, the
session_secret remains secure from eavesdropping, because
it is located inside the fragment identifier and thus not sent
over the network.

4.2 Keeping the Session Secret Around

To keep the session_secret around from one page to an-
other, it must be appended as a fragment identifier to every
URL the user navigates within the web application. Impor-
tantly, this cannot be done on the server side, as it would
then be available to the eavesdropper when the HTML is
transferred over plain, unencrypted HTTP. The appending
of the session secret can only be done on the client side using
JavaScript.

Thus, upon page load, SessionLock JavaScript code tra-
verses the page, appending the fragment identifier to ev-
ery clickable link and every form target. Interestingly, in
the case of AJAX applications [8], where requests are made
in the background without clearing the page’s JavaScript
scope, it is not necessary to append the session secret to
URLs after the first page has loaded, because this first page
and its JavaScript scope stay put. In other words, it is eas-
ier to use SessionLock with an AJAX application than with
more typical page-to-page web navigation.

4.3 Timestamping and HMAC

With the session secret in JavaScript scope, we must then
ensure that every HTTP request is augmented with an HMAC.
For clickable links and form submissions, a JavaScript event
handler intercepts the user request, appends a timestamp
parameter, generates the HMAC on the entire request line,
and adds a second parameter with this HMAC as its value.
Once these modifications are done, the event proceeds as
initially requested, only with two new parameters that au-
thenticate the request to the server.

For AJAX requests, JavaScript can intercept all calls to
XMLHttpRequest to achieve exactly the same task. In this

WWW 2008 / Refereed Track: Security and Privacy - Web Client Security April 21-25, 2008 - Beijing, China

case, the additional parameters are not even reflected in the
URL bar, making SessionLock even more transparent. Once
again, it appears that SessionLock is easier to implement
with AJAX applications.

4.4 Recovering From Failure

Because of our ad-hoc approach to communicating the
session secret from one page to another, it is conceivable that
the session secret will be lost. The user might type in a URL
manually, click a bookmark, or otherwise access the service
without the session secret in the fragment identifier. To
force the user to re-login at this point would break existing
expectations for web services.

Fortunately, it is easy to recover the session secret, us-
ing an IFRAME that accesses a small SSL page that min-
imally affects the user experience. The web page, noticing
that it does not have a session secret, opens up an invisible
IFRAME with the SSL URL https://example.com/login/
recover. The document in the IFRAME is tiny:

<script language="javascript">
document.location =
‘http://example.com/login/recover#[’ +
get_cookie(‘session_secret’) + ‘]°;
</script>

(This code assumes the existence of a get_secret() func-
tion, which can be implemented in a few lines of code that
performs a regular expression match on document.cookie.)

This code, which runs in the SSL scope, simply recov-
ers the session secret from the SSL-only cookie, then redi-
rects the browser to the plain HTTP portion of the site
with the secret in the fragment identifier. This plain HTTP
page, loaded within the IFRAME, can access the secret us-
ing document.location.hash. Then, since it is now in the
same scope as the containing page, it can make a simple
procedure call to the parent frame to deliver the token and
close the IFRAME. This recovery protocol is diagrammed
in Figure 2.

5. EXTENSIONS

The basic SessionLock protocol can be extended to support
alternate use cases.

5.1 Optimizing Link Setup

The SessionLock JavaScript that traverses the DOM to
add appropriate event handlers is likely one the weakest
pieces of the puzzle, where some links may be missed and
the time taken to traverse a complicated HTML DOM may
be onerous. If the web application is built with SessionLock
in mind, then this click handler can be added explicitly in
the HTML, only on the links that explicitly need authenti-
cation:

<a href="next.html"
onclick="sessionlock_patch(this) ;">
next page

This approach will increase the size of the HTML a bit
while speeding up the JavaScript execution significantly, since
no SessionLock code is executed until the user clicks a links,
and even then only a small amount. In addition, with application-
level involvement, only links that require authentication will
be patched.

