WWW 2008 / Refereed Track: Security and Privacy - Misc

April 21-25, 2008 - Beijing, China

Better Abstractions for Secure Server-Side Scripting

Dachuan Yu Ajay Chander

Hiroshi Inamura

Igor Serikov

DoCoMo Communications Laboratories USA
3240 Hillview Avenue
_ Palo Alto, CA 94304
{yu,chander,inamura,iserikov}@docomolabs-usa.com

ABSTRACT

It is notoriously difficult to program a solid web application. Be-
sides addressing web interactions, state maintenance, and whim-
sical user navigation behaviors, programmers must also avoid a
minefield of security vulnerabilities. The problem is twofold. First,
we lack a clear understanding of the new computation model un-
derlying web applications. Second, we lack proper abstractions for
hiding common and subtle coding details that are orthogonal to the
business functionalities of specific web applications.

This paper addresses both issues. First, we present a language
BASS for declarative server-side scripting. BASS allows program-
mers to work in an ideal world, using new abstractions to tackle
common but problematic aspects of web programming. The meta
properties of BASS provide useful security guarantees. Second,
we present a language MOSS reflecting realistic web programming
concepts and scenarios, thus articulating the computation model
behind web programming. Finally, we present a translation from
BASS to MOSS, demonstrating how the ideal programming model
and security guarantees of BASS can be implemented in practice.

Categories and Subject Descriptors

D.3.1 [Programming Languages]: Formal Definitions and The-
ory; F.3.2 [Logics and Meanings of Programs]: Semantics of Pro-
gramming Languages—operational semantics; K.4.4 [Computers
and Society]: Electronic Commerce—security

General Terms

Languages, Security

Keywords

Server-side scripting, web application security

1. INTRODUCTION

Web applications face more security threats than conventional
desktop applications [7, 19]. Some representative ones include
command injection [20], cross-site scripting (XSS) [16], cross-site
request forgery (CSRF) [4], and session fixation [14]. Any of these
could cause serious consequences: sensitive user information could
be stolen, data and associated belongings could be damaged, or ser-
vice availability could be compromised.

In response to such security threats, existing languages and frame-
works for server-side scripting, as well as the web application se-

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.

WWW 2008, April 21-25, 2008, Beijing, China.

ACM 978-1-60558-085-2/08/04.

curity community, largely promote secure coding practices (e.g.,
input validation) and provide useful libraries in support (e.g., filter-
ing functions). However, there is no guarantee that programmers
will follow the recommendations correctly, if they followed them
at all. Furthermore, even if all programs are written with the se-
curity practices strictly enforced, the extra care that programmers
spend on preventing vulnerabilities much distracts from the busi-
ness functionalities. Take the implementation of online payments
as an example. To securely code a web interaction of “obtain-
ing payment details,” one must correctly perform input validation,
maintain program states across the interaction, and prevent CSRE.

Observing that many of the security issues are orthogonal to the
business logic of specific web applications, we propose some new
abstractions for writing secure server programs. These abstractions
provide an ideal view of key aspects of web programming (e.g., “to
obtain a web input”), and hide the common security handling (e.g.,
input validation, state maintenance, CSRF prevention). Using these
abstractions, a language for server-side scripting can be given a
high-level syntax and semantics that reflect secure web operations,
with the enforcement of the semantics taken care of by the language
implementation following established security practices once and
for all. As a result, all programs written in the language, although
not directly dealing with low-level security constructs, are guaran-
teed to be free of certain common vulnerabilities. In addition, now
thinking in terms of the high-level semantics, programmers can fo-
cus more on the business logic, which results in better security and
higher productivity. To some extent, the new abstractions hide se-
curity details in the same way as object creation primitives in OO
languages hide low-level memory management details.

On the technical side, this paper presents two formal models
(languages): one is an ideal model that we propose for future web
programs to be written in; the other is the real-world model that un-
derlies existing web programming. By comparing these two mod-
els side-by-side, and by formalizing a translation between them, we
argue that web programming could benefit significantly through the
use of domain-specific language abstractions. Specifically, this pa-
per makes the following contributions.

First, we identify some common aspects of web programming
that are important for security, and propose new abstractions to help
implement the corresponding tasks (Section 2). The new abstrac-
tions are rigorously presented in a self-contained formal language
BASS (“better abstractions for server-side scripting”) (Section 3).
The new BASS primitives and operational semantics shield pro-
grammers from certain malicious exploits, thus serving as an ideal
model of web programming. The security guarantees of BASS are
articulated in its formal semantics and meta properties.

Next, we formalize a language MOSS (“a model of server-side
scripting”) that reflects the programming model underlying existing

WWW 2008 / Refereed Track: Security and Privacy - Misc

Select service

Input login information

‘ Get payment details ‘ ‘ Log out‘

‘ Show balance ‘

Figure 1: Idealistic work flow of online banking

server-side scripting (Section 4). This demonstrates the complexity
of web programming and the benefit of the BASS abstractions. In
addition, MOSS is of independent value—it articulates server pro-
gram execution, attacker exploits, and client-server interactions all
within the same model, thus serving as a foundation for studies of
web programming. MOSS can be used to illustrate both secure pro-
grams and vulnerable ones. We give formal encoding of common
exploit patterns and typical attacks as an example use of MOSS.
Finally, the BASS approach to security is that the operational se-
mantics dictates “good” behaviors only, thus leaving no room for
certain attacks. A BASS compiler must carry out the operational
semantics correctly. We present a translation from BASS to MOSS
(Section 5), where the ideal BASS model is enforced using proper
MOSS primitives for security manipulations. We explain how the
security guarantees of BASS are maintained. More formal transla-
tion details are given in a companion technical report (TR) [24].

2. SERVER-SIDE SCRIPTING & SECURITY

2.1 An Ideal View

We use an online-banking example to explain what is involved in
secure server-side scripting, and how proper abstractions can help.
This application provides two services: showing the account bal-
ance (the “balance” service) and setting up a payment (the “pay-
ment” service). A user must be logged in to access the services.

Although serving multiple users, this web application logically
deals with one client at a time. In an ideal view, there are multiple
orthogonal instances of the server program running, each taking
care of a single client. Every single instance of the program can be
viewed as a sequential program of a conventional application. A
work flow graph following this ideal view is shown in Figure 1.

2.2 A Limited Mechanism

The above ideal view cannot be directly implemented, because
of some limitations of the underlying HTTP mechanism for web
interactions. In particular, there is no persistent channel for a server
program to obtain input from a client. Instead, HTTP supports a
one-shot request-response model where a client requests resource
identified by a URL, and a server responds with the resource if the
request is accepted. Using HTTP, web interactions are typically
carried out as a sequence of requests (form submissions providing
user input) and responses (web pages presenting information):

HTTP O — HTML O — HTTP1 — HTML 1 — HTTP 2 — HTML 2. ..

