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ABSTRACT
We consider the problem of segmenting a webpage into vi-
sually and semantically cohesive pieces. Our approach is
based on formulating an appropriate optimization problem
on weighted graphs, where the weights capture if two nodes
in the DOM tree should be placed together or apart in
the segmentation; we present a learning framework to learn
these weights from manually labeled data in a principled
manner. Our work is a significant departure from previ-
ous heuristic and rule-based solutions to the segmentation
problem. The results of our empirical analysis bring out in-
teresting aspects of our framework, including variants of the
optimization problem and the role of learning.

Categories and Subject Descriptors
H.3.m [Information Systems]: Information Storage and
Retrieval

General Terms
Algorithms, Experimentation

Keywords
Webpage sectioning, webpage segmentation, energy mini-
mization, graph cuts, correlation clustering

1. INTRODUCTION
As web usage is increasing, content creation is becoming

more mature, and its presentation even more sophisticated.
Presentation involves placing different pieces of information
on a webpage — each serving a different purpose to the
end-user — in a manner that appears coherent to users who
browse the webpage. These pieces have carefully-placed vi-
sual and other clues that cause most users to subconsciously
segment the browser-rendered page into semantic regions,
each with a different purpose, functionality, and content.

For our purposes, a segment is a fragment of HTML, which
when rendered, produces a visually continuous and cohesive
region on the browser window and has a unified theme in its
content and purpose. Under this broad notion, the follow-
ing can be termed webpage segments: left navigation menu
bar, site-specific banner that might be at the top, naviga-
tion footer, links and abstracts of related webpages, banner
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and other forms of advertisements scattered throughout a
page, copyright notices, terms of service, and contact infor-
mation, and last but not the least, the actual content itself.
Furthermore, depending on how the creator of the webpage
chose to organize it, the content might itself be represented
by multiple segments.

There are several applications of webpage segmentation.
Segments demarcate informative and non-informative con-
tent on a webpage; they can also discriminate between dif-
ferent types of information. This is very useful in web rank-
ing and web data mining applications. Consider a multi-
word query whose terms match across different segments in
a page; this information can clearly be useful in adjusting
the relevance of the page to the query. Similarly, as we em-
pirically show later in this paper, segments appropriately la-
beled as, say, informative and non-informative, can improve
the precision of web mining tasks like duplicate detection.
Identification of segments also plays a vital role in displaying
webpages on screen-space constrained devices such as smart
phones, PDAs etc.

Recognizing the importance of webpage segmentation, sev-
eral papers have proposed solutions to this problem [2, 8,
10, 7, 20]. Most of these techniques involve simple rule-
based heuristics. The heuristics typically utilize many fea-
tures present on a webpage, including geometry-related fea-
tures, and apply the rules in a greedy fashion to produce
the segments. While a heuristic approach might work well
on small sets of pages and for the specific tasks for which
it was designed, it has several problems. First, it is hard to
automatically adapt the heuristics to keep abreast of the in-
herently dynamic nature of presentation styles and content
types on the web. Second, combining multiple heuristics
that work well on different types of pages into a single all-
in-one heuristic is a manually intensive trial and error effort.
Third, since heuristics are inherently greedy, the solutions
they produce tend to be local minima. These issues give
rise to the following question: is there a more principled
approach to webpage segmentation?

Our contributions. In this paper we consider the prob-
lem of automatically segmenting webpages in a principled
manner. Our main contributions are the following.

(1) We formulate the segmentation problem in a combina-
torial optimization framework. In particular, we cast it as a
minimization problem on a suitably defined weighted graph,
whose nodes are the DOM tree nodes and the edge-weights
express the cost of placing the end points in same/different
segments.
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(2) We take this abstract formulation and produce two
concrete instantiations, one based on correlation clustering
and another based on energy-minimizing cuts in graphs,
which is our centerpiece. Both these problems have good
approximation algorithms that are practical. We show how
to adapt these two problems to the specific constraints of
webpage segmentation.

(3) The quality of segmentations depends heavily on the
edge weights. We give a principled approach for learning
these weights from manually labeled data.

(4) Through empirical analysis we show that the energy-
minimizing formulation performs substantially better than
the correlation clustering formulation. We also show that
learning edge-weights from labeled data also produces ap-
preciable improvements to accuracy.

(5) We apply our segmentation algorithms as a pre-processing
step to the duplicate webpage detection problem, and show
that this results in a significant improvement to accuracy.

Organization. In Section 2 we present the related work.
The framework is described in Section 3. Our algorithms
based on correlation clustering and energy-minimizing cuts
are presented in Section 4. In Section 5 we present the
results of our experiments. Finally, Section 6 contains con-
cluding remarks.

2. RELATED WORK
Prior work related to this paper falls into two categories.

Due to paucity of space we describe each work very briefly.
Readers are referred to original publications for more details.