521

5.2 Local Browser Storage

The latest versions of Internet Explorer and Firefox, which
together cover about 95% of web users ®, both offer sim-
ple mechanisms for client-side data storage that is never
automatically sent over the network, respectively window.
userData and window.globalStorage. In addition, the up-
coming HTMLS5 specification [11] standardizes this JavaScript
API for client-side, domain-specific data storage along the
lines of Firefox’s implementation. Safari, the third largest
browser, is expected to implement this API, making client-
side storage a virtual certainty in the near future. In HTMLS5,
the following JavaScript code stores data:

globalStorage[‘example.com’] .session_key =
‘8xk3jsldf’;

which can later be retrieved by another page from the same
domain using the following code:

do_stuff_with_key(
globalStorage[‘example.com’] .session_key

)

Local browser storage cannot solve everything on its own:
it cannot be used to transfer the session secret from the
HTTPS session-setup URL to the HTTP post-login URL,
because those two URLs are of different origins, and client-
side data stored while at an SSL. URL cannot be read by
JavaScript from a non-SSL URL, even if they share the same
domain.

However, once the token is transferred to HTTP using the
SessionLock fragment identifier approach, it can be stored in
local session storage so that, even if a user subsequently
loses the secret token by deleting the fragment or opening
up a new browser window, the JavaScript code can easily
recover it with simple API call, instead of an IFRAME and
additional network access. Augmented with local browser
storage, the overhead of SessionLock becomes quite negligi-
ble, even in edge cases.

5.3 No SSL Whatsoever

We can implement SessionLock without any SSL, even on
the login page. On session setup the following steps are
taken:

1. the server assigns the browser a session cookie.

2. the client-side JavaScript code initiates a Diffie-Hellman
key-exchange [5] with the server, effectively generating
a shared secret between the browser JavaScript scope
and the server.

3. this shared secret becomes the HMAC key used in the
SessionLock protocol, with the server storing the se-
cret in a server-side session, and the browser passing
on the secret from one page to the next using either
the fragment identifier or the local-browser storage as
explained above.

4. if the browser loses its secret, it can re-perform a Diffie-
Hellman key exchange with the server, using a number
of XMLHttpRequest calls.

Shttp://en.wikipedia.org/wiki/Usage_share_of_web_
browsers, last visited on February 3rd 2007.

WWW 2008 / Refereed Track: Security and Privacy - Web Client Security April 21-25, 2008 - Beijing, China

http://example/foo.html http://example/foo.html

http://example/foo.html http://example/foo.html

next page

https B //example/‘:ecove‘:j

: tok = coockie('tok'"); :
| location =]
! 'http://example/ 1
\ recover#' + tok; |

missing secret token open dynamic iframe

[http://example/recoverﬂ <a OnCliCk="SlOCk(. .) "
href="next#[38b..]">
next page

I

|tok = get fragment(); :

Iwindow.parent. |

I set tok(tok); !
- I

recover token

token recovered, close frame
4

Figure 2: If the secure token is lost for any reason (1), it can be recovered from the HTTPS cookie using
a dynamically generated IFRAME (2), which looks up the cookie and redirects the IFRAME to a non-SSL
URL with the token in the fragment identifier (3), which can then pass the token back up to the calling
frame (4). In a production implementation, the IFRAME would be made invisible since the it requires no

user interaction.

The no-SSL approach is clearly less efficient at recovering
from a token loss, since a token loss requires the complete
re-generation of a new token, rather than the SSL-based re-
trieval of the existing token. This indicates that the no-SSL
approach probably shouldn’t be used unless the browser sup-
ports local storage, which significantly curtails the chance of
this token loss.

6. EVALUATION

We built a SessionLock prototype, available for demon-
stration and full source code download in the near future
at:

http://ben.adida.net/projects/sessionlock/

In this section, we review interesting details of our imple-
mentation and the associated performance of our prototype.

6.1 Implementation Details

We use a JavaScript library [13] that implements HMAC-
SHA1. Note that, while SHA1 has recently been shown to
have certain weaknesses [19], its security in an HMAC set-
ting has not been compromised. If it were to be compro-
mised, a move to SHA256 would be fairly straight-forward
and only slightly more computationally intensive.

In addition, we use a JavaScript library © that implements
robust URL parsing, so that we can dynamically insert the
SessionLock parameters into any URL, no matter how com-
plex.