Using this model, a server program is often split into multiple
fragments, each taking an HTTP request and producing an HTML
response. In the response, there can be a web form with an em-
bedded URL pointing to the next fragment, so that the next request
is targeted correctly. Therefore, the work flow of our banking ap-
plication is more accurately described as in Figure 2. There are 4
program fragments connected with URL embeddings, as indicated

508

April 21-25, 2008 - Beijing, China

Prog0 Progl Prog2 Prog3
| H i P H
Send login Parse login Parse payment
form
(PC:E’rogl) Send service Send balance | | Send payment Set up payment
,,,,,,,,,,,,, form & service form form
PC=Prog2 = = - -
(- 10g2) (PC F"rog2) (PC ?rOQS) Send confirmation

& service form
(PC=Prog2)

Figure 2: Actual work flow of online banking

by the dashed lines. In particular, because the payment service re-
quires user input, the structure of the service loop in the ideal view
can no longer be coded as an explicit loop. Instead, a goto-style
structure is exhibited through URL embeddings. Such fragmenta-
tion and low-level control structures obscure the control flow.
Besides obscurity, there is a bigger issue: since HTTP is state-
less, server programs must maintain program states on their own.
In the example, the user name obtained from the login input must
be saved and restored explicitly across the later web interactions.
In addition, one must somehow correlate incoming requests with
specific clients, since multiple clients may be interacting with the
server at the same time, although in logically separate transactions.
In general, a web application needs to encode states at a level
above HTTP. Typically, a virtual concept of “a session” is used to
refer to a logical transaction. Every session is associated with a
unique ID, called SID. Saved program states and incoming client
requests are both identified by the SID. As a result, much code in
server programs is dedicated to managing sessions. Before generat-
ing a response, a server program must save state and embed the SID
in the response. Upon receiving a request, the server program must
obtain an SID from the request and load state. Based on the applica-
tion, some parts of the state should be saved on the server, whereas
others should be on the client via the cookie or URL embedding.
These routine manipulations increase program complexity, reduce
productivity, and extend the chances of programming errors.

2.3 A Dangerous World

Assuming a programmer has taken care of the above issues cor-
rectly, the result program may still not be ready for deployment.
The problem is security: clients in the real world may be malicious,
or attackers may trick innocent clients into making mistakes. In-
deed, there have been many common vulnerabilities identified. Se-
cure programming solutions exist, but a programmer must be aware
of all the issues involved and implement the related defenses. Most
of the defenses are orthogonal to the business logic of specific web
applications. Their handling further complicates server-side script-
ing. We now briefly overview some representative security issues.

CSREF: An attacker may forge a request as if it were intended by
a user. This is applicable when SIDs are stored in cookies. Given a
vulnerable banking program, CSRF can be launched if a user, while
logged in, opens a malicious email containing a crafted image link.
Trying to load the image, the user’s browser may follow the link
and send a request asking for a payment to be set up to the attacker.

XSS: An attacker may inject code into the web page that a server
program sends to a user. For example, an attacker sends to a user
a crafted link with JavaScript code embedded; when the user loads
the link, a vulnerable server program may propagate the code into
the HTML response. The code, now coming from the server, gains
the privilege of the server domain. It may then read the cookie set
by the server and send it to the attacker. There are also second-order
attacks [18] that do not require the use of forged requests.

Session fixation: An attacker may trick a user into interacting
with the server using a fixed SID. This is applicable if SIDs are

WWW 2008 / Refereed Track: Security and Privacy - Misc

embedded in URLs. A user may follow a link in an email which
claims to be from our banking site. The link takes the user to our
site, but using an SID fixed by an attacker. If the server programs
use the same SID for later interactions after the user logs in, the
knowledge of the SID will grant the attacker the user’s privileges.
Others: Many other aspects affect security [19]. Since a web
application is implemented as multiple program fragments, each
fragment is open as a service interface. An attacker could make up
requests to the interfaces without following the links in server re-
sponses. Using crafted requests, they could poison program states
(e.g., by modifying naive implementations of client-side states), in-
ject malformed input (e.g., by exploiting insufficient input valida-
tion), or circumvent work flows (e.g., by using the “back” button).
Programmers need to be aware of all these issues and follow
the relevant security practices. In the result code, business logic is
intertwined with security manipulations. Consequently, secure web
programming is difficult, and web programs are hard to maintain.

2.4 A Declarative Layer

We propose to program web applications using a language that
handles common security aspects behind the scene. This language
benefits from new abstractions designed for web programming. A
program in this language more directly reflects the business logic of
the application; therefore, it is easier to write, to reason about, and
to maintain. The language implementation (the compiler) will gen-
erate secure target code following established security practices.

Abstracting web interactions Much of the complication is due to
the need of obtaining user input. Therefore, supporting web inter-
actions is a key. We introduce a dedicated construct form for this:

form(p : “username”, q: “password”);

The intention of this is to present an HTML page to the client
and obtain some input. In a realistic deployment, such a construct
would take as argument a full-fledged HTML document. In this pa-
per, we simply let it take arguments to describe input parameters of
a web form. In the above example, the form construct presents to
the client a form with two fields: username and password. After
the client fills in the form and submits it, the £ orm construct assigns
the values of the fields to the two variables p and q.

A few issues are handled transparently by the implementation.
First, the server program is split upon a form construct, and URL
embedding is used to connect the control flow. Second, input values
are parsed from the form submission, and input validation is per-
formed according to declared variable types. Third, security prac-
tices are followed to manage sessions, maintain states, and defend
against common exploits. Details of the implementation will be
discussed in Section 5. For now, it suffices to understand this con-
struct from a programmer’s point of view as an abstract and secure
web input operation which does not break the control flow.

Supporting user navigation The form construct implicitly opens
a service interface for receiving user requests. There would be vul-
nerabilities if it were not handled properly, or if its handling were
not fully understood by the programmer. Previous work (sans secu-
rity) [3, 5, 6] on web interaction abstractions requires the interface
be “open” only once—a second request to the interface will be re-
jected. This much restricts user navigation [11, 12, 21]. In practice,
it is common for a user to return to a previous navigation stage us-
ing the “back” button. In general, the user could revisit any item
in the browser history. The validity of such an operation should be
determined by the application, rather than be dismissed all together.

We allow two modes of web interactions: a single-use mode
(forms) and a multi-use mode (formy). In the former, the inter-
face is open for request only once; revisiting the interface results

509

April 21-25, 2008 - Beijing, China

string wuser, pass, payee;
int sel, amnt;
formg(user : “username”, pass : “password”);
LoginCheck(user, pass);
while (true) do {
formy(sel : “1 : balance; 2 : payment; others : logout”);

if (sel ==1)
then ShowBalance(user)
else if (sel == 2)

then {forms(payee : “payee”;amnt : “amount”);
DoPayment(user, payee, amnt)}
else {clear;break}

Figure 3: Simple banking in BASS

in an error. In the latter, the interface remains open for future re-
quests. The semantics of BASS articulates the program behavior
in both cases; therefore, the programmer can choose the suitable
one based on the application. In either case, a request is accepted
only if it follows the intended control flow of the server program
to the interface. Consider our banking example. It is okay if the
user reached the service selection page, bookmarked it, and reused
it before logging out. However, it is not okay if the user forged a
payment request without first going through the login page.

Maintaining program states Multi-use forms are sufficient to ac-
commodate all client navigation behaviors, because any behavior
can be viewed as revisiting a point in the browser history. From
a programmer’s point of view, the program is virtually forked into
multiple parallel “threads” at a multi-use form, together with all
appropriate program state. The handling of the program state is
nontrivial. Some parts of the state could be local to the individ-
ual threads, whereas others could be global to all threads. Careless
treatment of the state may result in logical errors [12].

The exact partitioning of the state should be determined by the
application. We let programmers declare mutable variables as ei-
ther volatile or nonvolatile. In the BASS implementation, volatile
state can be stored in a database on the server across web interac-
tions, thus all forked threads refer to the same volatile state. In con-
trast, nonvolatile state (after proper protection against client mod-
ifications) can be embedded in the URLs of web forms upon web
interactions, thus every forked thread has its own nonvolatile state.