There is plenty of past work on automated segmentation
of webpages [2, 10, 7, 13, 20]. Baluja [2] gives a learning
based algorithm to split a webpage into 9 parts suitable for
viewing on a small-screen device. For the same application,
Chen et al. [10] construct a two level hierarchical view of
webpages, while Yin et al. [20] give an approach for ranking
subparts of pages so as to only display relevant ones. Kai
et al. [7] give an algorithm that uses rule based heuristics
to segment the visual layout of a webpage. On the flip side,
Kao et al. [13] give an algorithm for webpage segmentation
that relies on content based features. Other notable works
that use DOM node properties to find webpage segments
are by Bar-Yossef and Rajagopalan [3], who use it to find
templates and by Chakrabarti et al. [9], who use it for en-
hanced topic distillation. Finally, Chakrabarti et al. [8] give
an algorithm based on isotonic regression whose by-product
is a segmentation of a webpage into informative and non-
informative parts.

Our work is also closely related to approaches for clus-
tering data embedded as nodes of a graph. In particular,
we make use of the correlation clustering algorithm of Ailon
et al. [1] and the energy minimization framework of Kol-
mogorov and Zabih [15]. These approaches and our modifi-
cation to them are described in detail in Section 4.

3. FORMULATION
The DOM nodes comprising an HTML page can be viewed

in three independent contexts, each contributing its own
piece of information. First, each node in the DOM tree
represents a subtree that consists of a set of leaf nodes with
various stylistic and semantic properties such as headers,
colors, font styles, links, etc. Second, each node occupies

visual real-estate when rendered on a browser. Node lay-
out provides information on both its semantics (e.g., nodes
rendered on the bottom of the page are likely to be less im-
portant than those in the center) as well as its relationships
to other nodes (e.g., segment boundaries are more likely to
occur where neighboring nodes are farther away from each
other). Finally, since the same visual layout can be obtained
from syntactically different DOM trees, the particular DOM
tree structure used by the content creator implies semantic
relationships among nodes (e.g., nodes separated by a large
tree distance are more likely to be unrelated, and thus to lie
across segment boundaries). The three sources of informa-
tion together dictate if a subset of DOM nodes should be in
the same segment or in separate segments, and any reason-
able algorithm for segmentation should judiciously use all
the pieces of information.

Our proposed approach is to combine this information into
a single objective function such that the minimization of this
function would result in a good segmentation. The objec-
tive function will encode the cost of a particular way of seg-
menting the DOM nodes. Taking a combinatorial approach
to segmentation offers several advantages. First, it allows
us to experiment with minor variants of the objective func-
tion, and thereby different families of algorithms. Second,
it lets us fine-tune the combination of the views: depending
on the website or application context, the relative impor-
tance of any view can be varied. For instance, feature-based
segmentation may be more meaningful on webpages from
wikipedia.org, which have strong structural cues such as
headers and links to page subsections. On the other hand,
visual relationships among nodes may be more useful on
free-form pages, such as user homepages. Any such domain-
specific knowledge can be easily incorporated into the ob-
jective function, leaving the algorithm for its minimization
essentially unchanged.

For this framework to be algorithmically feasible in web-
scale applications, where the time constraints on process-
ing webpage can be very strict and one has to deal with
large DOM trees with many thousands of nodes, the ob-
jective function and the combinatorial formulation have to
be carefully chosen. A particularly important question that
needs to be addressed is how the latent constraints that ex-
ist among different subsets of nodes in the DOM tree can be
captured succinctly. On one hand, considering each DOM
node individually is insufficient to express any form of inter-
node relationships. On the other hand, allowing the objec-
tive function to encode relationships among arbitrary sub-
sets of DOM nodes is unwieldy and can lead to combinatorial
explosion. Hence, as a trade-off between expressibility and
tractability, we propose using objective functions involving
up to two-way (i.e., pairwise) interactions. In other words,
the objective function deals with only quadratically many
terms, one for each pair of nodes in the DOM tree, and lends
itself to be cast as a clustering problem on an appropriately
defined graph.

Let N be the set of nodes in the DOM tree. Consider
the graph whose node set is N and whose edges have a
weight, which represents a cost of placing the end points of
an edge in different segments. Let L be a set of labels; for
now, we treat the labels as being distinguishable from one
another. Let Dp : L → R≥0 represent the cost of assigning
a particular label to the node p and let Vpq : L × L → R≥0

represent the cost of assigning two different labels to the end
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points of the edge (p, q). Let S : N → L be the segmentation
function that assigns each node p ∈ N the segment label
S(p). Consider the following cost of a segmentation S:X

p∈N

Dp(S(p)) +
X

p,q∈N

Vpq(S(p),S(q)). (1)

Finding a segmentation to minimize this objective is pre-
cisely the elegant metric labeling problem first articulated
by Kleinberg and Tardos [14]. This problem is NP-hard
but has a (log |L|)-approximation algorithm that is based
on LP-rounding, when Vpq is a metric.