Then, our custom SessionLock JavaScript library imple-
ments:

e detection and parsing of the secret token in the frag-
ment identifier,

e recovery of the secure token using an invisible IFRAME,

e timestamp-and-HMAC patches for links and forms,

e XMLHttpRequest interception for timestamping and HMAC.

e automatic traversal of the Document Object Model
(DOM) to add event handlers to hook up the link-
and-form patching.

Shttp://stevenlevithan.com

522

Hardware and Connectivity. We used a typical shared-
hosting provider, using a small portion of a quad-processor
Intel Xeon 3.2Ghz server with 4GB of RAM, located in
Houston, Texas. We tested Firefox 2.0.1, Safari 2.0.3, and
Opera 9 on a Macintosh Powerbook G4 running at 1.5Ghz
with 1.5 GB of RAM. We tested Internet Explorer 6 and 7
on Windows XP Professional running on a 1.8Ghz Intel Core
Duo with 1 GB of RAM. Both client PCs were connected via
a Comcast home broadband connection in Mountain View,
California.

6.2 HMAC Performance

We evaluated client- and server-side computational needs
for performing HMACs. We determined that, on the slowest
browser (Safari) using the specified Mac laptop, an HMAC
operation requires just under 50ms. As this is entirely client-
side computation, it is negligible and barely noticeable to the
user. On the server side, in Python, one HMAC operation
took 300us on our setup, a modest computational require-
ment compared to the average database query.

6.3 Link Patching Performance

We tested the link-and-form patching overhead on a page
with 100 links and 10 forms, and found that the worst browser
performance for page setup on the client hardware specified
above required no more than 25ms.

We note that the performance overhead on a single-page
AJAX application is negligible: only one 15-line function
definition is required, no matter how large the page.

6.4 Code Overhead

Our SessionLock-specific JavaScript library is 200 lines of
code with copious comments, before any JavaScript min-
imization. The JavaScript HMAC and URI parsing code
together take up less than 7K of code before minimization.
On the server side, which we implemented in Python, the
login logic required approximately 20 lines of code, and the
verification logic about 40 lines of code.

7. DISCUSSION
7.1 Security Model

In this work, we explicitly exclude man-in-the-middle at-
tacks, where the attacker either controls IP routing or DNS,

WWW 2008 / Refereed Track: Security and Privacy - Web Client Security April 21-25, 2008 - Beijing, China

e.g. malicious base stations and routers, DNS poisoning, etc.
We assume the attacker can eavesdrop on all network traf-
fic. We do not consider the strength of SSL encryption: our
attacker focuses on plaintext traffic and considers encrypted
traffic “unbreakable.”

Thus, we assume that anything a user browses over plain
HTTP can be read by the attacker: if a user is reading their
web-based email, the emails she reads are available to the
attacker. With SessionLock, our security expectation is that
the user cannot be impersonated by the attacker: data not
read by the user cannot be read by the attacker, and actions
not taken by the user cannot be taken by the attacker on
her behalf.

We also consider a slightly stronger attacker who, using
social engineering techniques, can trick the user into visiting
a particular URL. This may be done using a phishing-like
email or instant message. In particular, it is not enough to
rely on a user visiting the SSL version of a site if an attacker
can trick him into visiting an equally functional plain HTTP
version of the same site (without SessionLock protection.)

7.2 Effects of typical web user behavior

With the session secret now a necessary portion of naviga-
tion, we must consider the side-effects of carrying this secret
as a fragment within every page. In particular, we consider
web page reload, bookmarking, and sharing with a friend
by copy-and-paste or by posting to a social bookmarking
service. We note that these situations should happen rarely
on sites that require SessionLock, since the pages that are
protected by SessionLock are typically not ones that will
be bookmarked or shared with friends. However, it is im-
portant to begin to understand how these edge conditions
might be handled, even if we don’t handle them fully yet in
our prototype. We note, again, that none of these poten-
tial complications affect AJAX single-page applications like
Gmail.