Manipulating client history Suppose the user tries to reload the
service selection page after logging out of our banking application.
The server program will receive a request that should not be pro-
cessed. In general, we need a mechanism to disable some of the
entries in the client history. In existing web applications, this is
sometimes handled by embedding special tokens into web forms
and checking them upon requests. While logging out, the server
program expires the corresponding token, thus further requests to
the service selection page will no longer be processed.

We do not wish to expose the details of token embedding to the
programmer. Instead, we introduce a clear command for a similar
purpose. From the programmer’s point of view, clear resets the
client history, so that all previously forked threads are discarded.
This corresponds to the “session timeout” behaviors of many web
applications. However, instead of thinking in terms of disabling the
token of SID, BASS encourages programmers to think in terms of
the client history. The TR discusses more general ways to manipu-
late the client history, which introduce no new difficulties.

Example revisited Figure 3 demonstrates the appeal of these ab-
stractions by revisiting our banking example. The new abstractions
provide an ideal world where there is only one client and the client

WWW 2008 / Refereed Track: Security and Privacy - Misc

World
Server Client

Code Codel Code"

Figure 4: A virtual view of the execution environment

(World) W == (X, k,R)
(Global Env) X :={d:7 =14}
(Closure) kK = (0,C) |0
(Local Env) o =={Z:7=1v}
(Type) 7T ==int]|str
(Command) C :=skip|a:=FE|xz:=E|C;C

| if E then C else C | while E do C
| forms(a:3) | formy(a:S) | clear
(Bzp) E :=a|xz|i(integers) | s (strings) | op(E)
(Value) v ==ils

Figure 5: BASS syntax

is well behaved. In the code, we obtain login information from the
client, perform login check, and proceed with a service loop. In the
loop, based on the service selection of the client, we carry out the
balance service or the payment service, or log the user out. The ser-
vice selection input is coded using a multi-use form, therefore the
user may duplicate the corresponding web page and proceed with
the two services in parallel. In addition, clear is used to disable
all service threads when the user logs out. In this example, only the
user variable is live across web interactions. Its value is obtained
from a single-use form, and will not be updated after the login pro-
cess. Therefore, it can be declared as either volatile or nonvolatile.
This code corresponds well to the work flow of Figure 1, and is
much cleaner than a version written in an existing language. More
importantly, it does not sacrifice security, because the BASS imple-
mentation will take care of the “plumbings” transparently—it will
split the program into fragments, maintain states across web inter-
actions, filter input based on variable types, and carry out relevant
security manipulations such as the embedding of secret tokens.

3. BASS

We formalize the above ideas in BASS, which provides a declar-
ative view for programmers to write secure programs without wor-
rying about the low-level details of Section 2. Assuming the se-
mantics is enforced by an implementation, all well-formed BASS
programs will be secure in a certain sense. For example, values ob-
tained from web input will have the expected types, forged requests
from attackers will be rejected, and the program control flow will
be enforced. These properties will be articulated in Section 3.3.

3.1 Syntax

Figure 4 gives a graphical depiction of the virtual execution en-
vironment of BASS. We emphasize the word “virtual” because the
view does not dictate how BASS is implemented; it simply pro-
vides a tractable world for the programmer. This world has one
server and one client. The server consists of a global environment
for volatile variables and a closure of the current execution. The
closure is made up of a local environment for nonvolatile variables
and some code. During execution, the server executes the code with
respect to the two environments. Upon a web interaction, the server
sends a proper closure to the client, and the client is then activated.

The client involves a list of closures reflecting the browsing his-
tory. When the client is active, it chooses an arbitrary closure in

April 21-25, 2008 - Beijing, China

[~ w]

Server computation: (2, k) ~ (2, k)

()~ (7,7 7) "
History clearing:
(3, (0, clear; C), k) ~ (X, (0,C),€) 2
(3, (o, clear),R) ~ (X, 0,¢€) 3)
Server response:
C € {(forms(@:5); C"), forms(a:3),
(formu(a:5); C"), formu(d:5)} 4
5 0.0, 7) ~ (5,0,[(0, O] UR) @
Client request:
Ki €R ki = (o, (formg(@:5); C))
(@:7=..)ex veT update(Z,a,v) =% 5)
(2,00,8) ~ (X', (0,C), kK — [ri])
Ki €R = (o, (forms(a:3))) ©)
Som) = Foon F— ()
W ER i = (o (form(d:9):C)
(d:7=..)€exn ve€T update(Z,a,v) =% o
(Z,00,R) ~ (X', (0,C),)
Ki € R ki = (o, (formu(a@:5))) ®

(%,00,K) ~ (2,00, R)

Figure 6: BASS operational semantics

the history, fills in the corresponding web form, and sends the re-
sult to the server. We point out that although many code pieces
appear in the closures on the client, they would actually be realized
in an implementation as program pointers embedded in the forms.
Similarly, the local environments can also be realized in forms.
Figure 5 gives the syntax. We use the vector R to refer to the
list [K1 . . . kyn]. Similar notations apply to other meta variables. A
world W is a 3-tuple (X, k, §). The first element ¥ is the global
variable environment, which is a mapping from volatile variables
to their types and values. The second element « is the closure cur-
rently active on the server. The third element & is the client history.
A closure is usually a pair of a local environment and a com-
mand. Sometimes, an environment without a command also makes
a closure, which either contains useful information or signifies ter-
mination. A local environment maps nonvolatile variables to types
and values. We assume that the names of volatile and nonvolatile
variables are disjoint. By convention, we use a, a’, a1, . . . for volatile
variables, and x, 2", x1, ... for nonvolatile variables. We use two
types: integers and strings. Booleans are simulated with integers.
Commands are common except for web interactions (f orms, formy)
and history clearing (clear) as described in Section 2.4. For con-
ciseness, web forms only input volatile variables; this does not af-
fect expressiveness, because the input values can be passed on to
nonvolatile variables with assignments. Expressions and values are
as expected. We use op to abstract over all operations free from
side-effects, such as string concatenation and comparison. We omit
function calls for space, because they introduce no new issues.

3.2 Operational Semantics

We use a big-step semantics for expressions (X;0 = E |} v).
Details are standard, thus omitted. We present in Figure 6 the
small-step execution of a world. The key concept is a “world step”

WWW 2008 / Refereed Track: Security and Privacy - Misc

ki = (04, C, Yk
Lhk Vki € { C; starts w1th formg or formy ©)
H(Z, K, R)
Xk Sko (10)
ok C (11
F(0,C)

Figure 7: Selected BASS typing rules

relation W ~» W'. A multi-step relation W ~»* W' is defined as
the reflexive and transitive closure of the world step relation.

In world step, some rules reflect server-side computation, whereas
others reflect client-side input. Rule (1) describes a server compu-
tation step by referring to a single-thread step relation (X, k) ~»
(X', k") (given in the TR). This is applicable only when the cur-
rent command starts with skip, assignment, conditional, or loop
(the single-thread step relation is undefined on other cases). If the
current command is clear, Rules (2) and (3) apply to remove all
closures from the client. In these rules and the remainder of this
paper, we use € to denote the empty vector. Upon any form com-
mands, Rule (4) applies to transfer the closure to the client. The
notation [«] U K means to combine the singleton vector [«] with &.