While this objective is mathematically clean, it is still
fairly general and less appealing from a practical point of
view since it does not capture the nuances of the segmenta-
tion problem at hand. In particular, consider the following
constraint.

Constraint 1 (Rendering constraint). Every pixel on
the screen can belong to at most one segment.

The rendering constraint arises out of the DOM tree struc-
ture: the area on the screen occupied by a child node is
geometrically contained inside that of its parent node in the
DOM tree. Therefore, any segmentation should respect the
rendering constraint, i.e., if it places the root of a subtree in
a particular segment, then it has to place all the nodes in
the entire subtree in the same segment. The question now
is two-fold: is there a version of the objective in (1) that
can be optimized by a simple combinatorial algorithm and
how Constraint 1 can be incorporated into the formulation?
We propose two ways of addressing these issues: the correla-
tion clustering formulation and the energy-minimizing cuts
formulation.

Correlation clustering formulation. Observe that the
actual labels of segments do not really matter in segmenta-
tion. This leads to the following modifications to objective
in (1): treat the label set L as indistinguishable, i.e., Dp ≡ 0,
Vpq = cpq, a constant, and to prevent trivial solutions be-
cause of these modifications, change the objective in (1) to
minimize

cclus(S) =
X

S(p) 6=S(q)

Vpq +
X

S(p)=S(q)

(1− Vpq). (2)

This is the correlation clustering problem, which has been
addressed in a rich body of work. Notice that the second
term in (2) penalizes pairs of nodes (p, q) that are better off
being in separate segments (i.e., Vpq is small) , but are placed
in the same segment by S. Correlation clustering has sim-
ple and practical combinatorial approximation algorithms,
including a recent one by Ailon, Charikar, and Newman [1]
that approximates Equation (2) to within a factor 2.

Enforcing Constraint 1 directly in Equation (2), however,
becomes tricky. Heuristically, there are two possible options
for doing this. The first option is to consider only the leaf
nodes of the DOM tree and perform segmentation on them.
The problem with this approach is that leaf nodes in the
DOM tree are often too small to have reliable features. By
construction, they carry very limited information such as
plain text, italicized, bold, within an anchortext, and so on.
This makes the features sparse and noisy, thereby adversely
impacting the quality of segmentation. In fact, we will use
this approach as a baseline in our experiments. The second

option is to go ahead with Equation (2) on N , but post-
process and apply Constraint 1 top-down. The problem here
is that, even if a reasonably good solution to Equation (2)
is found, post-processing might damage its quality in course
of enforcing Constraint 1. We will not address the second
option in this paper.

Energy-minimizing cuts formulation. Here, we still re-
tain minimizing objective in (1) as our goal, but instead
impose more structure on the costs Vpq. This will serve two
purposes. The first is that we can obtain a combinatorial
algorithm for the problem, as opposed to solving a linear
program. The second is that the factor of approximation
will be 2, instead of log |L|. The details of the structural
assumption on costs is provided in Section 4.2.

We now specify how we handle Constraint 1 in this frame-
work. We create a special label ξ, called the invisible label,
and consider the segmentation S : N → L ∪ {ξ}. The seg-
ment corresponding to the invisible label is called the invis-
ible segment. The invisible label has two properties:

(1) only internal nodes of the DOM tree can be assigned
ξ and

(2) for any p, q ∈ N where q is a child of p in the DOM
tree, either both p and q must belong to the same segment,
or p must belong to the invisible segment; in other words,
either S(p) = S(q) or S(p) = ξ.

Intuitively, the invisible segment consists of nodes that
were not meant to form a coherent visual segment (they are
invisible when the HTML is rendered on screen), but are
present only to maintain the tree structure of the DOM.
Note that (2) ensures that if any internal node belongs to
the invisible segment, all of its ancestors must be invisible
as well. Therefore, by carefully setting Dp and Vpq when
S(p) = ξ we can elicit segmentations from our algorithm
that follow the DOM tree structure to different degrees.

4. ALGORITHMS
The form of the objective function is closely intertwined

with the algorithms that we can use to optimize it. In the
following, we look at extensions of two different algorithms,
one based on correlation clustering and the other on energy-
minimizing graph cuts, for the segmentation problem. Then,
we discuss in detail the exact form of the individual costs
Dp(·) and the pairwise costs Vpq(·, ·), and how these are
learned from available training data.

4.1 Correlation clustering
The correlation clustering problem starts with a complete

weighted graph. The weight vpq ∈ [0, 1] of an edge repre-
sents the cost of placing its endpoints p and q in two different
segments; similarly, (1 − vpq) represents the cost of placing
p and q in the same segment. Since every edge contributes,
whether it is within one segment or across segments, the seg-
mentation cost function is automatically regularized: trivial
segmentations such as one segment per node, or all nodes
in one segment, typically have high costs, and the best seg-
mentation is somewhere in the middle. In fact, the number
of segments is picked automatically by the algorithm.