Page Reload. Page reload is explicitly supported by Ses-
sionLock: the token stays in the URL as a fragment identi-
fier, and an onload JavaScript event handler captures it on
reload exactly the way it was captured on first load. How-
ever, if a user waits too long on a page that contains a Ses-
sionLock timestamp, it may be out of date and fail proper au-
thentication. In this case, a SessionLock web server returns a
JavaScript page that locally recreates a freshly timestamped
version of the same URL, then uses document.location.
replace to reload the page with the appropriate authen-
tication. One exception remains: reloading the result of a
POSTed form after the timestamp has expired is recoverable
only if the user is prompted to manually resubmit the form.
This can be accomplished using a JavaScript-triggered click
of the back button: history.go(-1);

Bookmarking. Bookmarking a page that uses SessionLock
will include the timestamp and HMAC at the time of the
bookmarking action. When the page is later reloaded, it
is almost certain that the timestamp will be outdated. In
this case, the SessionLock server can behave exactly as in
the page-reload case, issuing JavaScript code that, within
the browser, generates a freshly timestamped and HMAC’ed
URL.

That said, when a bookmarked page is loaded, the original
session from which that page was bookmarked is likely to

523

have expired. In this case, the web server will notice an
expired session cookie even before it checks the timestamp
and HMAC, and will redirect the user to a login page, which
should easily allow the user to log in, create a new session,
a new session secret, and a redirect to a newly timestamped
and HMACed version of the bookmarked page.

Sending to a friend, social bookmarking. If a user sends
a SessionLock-augmented link to a friend via email, or espe-
cially if she posts it to a social bookmarking site, she runs
the risk of revealing her session secret. If a recipient of this
session secret is also on the same local network and can find
her plain HTTP session_id cookie, the user’s session may
be fully compromised. Although it is unlikely that a user
would post a protected link to a social bookmarking site,
this issue merits further careful consideration.

7.3 Deployability

Simple web sites are easily upgraded to SessionLock using
our existing JavaScript toolkit that dynamically traverses
and appropriately updates links, forms, and AJAX calls.
For more complicated web sites, building from the start with
SessionLock in mind is relatively straight-forward: using sim-
ple abstraction layers can enable the easy patching of links,
forms, and AJAX calls, even when they use custom event
handlers.

Upgrading an existing, complex web site is a bit trickier
and may require a bit of re-factoring: forms and links with
existing onsubmit or onclick event handlers are particularly
difficult to patch generically, and will, in most cases, require
manual patching.

There is one interesting exception to this rule for “legacy”
web applications: AJAX-only applications that function en-
tirely within one URL, sometimes called “single-page ap-
plications” are particularly easy to patch for SessionlLock,
assuming they use XMLHttpRequest relatively consistently.
In particular, sites like Gmail 7 should be quite easy to up-
grade to SessionLock: no HTML forms or links need to be
updated, thus no DOM traversal is ever required. A single
patch to the AJAX handler suffices.

7.4 Limitations

SessionLock suffers from two important limitations that
should be carefully noted.

JavaScript Required. SessionLock is entirely dependent on
JavaScript: it simply cannot work without. Thus, Session-
Lock should be reserved for web applications that already
require JavaScript.

No Defense Against Active Attacks. SessionLock does not
protect against active network attacks. An active attacker
can trivially inject code in a plain HTTP URL, steal the
session secret and hijack the session. We make no attempt
to “fix” this issue in this work: we are solely trying to ad-
dress the “sidejacking” attack, which is far too easy to launch
without leaving a trace.

"http://gmail.com

WWW 2008 / Refereed Track: Security and Privacy - Web Client Security April 21-25, 2008 - Beijing, China

8. RELATED WORK

JavaScript Use of the Fragment Identifier. The fragment
identifier has been usurped in other ways, usually as a mech-
anism to maintain state in a single-page JavaScript web ap-
plication. S5 [17], an HTML slide presentation tool, uses the
fragment identifier to indicate which slide to display, with
the whole slideshow contained in a single HTML file. The
Dojo JavaScript toolkit [14] and other JavaScript libraries
use the fragment identifier to enable the normal forward and
back buttons in an AJAX [8] web application without full
page reloads. The first use of a fragment identifier for se-
curity purposes that we know of is BeamAuth [1], where a
bookmark including a secret token in the fragment identifier
is used to defend against phishing attacks for web authen-
tication. BeamAuth and SessionLock both use the fragment
identifier but can be made to work together, since they use
the fragment identifier at very different times.