Client input through a single-use form is captured in Rules (5)
and (6). Note that there is no further command to execute on the
server (the closure on the server is simply o9), therefore the client
takes control. In Rule (5), the client selects the closure x; to pro-
ceed with next. This corresponds to picking an arbitrary point in the
browsing history. The client may input arbitrary values to the form,
as long as they are of the right types (¥ € 7). The global environ-
ment is updated using the macro update(X, @, U), which updates
3% so that the variables @ will have the values ©. As a the result of
the step, the global environment is updated, and the chosen client
closure is moved to the server for execution. The notation K — [£]
means to remove x; from . Rule (6) is a variant of Rule (5) where
there is no further command in the chosen closure to execute after
the form input. In this case, the chosen closure is simply removed.

Rules (7) and (8) are for client input through multi-use forms.
The difference from the single-use ones lies in the result browsing
history. For single-use forms, the selected closure is removed so
that it cannot be revisited. For multi-use forms, the history remains
the same. All client request rules are non-deterministic on closure
selection. A client may “abandon” a closure by never selecting it.

3.3 Typing Rules and Meta Properties

We give some non-standard typing rules in Figure 7. In Rule (9),
aworld (X, k, §) is well-formed if all closures (x and &) are well-
formed with respect to the global environment (2), and every clo-
sure (k;) on the client side contains code which starts with a web
form. The well-formedness of closures is defined in Rules (10)
and (11). A trivial closure o is always well-formed. A nontrivial
closure (o, C) is well-formed with respect to X if C'is well-formed
with respect to X and o. We omit the standard handling on com-
mands (3;0 F C) and expressions (X;0 F E), where types of
variables are pulled from the corresponding environments.

BASS enjoys standard type soundness via preservation and progress.

Lemma 1 (Preservation) If - W and W ~» W', then - W'.

Lemma 2 (Progress) If - W then either there exists W’ such
that W ~» W', or W is of the form (X, o, €).

511

April 21-25, 2008 - Beijing, China

Server

/4 \

Clients C, D, E, ..

Figure 8: A model of web programming

As usual, these imply that well-formed programs will execute
till termination without getting stuck. These seemingly simple the-
orems essentially guarantee that the program execution will be con-
fined by the operational semantics—only the transitions defined by
the operational semantics may occur. Therefore, all behaviors re-
flected by the operational semantics are guaranteed, including:

. The control flow will follow the high-level structures;
. Values obtained from web input will be well typed;

. Program states will be kept intact across web interactions;
. Entries in the client history will be disabled upon clear;

N AW N =

. There will be only one client interacting with the program
instance.

These free programmers from some low-level maneuvers, such as:
1. Embedding and enforcing the control flow;

. Validating the names and types of web input parameters;

. Recovering program states across web interactions;

. Addressing unexpected user navigation behaviors;

[I SRS I)

. Protecting against malicious exploits that involve multiple
clients (e.g., CSRE, first-order XSS, and session fixation).
We stress the point that the BASS approach to security is to directly
preclude questionable behaviors from the operational semantics.
BASS programmers enjoy a clean view of web programming, with
common security handling transparently taken care of by the BASS
implementation (the compiler). This enables programmers to focus
on the business logic of specific web applications, thus improving
security and productivity. Specifically on security, the BASS se-
mantics leaves no room for CSRE, first-order XSS, session fixation,
session poisoning, malformed input, and work-flow circumvention.
Of course, the semantics must be enforced by an implementation.
This is the topic of the next two sections, where we formalize a
realistic web programming model MOSS, and translate BASS into

MOSS so that the BASS semantics is faithfully carried out.

4. MOSS

MOSS articulates server program execution and client behaviors.
It reflects realistic web interactions, and can be used to illustrate
both well-behaved client activities and malicious exploits. We will
explain how concepts in MOSS correspond to real-world entities.

4.1 Syntax

A graphical depiction of the model is given in Figure 8. On the
server, there are a group of programs collaborating to implement
the desired application logic. They access and update data that be-
long to multiple clients. The server interacts with multiple clients
simultaneously, although in separate logical transactions. Every
client has its own cookie, and maintains a list of forms as the brows-
ing history. Although forms are expected to be obtained from the

WWW 2008 / Refereed Track: Security and Privacy - Misc

(World) W == (%, i, @)
(Global Env) % == {[r:J],[f = (@) >C]"}
(Session Env) ¢ u={d =¥}
(Closure) k == (i,v,0,C)| (v,5)
(Local Env) ¢ =={Z=7v}
(Client) @ == (v,¢)
(Form) ¢ u:=form f(§d=v)withv¢
(Sealed) ¢ == (F=7)
(Command) C :=sk|a—FE|C;C]|cond(E,C,C)
| 1oop(E, C) | f(E) | input(E) | setCk(E)
| unpack(E) | verif(E, 7) | err
(Exp) E u=a|z|i (integers) | s (strings) | op(E)
| {E} | in(E,E) | ins(E,E) | del(E,E)
| form f(5d=¥) withE | getCk()
| ¥ | pack() | ¢ (tokens) | newTk()
(Value) v,wu=i|s|{v}|o|v]¢

(BASS T'ype)

T u=int|str

Figure 9: MOSS syntax

server through web interactions, a client may also forge a form on
its own (e.g., Form, and Formy). This reflects real-world exploits
where a client makes up an HTTP request without going through
the intended application logic. In addition, a malicious client B
may trick an innocent client A by inserting a form from B’s history
(part of which may be forged) into A’s history (e.g., Form,). In the
real-world counterpart, an attacker may send crafted links to a vic-
tim in an email; sometimes, these links are image links that may be
automatically loaded by a browser.

Whereas the virtual environment in Figure 4 provides an ideal
view for the programmer, the model in Figure 8 reflects real-world
web application scenarios, where server programs interact with and
maintain data for multiple clients, who are no longer always well-
behaved. To implement secure web applications in this model, the
server programs need special primitives for manipulating security
concepts and constructs. For example, special tokens (e.g., SID)
can be used to identify users and logical transactions, and those
tokens can be embedded in the cookies and forms on the clients.

We present the details of this model as a language MOSS. The
syntax is given in Figure 9. Vector notations (e.g., <13) are sometimes
used when referring to a list of items (e.g., [®1 ... P,]). The sym-
bols for certain language constructs are borrowed from BASS to
show correspondence of the underlying concepts, but minor mod-
ifications are applied to avoid confusion. In particular, we use a
different font for reused English letters (W, C, E and v), and add a
dot on top for reused Greek letters (3, &, and o).

A world W in this language consists of three elements. The first
is a global environment ¥ on the server. The second is a closure
£ currently active on the server. The third is a list of browsing
histories ®, each belonging to a different client.

The global environment ¥ contains both data and code. The
data part is essentially a list of session environments ¢ organized by
some tokens ¢ for identifying sessions (i.e., SIDs). Every session
environment ¢ captures the values of the volatile variables (e.g.,
a,a’,ay) for a session. The code part is simply a collection of
functions, with every function consisting of a name f, a list of input
parameters @, and a body command C. Here, the symbols [] are used
as parentheses of the meta language, rather than as part of MOSS.

The closure £ is usually a tuple consisting of a client identifier
¢ (indicating that the current computation is for the ith client; this
corresponds to the transient but dedicated connection established
between the client and the server for an HTTP request-response), a

512

April 21-25, 2008 - Beijing, China

value v as the content of the cookie (transferred from the client to
the server in a request and passed back to the client in a response),
a local environment ¢, and a command C. Sometimes a pair of a
cookie value and a local environment also makes a closure; such
a closure cannot be executed, but the information therein may be
propagated to other closures. The local environment ¢ collects the
values of non-volatile variables (e.g., z, 2", z1). We assume that &
contains a special variable x ;4 dedicated for storing the SID of the
underlying session. Alternatively, one may wish to store the SID
in the cookie. Since the cookie is shared by all forms on a client,
that would prevent the same client from accessing multiple sessions
simultaneously. Therefore, we choose to store the SID in ¢.