Note that the costs depend only on whether two nodes are
in the same segment or not, and not on the labels of partic-
ular segments themselves. This imposes two constraints on
using correlation clustering for segmentation. First, it pre-
cludes the use the invisible label ξ with its special properties
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as discussed in Section 3. Hence, in order to satisfy Con-
straint 1, we must restrict the set of nodes to the set of leaf
nodes, leaf(N ), of the DOM tree. Second, pairwise costs
between two nodes p and q must depend only on whether
they belong to the same segment or not:

Vpq(S(p),S(q)) =


vpq if S(p) 6= S(q),
1− vpq if S(p) = S(q).

Thus, the objective function becomes

cclus(S) =
X

p,q∈leaf(N)
S(p) 6=S(q)

vpq +
X

p,q∈leaf(N)
S(p)=S(q)

(1− vpq).

We use the algorithm of Ailon, Charikar, and Newman [1]
for correlation clustering to find a segmentation whose cost
is within a factor of two of the optimal. For sake of com-
pleteness, we present a brief description of the algorithm,
called CClus.

The algorithm CClus is iterative. At each stage, a node
p in the current graph is chosen uniformly at random and
removed from the graph. A new cluster is created with just
p in it. Next, all the nodes q such that vpq ≥ 1/2 are re-
moved from the graph and placed in the cluster along with
p. The process is repeated on the remaining graph. Since
the algorithm is randomized, several independent trials are
performed and the solution with the least objective value is
output as the answer.

4.2 Energy-minimizing graph cuts
In this section we discuss solving the objective in (1) us-

ing energy-minimizing graph cuts. First, we give some back-
ground on graph cuts.

There has been a lot of work in the computer vision com-
munity on representing energy functions as specially con-
structed graphs, and finding their minimum via max-flow
cuts on those graphs [5, 15]. The class of energy functions
that are “graph-representable” is very broad and there are
algorithms to find local minima within a constant factor of
the global optimum. Thus, this approach offers a good bal-
ance between expressibility and efficiency. In addition, our
proposed objective in (1) can be made graph-representable
with only a slight constraint on its form, which makes this
technique even more attractive.

With this in mind, we now describe the definition of Dp(·)
and Vpq(·, ·). First, we define Vpq to be non-zero only in two
cases: (1) when nodes p and q are visually close neighbors in
the rendering of the webpage, and (2) when p is a parent or
child of q. Thus, pairwise relationships now encode the in-
formation available from the visual rendering and the DOM
tree structure, while single-node Dp values, to be described
in detail later, will encode node-specific feature information.
Thus, all sources of information mentioned at the beginning
of Section 3 are taken into account.

Next, we discuss the constraints on Dp and Vpq. Some of
these come from our particular domain, while the others are
required for efficient algorithms.

Domain constraints. The following constraints are dic-
tated by our domain (note that the invisible segment label
ξ is considered to be a member of L).

Dp(ξ) = ∞ for p ∈ leaf(N ) (3)
Vpq(α, β) = ∞ for parent(p) = q, α 6= β, β 6= ξ (4)
Vpq(α, ξ) = Vpq(β, ξ) for parent(p) = q, α, β 6= ξ (5)
Vpq(α, β) = Vqp(β, α) ∀α, β ∈ L (6)
Vpq(α, α) = Vpq(β, β) ∀α, β ∈ L (7)
Vpq(α, β) = Vpq(γ, δ) α 6= β, γ 6= δ; p, q ∈ leaf(N )(8)

In other words, (3) leaf level nodes cannot become invisible,
(4) when parent and child have different labels, the parent
must become invisible, (5) the cost of a parent-child edge is
independent of the child’s label if the parent is invisible, (6)
pairwise costs are symmetric, (7) the cost of belonging to the
same label is independent of the label, and (8) for leaf nodes,
the costs of belonging to different labels is independent of
the labels. The last two constraints follow from the fact
that there is no need for an ordering on the set of labels
(segments) in our case; all that we want to know is if two
nodes p and q belong to the same label (segment) or not.

Constraints for efficient energy minimization. In ad-
dition to the above constraints, one other condition must
be met before efficient algorithms based on graph-cuts can
be used. This is called graph representability [15]: an en-
ergy function is graph-representable if a graph can be con-
structed such that, for every configuration of its variables,
the value of the function is given (up to a constant) by the
minimum s-t cut on the graph. A energy function of the
form of Equation (1) is graph-representable if and only if,
for any segments α, β, γ ∈ L such that S(p) = α,S(q) = β
is a feasible state ([15, Theorem 4.1]):

Vpq(α, β) + Vpq(γ, γ) ≤ Vpq(α, γ) + Vpq(γ, β) (9)

In our case, this translates to the following:

Theorem 2 (Graph-representability). The energy func-
tion 1, under the domain-specific constraints (3)–(8), is graph-
representable if and only if, ∀i, j ∈ L such that i 6= j,
Vpq(i, j) ≥ Vpq(i, i).