Security in the Web Application Layer. Others have pro-
posed security protocols that make use of existing browser
features in novel ways, effectively building security into the
web application layer. Juels et al. [15] propose to use “cache
cookies” for security: the browser cache stores secret tokens
for two-channel authentication at secure sites, e.g. online
banking. Jackson and Wang [12] explore various existing
browser features to enable secure cross-domain communica-
tion for web mashups. BeamAuth [1] provides some defense
against phishing using only existing web features.

9. CONCLUSION

Using the existing HTTP fragment identifier feature to
create a secure, client-side channel between HTTPS and
HTTP, we have designed and implemented SessionLock, a
way to protect plain HTTP sessions from eavesdropping.
We believe our proposal is relatively easy to implement, es-
pecially in the case of heavily AJAX-enabled applications
such as Gmail. In fact, it appears that Gmail HTTP sessions
can be secured with minimal web-application-level code and
negligible performance overhead.

We note the appeal of solutions, like SessionLock, which
use only web-application-level modifications: they can be
deployed immediately by web developers. We hope that
exploration of improved security features using only the ex-
isting Web stack will be informative to the improvement of
the web browser as an extensible platform for security.

10. REFERENCES

[1] Ben Adida. BeamAuth: Two-Factor Web
Authentication with a Bookmark. In Fourteenth ACM
Conference on Computer and Communications
Security (CCS 2007), November 2007.

Apache Software Foundation. SSL/TLS Strong
Encryption FAQ — Apache HTTP Server.
http://httpd.apache.org/docs/2.0/ssl/ssl_faq.
html#vhosts2 last viewed on 1 November 2007.

T. Berners-Lee, R. Fielding, and L. Masinter. Uniform
Resource Identifier (URI): General Syntax, January
2005. http://www.ietf.org/rfc/rfc3986.txt.

[2

8]

524

[4] S. Blake-Wilson, M. Nystrom, D. Hopwood,

J. Mikkelsen, and T. Wright. Transport Layer Security
(TLS) Extensions.
http://wuw.ietf.org/rfc/rfc3546.txt.

Whitfield Diffie and Martin E. Hellman. New
directions in cryptography. IEEE Transactions on
Information Theory, 1T-22(6):644-654, 1976.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk,

L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transport Protocol - HTTP/1.1, 1999.
http://www.ietf.org/rfc/rfc2616.txt.

J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence,
P. Leach, A. Luotonen, and L. Stewart. HTTP
Authentication: Basic and Digest Access
Authentication, June 1999.
http://www.ietf.org/rfc/rfc2617.txt.

Jesse James Garrett. Ajax: A New Approach to Web
Applications, February 2005.
http://www.adaptivepath.com/publications/
essays/archives/000385. php.

Robert Graham. Sidejacking with Hamster, August
2007. http://erratasec.blogspot.com/2007/08/
sidejacking-with-hamster_05.html.

R. Canetti H. Krawczyk, M. Bellare. Hmac:
Keyed-hashing for message authentication, February
1997. http://tools.ietf.org/html/rfc2104.

Tan Hickson and David Hyatt. Html 5.
http://www.w3.org/html/wg/html5/.

Collin Jackson and Helen Wang. Subspace: Secure
Cross-Domain Communication for Web Mashups. In
Proceedings of the 16th international conference on
World Wide Web (WWW 2007), Banff, Canada, 2007.
Paul Johnston. A JavaScript implementation of the
Secure Hash Algorithm.
http://pajhome.org.uk/crypt/mds.

JotSpot. DojoDotBook. http://manual.dojotoolkit.
org/WikiHome/DojoDotBook/BookO.

Ari Juels, Markus Jakobsson, and Tom N. Jagatic.
Cache cookies for browser authentication (extended
abstract). In S&P, pages 301-305. IEEE Computer
Society, 2006.

Message Authentication Code. http://en.wikipedia.
org/wiki/Message_authentication_code.

Eric A. Meyer. S5: A Simple Standards-Based Slide
Show System.
http://meyerweb.com/eric/tools/s5/, last viewed
on October 26th, 2006.

Bill Venners. HTTP Authentication Woes, April 2006.
http://www.artima.com/weblogs/viewpost.jsp?
thread=155252, last visited on October 31st 2007.
Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu.
Finding Collisions in the Full SHA-1. In Victor Shoup,
editor, CRYPTO, volume 3621 of Lecture Notes in
Computer Science, pages 17-36. Springer, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