The clients vector ® deserves attention. In BASS, the single
client is idealized as a list of closures. In MOSS, a world involves
multiple clients. Each client ® consists of a list of forms ¢ and
a cookie with the value v. A form ¢ is made up of input param-
eters @ and their textual explanations § and default values ¥ (i.e.,
input fields in a web form), a target f (i.e., the web link behind the
“submit” button), and some sealed client-side state). Note that 1)
is not meant to be modified by the client. This restriction will be
enforced in the operational semantics. In the syntax, we use the
notation (. ..) to indicate that it is a “package” that cannot be taken
apart by the client. In a real language, such sealed state can be
signed by the server to prevent client modifications. We also point
out that the forms in a client may belong to different sessions, be-
cause the client may initiate different sessions in different browser
windows. Although reserving a dedicated variable ;4 in the local
environments for session identification, MOSS does not automat-
ically maintain it (or any other non-volatile variables) across web
interactions. As in the case of real web programming, the program-
mer may maintain the relevant information in the sealed state.

Commands C involve the common ones and some new primi-
tives adapted from real-world entities. For distinction from BASS,
we use a different syntax for the common commands of skip (sk),
assignment (a < FE), sequential composition (C;; C), conditional
(cond(E, C, C)), and while-loop (1oop(E,C)). f(E) is a function
call to f with the arguments E. For web input, input(E) is used to
send a form computed from E to the client. setCk(E) sets a new
value for the cookie in the current closure. unpack(E) unpacks the
sealed state from E. verif(E, 7) validates E against BASS types
7. Finally, err exits the program upon an error; we use this abrupt
program termination for simplicity, although real web applications
typically perform more sophisticated error handling (e.g., giving
error messages, redirecting to other pages).

MOSS reuses the variables a and x, integers 4, strings s, and
abstract operations op(E) of BASS for ease of exposition. It intro-
duces some set expressions: {E} is a set with elements E, in(E,E’)
checks if E belongs to the set E/, ins(E, E') inserts E into the set E/,
and del(E,E’) removes E from the set E'. form constructs a form
by putting together some input parameters, a target function, and
an expression carrying the sealed state. getCk() obtains the cookie
value. v is a sealed state, and it is typically created using pack().
Finally, tokens ¢ are unique and unforgeable entities created using
newTk(); newTk() will never create two identical tokens, and the
tokens created cannot be guessed or forged by clients. The exact
form of tokens is abstract. We have mentioned the use of tokens as
SIDs. Later in Section 5, we will also use tokens to identify clients,
enforce control flows, and prevent request forgeries.

4.2 Operational Semantics

A big-step semantics of the expressions (¢;ver; 6 F E | v) is
given in the TR. The evaluation is carried out with respect to a
session environment ¢, a cookie value v, and a local environment

WWW 2008 / Refereed Track: Security and Privacy - Misc

¢. The definition is straightforward, noting that values for volatile
and nonvolatile variables are pulled from ¢ and &, respectively.

Selected rules of the remainder of the operational semantics is
given in Figure 10. Similar to BASS, the key concept is a “world
step” relation W ~ W. A multi-step relation W ~+* W’ is defined as
the reflexive and transitive closure of the world step relation.

Most of the server-side computation is captured in Rule (12),
which delegates the task to a single-thread step relation (X, 5) ~»
(%', &'). Upon an input(E) command (Rule (13)), the expression
E is evaluated to a form ¢, and the result is transferred to the client.
Note that the special variable x;q is used to obtain the SID ¢, and ¢
is used to locate the session environment (3 (¢) refers to the session
environment identified by ¢ in 33). In addition, the client identifier
4 is used to locate the client history ®;. ®; may contain a different
cookie value v, because the server may have updated the cookie to
v¢k in the current closure . We update the client history from ®;
to @ using the new cookie v and form ¢. In the result of the step,
the clients vector is updated by removing the old ®; and inserting
the updated ®;. Any command C following input(E) is discarded.
This reflects the case that the server execution stops after sending a
response to the client, and resumes after receiving the next request;
the control flow is connected by a link embedded in the web form E,
not by sequencing with another command C. This Rule (13) is the
only one that describes the execution upon an input(E) command.
Therefore, the execution of a MOSS program gets stuck if E is not
a form, if ¢ is not recognized by 2, or if x4;q does not contain a
valid token at all. Similar observations apply to all other rules.

The remainder rules of the world step relation concern things ini-
tiated by a client. An ideal case is that a client fills in a form with
values. However, in the real-world handling of a web form, the
target function name and input fields are subject to malicious mod-
ifications, because they are directly embedded behind the “submit”
button for the browser to recognize and produce an HTTP request.
Such a scenario is captured in Rule (14), where a client ®; forges a
new form ¢’ (the ideal form filling is a special case of this). Here,
the client may make up arbitrary things on the function name and
input fields, but not the sealed state 1 (e.g., the client cannot forge
the server’s signature); ¢ must come from some form ¢ in the his-
tory of ®;. In addition, the cookie value may also be modified by
the client from v, to v'. As a result of the step, the new client @
includes the forged form ¢’ and cookie v/, and the clients vector)
is updated accordingly. The server side remains unchanged.

In Rule (15), the ith client picks a form from the history and sub-
mits it. On the server side, the function f must be recognized by the
global environment, and the function must expect the proper num-
ber of arguments (as,; is a special argument for the sealed state).
In the result of the step, a new closure is composed for execution,
where the cookie is obtained from the client, and the function f is
applied to the sealed state and the input values. No input valida-
tion is done here. A program which does not perform proper input
validation on its own may go wrong in later computation.

Sometimes an attacker tricks a victim into sending a request
composed by the attacker. In Rule (16), the attacker client ¢ picks
an arbitrary form ¢ from ®;, and inserts it into the victim client
7’s history. Now that the form is injected, a later request following
Rule (15) may submit it to the server, thus completing the attack.

An existing client may initiate a new session using Rule (17). On
the server, a fresh token ¢ is created as the SID, an empty session
environment is added into the global environment >, and a new
closure £ is composed. In the closure £, the local environment
is initialized so that xs;q is bound to ¢, and the code starts from
fstart, Which is a special function reserved as the program entry
point. The session and local environments do not contain entries

513

April 21-25, 2008 - Beijing, China

~ W

Server computation:

(12)

Server response:

% = (4, Ve, 0, input(E)) or & = (4, vek, 0, input(E) ;; C)
6(Tsia) =t %(t);ver; G FEY @

= (v,¢) B = (ver,[8]U Q) (13)
(27 ’%7 (I)) ~ (27 (Vck>d)7 ((f) - [(I)Z]) U [CI);D
Client forging (form filling):
P, c d; = (Vclwﬁg)
ped ¢ =form f(§@=7)with
¢ =form f(J d=d)withy ol =([$1UG)
(27 (V7 é')v Cf)) ~ (27 (Vv é')v (‘i; - [q>l]) U [(I)l])

Client request:

D, ed ;= (vck,¢) form f (5 @=7) with ¢ € ¢
((G‘s‘r‘l7) C) (15)
(27() é) (7(ivvck,{}7f(w7_f))7®)
Attacker tricking:
®ed =(9) o€d B
q>j €d (I)] - (Vck7¢/) q); = (Vck7 [¢] u ¢/) (16)
(27 (v,0), (13) ~ (Zv (v,6), ((I_; - [q)j]) U [@’7])
New session:
<1> €d D= (ver,d) fresh(r)
=>U {v: {}} k= (i,Ver, {Tsia = 1}, fstart()) (17)
(5, (v,6),8) ~ (¥, &, P)
New client:
fresh(t) Y =2Uu{:{}} |B|=n
fT@Sh /) k= (n + 1, Ll7 {wsid = L}: fsta,rt()) (18)
(%, (v,6),8) ~ (X, i, & U (o, €)])
(3, k) ~ (X, k) | (selected cases only; see TR)
(f=@vc)ex [E=la
0(tsia) =t B(t);Ver; 0 FEY T (19)
(27 (7" Vek, da f(E))) ~ (Zv (7’7 Veks d? C[‘_"/é‘]))
6(zsia) =t N(1);Ver; G FEY v 20)
(2, (i, Ver, &, setCk(E))) ~ (3, (v, 6))
d’(l‘md)—L Z();Ver; 0 FEY (Z=7)
update(o, T, V) = & 1)
(%, (4, Ver, &, unpack(E))) ~ (%, (ver, 6”))
o(Zsia) =t $(L);Ver; 6 FEL T
Vk. (Ji.viy =1 and 7, =int) or (Is.viy =s and 7, =str) 22)

(2, (4, Vek, 0, Verif(ﬁ7 7)) ~> (E, (Vek,0))

Figure 10: MOSS world execution

WWW 2008 / Refereed Track: Security and Privacy - Misc

for programmer-defined variables yet. Instead, those variables will
be declared implicitly upon their first use (articulated in the TR).

The last client-initiated step, Rule (18), applies when a new client
joins. Similar to Rule (17), a new session with SID ¢ is created. In
addition, a fresh token ¢’ is created as an ID for uniquely identifying
the client (we will refer to this as a CID). ¢/ is stored in the cookie
of the new closure %, and will be propagated to the client upon a
web interaction using Rule (13). As a result of the step, the global
environment is updated, the new closure is activated for execution,
and the clients vector is updated to include the new client, which
has the transient client identifier n+1, an empty cookie indicated
by the special value e, and an empty history vector e.

The bottom of Figure 10 shows a few cases of the single-thread
step relation (3, %) ~» (X', &"). Rule (19) carries out a function
call using capture-avoiding substitution, after checking the number
of and evaluating the arguments. Rule (20) updates the cookie of
the current closure. Rule (21) evaluates E to a sealed state, and
updates the local environment ¢ accordingly. Rule (22) validates
E against BASS types 7. There is no rule for the case where the
validation fails—the execution gets stuck upon a failed validation.

4.3 Example Use: Patterns of Exploits

MOSS is designed to be flexible, and program execution could
result in stucks. Some causes of stucks include unrecognized SIDs
or function names, unmatched number of function parameters, il-
legal usage of values (e.g., unpacking an integer), and failed input
validations. Indeed, MOSS is meant to reflect real-world scenarios,
rather than to confine web program behaviors using a restricted se-
mantics or a type system. Similar to other languages, MOSS can
be used to write both secure programs and vulnerable ones.

Besides serving as the target of our BASS translation, MOSS is
of independent value to understanding web programming, because
it helps to articulate the essence of common exploits and attacks.
‘We demonstrate this by encoding two exploit patterns, which cover
all the example attacks discussed in Section 2.3.

The first is an attacker-victim pattern, where an attacker takes ad-
vantage by tricking a victim into submitting an unintended request,
which in turn triggers a vulnerability in a server program. We as-
sume the application stores the SID in the client cookie.

(27 (V7d)7 [(LAv (b_{‘): (LBz ¢§)])
~ (5, (v,6),[(¢a, ¢a), (v, 98U[¢])]) (forge by Rule (14))
~ (5, (7.6), [(ta, 62U[0)), (15, 65U[])]) ik by Rule (16)
~ (27 R, [(LA7 ¢AU[¢D, (LB» ¢BU[¢D]) (request by Rule (15))

Here the attacker B forges a form ¢ in the first step, and in-
jects it into A (e.g., by emailing a link) in the second step. When
A submits the form (e.g., by following the link) in the third step,
the server program composes a closure A to process the request.
Whereas a careful server program may inspect ¢ to identify in-
jected requests (Section 5), a vulnerable one might simply iden-
tify the session based on the SID ¢4 transferred from A’s cookie.
Therefore, the request is processed as if it were intended by A.

This pattern captures different attacks when ¢ and £ are instan-
tiated with different entities based on different program vulnera-
bilities. For instance, suppose a banking program has a CSRF
vulnerability—it accepts payment requests solely based on the SID
stored in the cookie. The attacker B may instantiate the above pat-
tern with p=form fpay (“payee” p=“B”, “amnt” a=100) with ().
Upon receiving the request, the server program would compose a
closure to set up a payment from A. Similarly, a program with an
XSS vulnerability would propagate a crafted string (e.g., cookie-
stealing JavaScript code) from B’s forged form to an HTML page

514

April 21-25, 2008 - Beijing, China

displayed in A’s browser, and a program with a session fixation
vulnerability would set A up to use an SID fixed by B.
The second is a malicious client pattern, where a malicious client
crafts a request to exploit server program vulnerabilities.
(27 (V,d’), [(LA7 ¢_ff‘)])
~ (5, (v,6), [(va, 9aU[9])]) (forge by Rule (14))
~ (3, s, [(ba, paU[))]) (request by Rule (15))

Since a malicious client A may use arbitrary target function names,
parameter names and values, and sealed states (e.g., ones obtained
from other forms in the history) to compose the request ¢, a server
program which does not carefully code against these possibilities
would be subject to attacks including session poisoning, malformed
input, and work-flow circumvention.

S. TRANSLATION

By comparing BASS (our proposed ideal programming model)
and MOSS (the actual programming model in use today), the ad-
vantage of BASS is clear—none of the above attacks can happen to
a BASS program, simply because BASS has a “well-behaved” se-
mantics. We now discuss how this semantics can be implemented.
Specifically, we will point out how the two patterns of attacks are
prevented. Although focusing on a particular translation, we note
that other pertinent secure coding practices could be applied in-
stead. The bottom line is, with the BASS abstractions implemented
following secure coding practices once and for all, programmers
enjoy an ideal model that is free from common exploits.

In particular, BASS has an ideal model where the control flow is
not disrupted by web input, there is only a single session, and the
client is well-behaved. These no longer hold in the MOSS model
of real-world scenarios. To connect the two models, the translation
takes care of program splitting, form making, session management,
state maintenance, forgery prevention, and input validation. Recall
that a client in MOSS consists of a cookie and a list of forms. In
our translation, we maintain the invariant that the cookie stores the
CID of the client, and the forms are of the following shape:

form f(§d=W)

with <mcid:Lcida Tsid=lsid; Ltok=Lltok, LT fun=Sf, f:‘7>

A key to the translation, this is in essence an encoding of BASS
client closures in MOSS forms. Besides the target function f and
input parameters @, we also encode information about the local en-
vironment (nonvolatile variables Z=v¥). In addition, some special
variables are used for session management and forgery prevention.