Proof. We proceed by case analysis on Equation (9). If
γ = α or γ = β, the result follows vacuously.

If γ 6= α, β and α = β, we replace all instances of β by α
in Equation (9) to get

Vpq(α, α) + Vpq(γ, γ) ≤ Vpq(α, γ) + Vpq(γ, α)

⇒ 2 · Vpq(α, α) ≤ 2 · Vpq(α, γ) using (6), (7),

which implies that Vpq(α, α) ≤ Vpq(α, γ) for all α 6= γ. This
is exactly the statement of the theorem.

If γ 6= α 6= β and p, q ∈ leaf(N )), from Equation (8),
we have Vpq(α, β) = Vpq(α, γ) = Vpq(γ, β). Using this in
Equation (9) yields Vpq(γ, γ) ≤ Vpq(γ, β). Once again, we
obtain the statement of the theorem.

If γ 6= α 6= β and parent(p) = q, any feasible solution
must have β = ξ, otherwise Vpq(α, β) = ∞ from Equation
(4). Also, γ 6= β = ξ, implying that Vpq(γ, β) = Vpq(γ, ξ) =
Vpq(α, ξ). Replacing β by ξ in Equation (9), and using the
above formula, we get:

Vpq(α, ξ) + Vpq(γ, γ) ≤ Vpq(α, γ) + Vpq(α, ξ)

⇒ Vpq(γ, γ) ≤ Vpq(α, γ),

which finishes the proof.
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Finally, the case when γ 6= α 6= β and p = parent(q)
follows by symmetry.

In words, the above result states that the cost of merging
two nodes to the same label must always be lower than the
cost of breaking them apart. This implies, in turn, that if
we have two nodes that we believe should belong to separate
segments, then the pairwise costs Vpq cannot be used to
encode this. The only way to do this is via the Dp(·) term
and our choice of L.

The form of Dp(·) and Vpq(·, ·). Consider a pair of nodes
p and q that we believe should be separated in the final seg-
mentation. Instead of pairwise costs, we can encode this
by saying that their single-node costs Dp(α) and Dq(α) are
very different for any label α, and Dp(·) and Dq(·) achieve
their minima at different labels. Hence, any segmentation
that maps them to the same label would pay a high price in
terms of single-node costs. We encode this by using all in-
ternal nodes of the DOM tree as the set L of labels (plus the
“invisible” label ξ), and constructing Dp(α) so that it mea-
sures the distance between the feature vectors corresponding
to the node p and the internal node (label) α.

This particular choice of L has several advantages. First,
it is available before the segmentation algorithm needs to
run, and so a pre-defined set of labels can be provided to
the algorithm as input. Second, since the labels are nodes
themselves, the feature vectors we use for the nodes p can
immediately be applied to them as well. Third, the labels
are “tuned” to the particular webpage being segmented; for
any statically chosen set of labels, there would probably ex-
ist many webpages where the labels were a poor fit. Finally,
the most common reason behind a desire to separate nodes p
and q in the final segmentation is that their feature vectors
are very distinct; in this case, they will typically be close
to different labels, leading to a segmentation that separates
them. Thus, the form of Dp(·) and the chosen label-set act
as a cost function trying to separate nodes with distinct
properties, while Vpq(α, β) with α 6= β provides a push to-
wards putting them together. Vpq(α, α) does not serve any
purpose, so we set it to zero:

Vpq(α, α) = 0 ∀α ∈ L.

Algorithm. Our algorithm GCuts is based on the algo-
rithm in [5, 15]. We start with a trivial segmentation map-
ping all nodes to an arbitrary visible label: S0 : N → L\{ξ}.
Then, we proceed in stages, called α-expansions. In each α-
expansion, we pick a label α ∈ L, and try to move subsets
of nodes from their current labels to α so as to lower the ob-
jective function. The optimal answer for each α-expansion
can be found using the minimum s-t cut of a graph, whose
construction we will describe shortly. Note that this is the
stage where the graph-representability of the energy func-
tion becomes critical. After the best max-flow cut is found,
nodes connected to s have their labels unchanged, while
nodes connected to t have their labels changed to α. Now,
α-expansions are iteratively performed for all possible labels
α ∈ L until convergence. This algorithm produces a solution
that is within factor two of the optimum [5].

Now, we describe the construction of the graph that is
specific to segmentation. Define P (s) and P (t) to be two
sets of nodes, with each parent node p ∈ N \ leaf(N ) being

p pα β

s

p

D (  ) − D (  )

t

s

p

x

z
q

y

u(t)

s

t

q3q1 q2

c c c

c

c

c c c

u(s)

Figure 1: Representing single, pairwise leaf-node
costs (assuming x, y, z > 0), and parent-child costs.

represented once in each of the two sets. We start with an
empty graph of nodes V = leaf(N )∪P (s)∪P (t)∪{s, t}. The
graph construction proceeds in three stages. The first stage
handles the single-node costs. Consider a node p, currently
with a label β. If Dp(α) > Dp(β), then add an edge s → p
with weight (Dp(α) −Dp(β)), else add an edge p → t with
weight (Dp(β)−Dp(α)). This construction is performed for
all nodes p ∈ N (Figure 1, left).

Pairwise costs between leaf nodes are handled in the sec-
ond stage. Consider a pair of nodes p, q ∈ leaf(N ) that are
visually rendered as neighbors. Let their current labels be β
and γ respectively. We compute the following three values:

x = Vpq(α, γ)− Vpq(β, γ),

y = Vpq(α, α)− Vpq(α, γ),

z = Vpq(β, α) + Vpq(α, γ)− Vpq(β, γ)− Vpq(α, α).

If x > 0, we increase the weight of the edge s → p by |x|,
otherwise we increase the weight of the edge p → t by |x|. If
the edge did not already exist, it is assumed to have existed
with weight 0. Similar edges are added for node q with
weight y. Finally, we add edge p → q with weight z (z > 0
by the graph-representability of the objective). This process
is repeated for all ordered pairs p, q ∈ leaf(N ) (Figure 1,
middle).

While parent-child pairwise relationships could theoreti-
cally have been handled just as for pairs of leaf nodes, the
graph generated in that fashion has the following problem.
Consider one parent DOM node with many children. Sup-
pose in a particular iteration of our algorithm all the children
as well as the parent are labeled β, but the minimum en-
ergy would be obtained by having half the children labeled
as γ (and the parent as ξ). This configuration will never be
found via iterated α-expansions: an α-expansion with α set
to γ will fail since the parent cannot be set to ξ in the same
step (without which some parent-child pairwise cost would
become ∞). Similarly, an α-expansion with α set to ξ will
fail, since all the children will remain in label β, and then it
is cheaper for the parent to remain in β as well.

Thus, we handle pairwise parent-child costs in a differ-
ent fashion, and this constitutes the third stage of graph
construction. Consider a parent node u, and its children
Q = {q1, . . . , qk}. Let u(s) and u(t) be the nodes corre-
sponding to u in the nodesets P (s) and P (t) respectively. Let
c =

P
q∈Q Vqu(S(q), ξ) be the total cost incurred for moving

parent u to the invisible label ξ. Then, we add the follow-
ing edges to the graph, all with weight c: s → u(s), u(s) →
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qi(∀i ∈ 1 . . . k), qi → u(t)(∀i ∈ 1 . . . k), and u(t) → t (Fig-
ure 1, right). It can be shown that this construction handles
parents in the correct fashion (proof omitted in this version).

4.3 Functional forms and learning of weights
So far, we have described cost functions to score the qual-

ity of segmentations as well as gave algorithms to optimize
them. These cost functions can be decomposed into two
principal types of expressions. In GCuts, Dp(α) is used
to denote the cost of assigning label α to a node p, while
Vpq(α, β) is cost of assigning label α to node p and label β
to node q, when p & q are visually adjacent on a webpage.
In the CClus algorithm, these pairwise costs are between
all pairs of nodes irrespective of whether they are adjacent
or not. In this section we will describe in detail the forms of
these costs and how we learn their parameters from labeled
data.

Node features. The cost functions compute the costs of
placing nodes together or apart in the final segmentation
taking into account certain features of nodes. For instance,
if two nodes are far apart in the visual rendering of the
webpage, all things being equal, we should have to pay a
large cost if we want to place them in the same segment.
However, the cost for placing them together should reduce
if they share the same background color. On the flip side,
even if two nodes are visually adjacent on the webpage, we
should have to pay a high cost to place them in the same
segment if they have text in dramatically different fonts or
font sizes. Hence, we need to define, as node features, cues
that help us compute the costs of placing a pair of nodes
together or apart.

We define two main types of features: visual and content-
based. The visual set of features include the webpage’s po-
sition on the rendered webpage, its shape (aspect ratio), its
background color, types, sizes, and colors of text, etc. On
the other hand, the content-based features try to capture the
purpose of the content in a DOM node. For instance, they
include features such as average size of sentences, fraction
of text within anchors, DOM nodes, tagnames, etc.

Learning from labeled data. Once feature values have
been extracted for the nodes and the labels, we use ma-
chine learning tools to estimate the weight of each feature
when assigning a cost for placing a pair of nodes together or
away. The particular method used for learning depends on
the form of the cost function. However, all methods learn
the cost functions using the same set of manually labeled
webpages. In a manually segmented webpage each DOM
node is assigned a segment ID.