The first special variable, x.;q, stores the CID that the server
assigned to the client in Rule (18). In a translated program, before
sending a response to the client, we obtain the CID from the cookie
in the current closure, and store it in variable x.;4q. On the other
hand, when processing a request from a client, we inspect z.;q and
check it against the client cookie. This ensures that the request
indeed comes from the client, because: (1) a sealed state cannot be
modified by a client; (2) the cookie of a client cannot be updated
by others; (3) although a client may modify her cookie, she cannot
change it to the value of another client’s unforgeable CID. These
together prevents attacker-crafted forms, inserted into a victim’s
history using Rule (16), from being accepted by the server. As a
result, the attacker-victim pattern will not succeed.

The variable x ;4 stores the SID. The variable x;. stores a token
for history control. The validity of this token will be checked when
the server program processes the request. For single-use forms, the
token will be invalidated after the first use, thus preventing future
resubmissions. In addition, the token can also be invalidated if we
choose to expire all existing forms (cf. a BASS clear operation).

WWW 2008 / Refereed Track: Security and Privacy - Misc

Note that values in xs;q and x¢o only need to be unique; they do
not have to be unforgeable on their own, because they are stored in
the sealed state and thus cannot be forged. Although we reuse the
same token construct, a realization may relax this.

Besides the three tokens, there is a special variable x s, that
stores the target function name. This is to prevent certain request
forgeries where the client modifies the target function of the form.
Upon a request, x ., Will be inspected and the request will be pro-
cessed only if it matches the actual target function. This effectively
binds the target function name and sealed state together in a form.
Together with some type-based input validation code generated by
the translation, this prevents attacks of the malicious client pattern.
The exact formal translation details are given in the TR.

Correctness and prototyping We summarize some key arguments
on the preservation of all the properties discussed in Section 3.3,
which can be easily established by inspecting the form encoding.
Since the sealed state is protected, the only form component sub-
ject to client modification is the input parameters. Modifications
on the target function name will not succeed, because the function
name is also stored in the sealed state. As a result, the control flow
of a BASS program will be enforced, since clients cannot forge tar-
get links—they can only follow the server-provided forms to access
the server programs. In addition, an attacker cannot masquerade as
another client—although an attacker may modify the cookie, she
cannot set it to the unforgeable CID of another client. More inter-
estingly, CSREF, first-order XSS and session fixation, which require
an attacker to inject a form into a client (Rule (16)), are prevented
because the injected form will have a different CID than that stored
in the client’s cookie. Finally, input validation, session state recov-
ery, and history control are all properly carried out.

We have implemented a prototype compiler of BASS in OCaml.
The compiler takes well-formed BASS programs and produces se-
cure Perl code. SSL is used for web interactions. All constructs of
MOSS and the translation have clear counterparts in the prototype,
demonstrating that our modeling and translation are faithful to real-
world scenarios. The compiler consists of 1456 lines of OCaml
code (about 49KB), and uses a runtime library of 342 lines of Perl
code (about 7KB). The executable in FreeBSD ELF format is about
346KB. The compiler translated the banking example of Figure 3
into 99 lines of Perl code. Focusing on the formal BASS language,
the scale of this prototype is small. We plan to experiment with a
larger scale prototype in the future, where the ideas of this paper
will be implemented for an existing language as a library.

6. RELATED AND FUTURE WORK

Declarative web programming MAWL [2, 3] and its descendants
(<bigwig> [5], JIWIG [6]) use domain-specific constructs to pro-
gram web applications. They view web applications as form-based
services, and provide abstractions on some key aspects such as
web input and state management. These abstractions hide imple-
mentation details (e.g., input validation, embedding of continua-
tion and state in URL), thus preventing certain programming er-
rors. Graunke et al. [10] propose the design and implementation of
an I/O construct for web interactions. This construct helps to pro-
gram web applications in a more traditional model of interactions,
and avoids the manual saving and restoring of control state.
Although similar in spirit to BASS on these aspects, the above
work does not provide a formal semantics with the same security
guarantees. However, security should not be overlooked for declar-
ative web programming—now that the details of web interactions
are hidden by new abstractions, programmers can no longer carry
out the secure coding practices by themselves. As a result, a naive

515

April 21-25, 2008 - Beijing, China

application of new abstractions could suffer from security vulner-
abilities such as CSRF. It is thus crucial that the proposed abstrac-
tions and their implementation provide related security guarantees.
On expressiveness, MAWL and descendants enforce a strict con-
trol flow where every form is, in the BASS terminology, single-use.
For example, users will be redirected to the beginning of a session
if they hit the back button. In contrast, BASS leaves the design
decision to the programmer, rather than disabling “whimsical nav-
igation” [12] altogether. This flexibility is important [11, 12, 21].
We emphasize that the goal of BASS is to facilitate secure web
programming with abstractions more suitable for the domain. Be-
sides having declarative support on web interactions, single-/multi-
use forms, state declarations, and history control, it is important
that the features are all modelled within an original and self-contained
semantic specification. BASS has an intuitive and formal program-
ming model with an explicit notion of a client, and its meta prop-
erties are articulated. This allows programmers to fully grasp how
BASS programs behave. The common task of following secure
coding practices, which is orthogonal to the specific application
logic, is carried out by a BASS implementation once and for all.
There has also been work developing domain-specific languages
or frameworks for web programming as libraries of existing type-
safe languages. Examples include the Curry-based server-side script-
ing language by Hanus [13], Haskell-based WASH/CGI by Thie-
mann [21], and Smalltalk-based Seaside by Ducasse et al. [8]. These
provide useful abstractions in the form of libraries to handle some
common aspects of web programming, such as structured HTML
generation, session management, and client-server communication,
but do not provide the formal security guarantees of BASS. There is
no stand-alone formal semantics for the new abstractions, although
in principle the behaviors could be inferred from the implemen-
tations and the semantics of the host languages. Finally, they are
tied to the host languages, thus the ideas are not easily applicable
to other languages. In contrast, BASS is translated into a flexi-
ble model underlying web programming in general. The rigorous
BASS and MOSS allow us to formally derive security guarantees.

Models of web programs Besides building new abstractions, it
is also important to understand what the existing web program-
ming model is and how to write secure programs within it. Al-
though there are many security recommendations and coding prac-
tices available, web programming has rarely been formally studied
from the language principles. An exception is the work by Graunke
et al. [12], which models web interactions in presence of whimsical
navigation behaviors of well-intended (non-malicious) users, iden-
tifies two classes of errors (form field mismatch, client-server state
mismatch), and proposes to catch the errors with a static type sys-
tem (typed web forms) and dynamic checks (time-stamped states).

In comparison with our work, Graunke et al. do not address the
wider security questions, where the server interacts with multiple
clients, some of whom may be malicious. Specifically, they do not
have security-related primitives in their server-side computation,
they model the presence of a single client, and their transitions lack
the counterparts of the forging (Rule (14)) and tricking (Rule (16))
behaviors of MOSS. In contrast, we more accurately model web
interactions and server computations. This allows us to encode
common exploit patterns (Section 4.3) for formal reasoning. In-
stead of using a type system or dynamic checks to close up the
two classes of errors, we use principled but flexible abstractions in
BASS for web programming and present their realization in MOSS.
This hides some common details of secure web programming and
precludes some different classes of errors. Although we do not pro-
pose techniques preventing errors associated with whimsical navi-
gations, the related error scenarios can be rigorously illustrated in

WWW 2008 / Refereed Track: Security and Privacy - Misc

BASS and MOSS; therefore, programmers are fully aware of the
issues, and the techniques of Graunke et al. can be applied.

Future work We believe that web programming will benefit signif-
icantly from the use of domain-specific abstractions, and much can
be done in the area. For starters, the form constructs of BASS can
be generalized to take an HTML page as a parameter. Sometimes
an HTML page may contain multiple forms, each with a separate
submit button linking to a different target. A more interesting as-
pect is to include client-side scripting. This is orthogonal to the
focus of server-side scripting in this paper, and previous work on
the formal aspects of JavaScript [22, 1, 25] and web application de-
velopment frameworks [9, 15] provide some good starting points.
BASS provides some security guarantees (Section 3.3) using a
few new abstractions. These abstractions are not meant to be “com-
plete,” and there are other desirable properties uncovered. It is use-
ful to explore abstractions for other areas, such as dynamic HTML
generation [13, 6, 17, 21], privilege management, and dynamic
SQL construction [20, 23]. More details are given in the TR.
Designed for web programming in general, BASS addresses only
common security aspects, rather than issues on the specifics of an
application. For example, directory traversal [7] (accessing the par-
ent directory using the path “. .\”) is not prevented by common
type-based input validation, and programmers must perform addi-
tional filtering. Application-specific security analysis will still be
necessary. However, with the new abstractions closing up some
common vulnerabilities and clarifying the control flow, such anal-
ysis should be easier. In general, the new abstractions should help
the analysis, reasoning, and testing of web programs, because they

provide an ideal model amenable to established language techniques.

In this paper, MOSS serves mainly as the target of the BASS
translation. However, it is also of independent value to web pro-
gramming studies. In MOSS, a client may take control only if the
server contains no active closure. This is similar in spirit to non-
preemptive multi-threading. A preemptive version of MOSS is in-
teresting future work. In addition, type systems and program logics
for confining and reasoning about MOSS programs are useful.

7. CONCLUSION

Web applications reflect a different computation model than con-
ventional software, and the security issues therein deserve careful
study from both language principles and practical implementations.
This paper serves as a useful step towards building a formal founda-
tion for secure server-side scripting. In particular, we propose two
self-contained formalizations on the topic, using familiar language
concepts such as continuations, threads, and small-step semantics.

The first is a formal language BASS for server-side scripting.
BASS provides an ideal programming model where the server in-
teracts with a single client, using some dedicated constructs to ob-
tain web input and manipulate client history. The meta properties
and formal guarantees of BASS allow programmers to focus on the
application logic without being distracted by common implemen-
tation details, thus improving productivity and security.

The second is a formal model MOSS characterizing realistic
web programming concepts. As is the case of existing server-side
scripting languages, MOSS can be used to write both secure pro-
grams and vulnerable ones. We present a translation from BASS to
MOSS, demonstrating how the BASS abstractions and guarantees
can be enforced using a few common primitives for manipulating
security concepts. Our prototype shows much promise on the idea
of better abstractions for secure server-side scripting, and we hope
to experiment more on the topic with real-world web programming
languages and frameworks.

516

April 21-25, 2008 - Beijing, China

8. REFERENCES

[1] C. Anderson, P. Giannini, and S. Drossopoulou. Towards type
inference for JavaScript. In Proc. 19th European Conference on
Object-Oriented Programming, pages 429-452, July 2005.

D. Atkins, T. Ball, M. Benedikt, G. Bruns, K. Cox, P. Mataga, and
K. Rehor. Experience with a domain specific language for
form-based services. In Proc. 1997 Conference on Domain-Specific
Languages, 1997.

D. L. Atkins, T. Ball, G. Bruns, and K. Cox. MAWL: A
domain-specific language for form-based services. IEEE Trans. on
Software Engineering, 25(3):334-346, 1999.

R. Auger. The Cross-Site Request Forgery FAQ.
http://www.cgisecurity.com/articles, 2007.

C. Brabrand, A. Mgller, and M. I. Schwartzbach. The <bigwig>
project. ACM Trans. on Internet Technology, 2(2):79-114, 2002.
A. S. Christensen, A. Mgller, and M. I. Schwartzbach. Extending
Java for high-level Web service construction. ACM Trans. on
Programming Languages and Systems, 25(6):814-875, Nov. 2003.
S. Christey and R. A. Martin. Vulnerability type distributions in
CVE. http://cve.mitre.org/docs/vuln-trends, 2007.
S. Ducasse, A. Lienhard, and L. Renggli. Seaside — a multiple
control flow web application framework. In Proc. 12th International
Smalltalk Conference, pages 231-257, Sept. 2004.

U. Erlingsson, B. Livshits, and Y. Xie. End-to-end web application
security. In Proc. 11th Workshop on Hot Topics in Operating
Systems, May 2007.

P. Graunke, R. B. Findler, S. Krishnamurthi, and M. Felleisen.
Automatically restructuring programs for the Web. In Proc. 16th
International Conference on Automated Software Engineering,
pages 211-222, Nov. 2001.

P. Graunke and S. Krishnamurthi. Advanced control flows for
flexible graphical user interfaces. In Proc. 2002 International
Conference on Software Engineering, pages 277-296, 2002.

P. Graunke, S. Krishnamurthi, S. V. D. Hoeven, and M. Felleisen.
Modeling web interactions. In Proc. 2003 European Symposium on
Programming, pages 122-136, 2003.

M. Hanus. High-level server side web scripting in Curry. In Proc.
3rd International Symposium on Practical Aspects of Delcarative
Languages, pages 76-92, 2001.

J. Kolsek. Session fixation vulnerability in web-based applications.
http://www.acrossecurity.com/papers.htm, 2002.
B. Livshits and U. Erlingsson. Using web application construction
frameworks to protect against code injection attacks. In Proc.
Programming Languages and Analysis for Security, June 2007.

G. A. D. Lucca, A. R. Fasolino, M. Mastoianni, and P. Tramontana.
Identifying XSS vulnerabilities in web applications. In Proc. 6th
International Workshop on Web Site Evolution, pages 71-80, 2004.
K. Ngrmark. Web programming in Scheme with LAML. Journal of
Functional Programming, 15(1):53-65, 2005.

G. Ollmann. Second-order code injection attacks.
http://www.nextgenss.com/papers, 2004.

OWASP Foundation. The ten most critical web application security
vulnerabilities. http://www.owasp.org, 2007.

Z. Su and G. Wassermann. The essence of command injection
attacks in web applications. In Proc. 33rd Symposium on Principles
of Programming Languages, pages 372-382, Jan. 2006.

P. Thiemann. An embedded domain-specific language for type-safe
server-side web scripting. ACM Trans. on Internet Technology,
5(1):1-46, Feb. 2005.

P. Thiemann. Towards a type system for analyzing JavaScript
programs. In Proc. 2005 European Symposium on Programming,
pages 408-422, Apr. 2005.

G. Wassermann and Z. Su. Sound and precise analysis of web
applications for injection vulnerabilities. In Proc. 2007 Conference
on Programming Language Design and Implementation, pages
3241, June 2007.

D. Yu, A. Chander, H. Inamura, and 1. Serikov. Better abstractions
for secure server-side scripting. DCL-TR-2007-0035, July 2007.
D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript
instrumentation for browser security. In Proc. 34th Symposium on
Principles of Programming Languages, pages 237-249, Jan. 2007.

[2]

[3]

[4

=

[5

=

[6]

[7

—

[8]

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]
(18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