Learning Dp(·) in GCuts. As mentioned before, the
Dp(α) cost in GCuts computes the cost of assigning DOM
node p to a particular label α. The DOM nodes and the label
can both be represented as a vector of features and cost of
assignment then can be computed as the Euclidean distance
between the two feature vectors. Given labeled data then
our problem can be formulated as learning a Mahalanobis
distance metric D such that the node p should be closer to
the label that it has been assigned to than to all other labels.
However, while the labeled data provides a segmentation of
the nodes in a webpage, they don’t provide the label for each

of the segments. Hence, we adopt the following indirect way
to learn the Mahalanobis distance metric D.

While the labeled data doesn’t give us the true label for
node p it does tell us which nodes Q are in the same segment
as p and which nodes Q′ are not. Consider nodes p and
q that are in the same segment according to the ground
truth. If our distance metric D′ assigns a very small distance
between p and q then it will also make sure that p and q are
close to the same labels (|D′(p, α)−D′(q, α)| ≤ D′(p, q) from
triangle inequality). Hence, we cast the problem of learning
a distance metric D between a node and a label as that of
learning a distance metric D′ that would make try to ensure
that pairs of nodes in the same segment are closer to each
other than pairs of nodes across segments.

In order to learn this metric D′ we employ a large mar-
gin method for learning a Mahalanobis metric using semi-
definite programming [19]. This approach tries to learn a
distance metric under which the k nearest neighbors of a
datapoint belong to the same class while datapoints belong-
ing to other classes are separated by a margin. In terms
of our application, the method ensures that the k nearest
neighbors to a DOM node (in terms of features) belong to
the same segment, while DOM nodes in other segments are
separated by at least a fixed distance. We will skip the
further explanation of the approach here due to paucity of
space, and the reader is referred to the original publication
for details.

Learning Vpq(·, ·) in GCuts and CClus. The Vpq(·, ·)
cost function for a pair of node p and q computes the cost of
placing the nodes in the same segment. Since, from our man-
ually labeled data we can determine for any pair of nodes
whether they should be in the same segment or not, we can
learn the parameters for Vpq in a more straightforward man-
ner than for Dp above. Hence, for all pairs of nodes that
are being included in the training set we obtain a class: 1
if the nodes are in the same segment, and 0 if they are not.
Also for each such pair of nodes we obtain a feature vector,
which represents tendencies of the nodes to occur together
or apart. Then the problem becomes the standard learning
problem of predicting the class based on the feature vector.
We learn this classifier using the Logistic Regression algo-
rithm [17], which has been shown to work well for two-class
problems such as this, and which outputs the probability
of belonging to one of the classes. We use this probability
value as the Vpq score for a pair of nodes.

There are subtle differences in how the pairs are chosen for
training when Vpq is being learned for GCuts and CClus.
In GCuts, Vpq is only defined over node pairs that are vi-
sually adjacent to each other, while for CClus we train Vpq

using all pairs of DOM nodes.

Learning λ values from validation-set. The two coun-
terbalancing costs in the objective functions that our algo-
rithms optimize are computed over a different set of entities.
For instance, in GCuts, Dp is added once for each node in
the graph, while Vpq is added once for each edge that is cut.
Hence, a trade-off parameter λ is needed. This parameter
is multiplied with Vpq in order bring the two costs into a
useful equilibrium. The value of λ is estimated by varying
it over a range while monitoring the changing segmentation
accuracy of our approaches over a validation-set of labeled
webpages.

382

WWW 2008 / Refereed Track: Search - Corpus Characterization & Search Performance Beijing, China



5. EXPERIMENTAL EVALUATION
Now we present an empirical evaluation of our segmen-

tation algorithms. First, we measure our system’s perfor-
mance on a set of manually segmented webpages. Our re-
sults indicate that the segmentations of webpages obtained
by our algorithm match our intuitive sense of how infor-
mation on a webpage is organized. Next, we evaluate the
importance of various aspects of our system such as parent-
child edges and the automatic learning of distance measures.
Finally, we end our evaluation by demonstrating that seg-
mentations output by our system can be used in a straight-
forward way to improve the accuracy of the duplicate web-
page detection task.

5.1 Accuracy of segmentation
In order to evaluate the accuracy of our system we ob-

tained a set of manually segmented webpages. We then ran
our algorithms on these webpages and compared the seg-
mentations generated by them with those obtained manu-
ally. Here we describe the results of these experiments.

Dataset used. We manually constructed a set of 1088 seg-
ments obtained from 105 webpages randomly sampled from
the Web. For each segment all elements of a webpage that
belong to it were marked out. These segments were then di-
vided into three datasets — training-set, validation-set, and
test-set — in, roughly, a 25:25:50 proportion respectively.
Care was taken to ensure that segments from a webpage all
belonged to only one of the datasets. Using procedures de-
scribed in Section 4.3 the training-set was used to learn the
distance measures used in both GCuts and CClus. Sim-
ilarly, by monitoring the segmentation performance on the
webpages in the validation set, we set the best values of λ
for each approach. Finally, all accuracy numbers reported in
this section were computed over the webpages in the test-set.

Evaluation measures. The segmentations output by our
algorithms group the visual content of webpages into cohe-
sive regions. As described above our test-data also consists
of a manually constructed grouping of visual elements of
a webpage. Hence, in order to evaluate the accuracy of
our segmentation algorithms we use measures that are com-
monly used in the machine learning literature to compute
the accuracy of clusterings w.r.t to ground truth.

The first such measure we use is the Adjusted RAND index
(AdjRAND) [12], which is a preferred measure of accuracy of
clustering [16]. The RAND index between two partitionings
of a set of objects measures the fraction of pairs of objects
that are either grouped together or placed in separate groups
in both partitionings. Hence, higher RAND index values
assigned to segmentations output by our algorithms (w.r.t.
to manually labeled segmentations) indicate better quality.
AdjRAND adjusts the values of RAND index so that it is
upper bounded by 1 and scores 0 for a random segmentation.

In order to further showcase the differences between our
algorithms we use Normalized Mutual Information as a sec-
ond measure of accuracy of segmentation. NMI, introduced
by Strehl and Ghosh [18], is the mutual information be-
tween two partitionings normalized by the geometric mean
of their entropies NMI(X, Y ) = I(X,Y )√

H(X)H(Y )
. As with Ad-

jRAND, higher values indicate higher quality, with 1 being
the maximum. NMI has been commonly used in recent work
for computing the accuracy of clustering algorithms.

(a) Cumulative distribution of AdjRAND scores for
webpages in the test-set.

GCuts CClus
λ = 0.5 λ = 0.6

AdjRAND 0.6 0.46
NMI 0.76 0.64

(b) Accuracy averaged over all
webpages in test-set.

Figure 2: Comparing segmentation performance of
GCuts and CClus.

Comparing GCuts and CClus. Here we present our
comparison of the accuracy of segmentations obtained by
GCuts and CClus algorithms. As mentioned above, the
best values of λ for both the algorithms was obtained using
the validation-set of webpages; for GCuts, λ = 0.5 while
for CClus, λ = 0.6. The segmentation accuracies of the
two algorithms averaged over the webpages in the test-set
values are shown in Figure 2(b). As we can see, in terms of
both AdjRAND and NMI, GCuts far outperforms CClus.
The performance difference in terms of AdjRAND and NMI
are 30% and 18.75% respectively.

The results reported in Figure 2(b) are aggregate num-
bers over all webpages in the test-set. Now we break-down
the results on a per-page basis. In Figure 2(a) we plot the
cumulative percentage of webpages for which the segmenta-
tions output by the two algorithms score less than a certain
value in terms of AdjRAND. Hence, the approach for which
the bar graph rises faster from the left to right performs
worse than the other approach. As we can see, GCuts out-
performs CClus by a large margin. For example, GCuts
scores less than 0.3 in AdjRAND for only 5% of all web-
pages in the test-set. The corresponding number for CClus
is around 27%. On the flip side, GCuts scores higher than
0.6 in AdjRAND for around 50% of all webpages while for
the CClus algorithm this number is less than 20%.

In Figure 3 we plot the average accuracy of segmenta-
tions obtained by both algorithms on the test-set documents
against varying values of λ. As we increase λ, the costs for
separating contents of the webpage into segments increase
and the results tend to have fewer segments. Similarly, de-
creasing λ increases the costs for placing content together
in a segment, and hence segmentations tend to have more
numerous and smaller segments. In the extreme cases, very
large (or very small) λ results in just one segment (or as
many segments as nodes). As we can see in Figures 3(a)
and 3(b), varying λ results in segmentations that vary widely
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(a) GCuts

(b) CClus

Figure 3: Performance of GCuts and CClus aver-
aged over the test-set webpages with varying λ.

in accuracy. Moreover, the values for λ that result in best
accuracy seem to be similar to those predicted by using the
validation set: 0.5 for GCuts and 0.6 for CClus.

Impact of parent-child edges. As we have previously
seen, GCuts outperforms CClus by a significant margin.
In this section we ask how much of this performance boost
is due the fact that GCuts is able to use parent-child rela-
tionships from the DOM tree in constructing segmentations
while CClus only operates on the leaf-level graph. Here we
use GCuts-NP to denote the use of GCuts with parent-
child edges given zero weight.

As we explained in Section 3 we believe the addition of
appropriately weighted parent-child edges to the leaf-level
graph should help in obtaining a better segmentation. This
is because parent-child edges are constructed by the creator
of the page and hence implicitly encode some cues about how
the page-creator wanted to structure information. More-
over, the similarity and dissimilarity between content is com-
puted by comparing content properties such as fraction of
links per word, font sizes, etc. The values for these proper-
ties are much more robust at high level DOM nodes, which
contain sufficient text or occupy sufficient visible area, than
at the leaf-level.

Figure 4 reports the results of running GCuts-NP on
test-set webpages with the appropriate value of λ learned
from the validation set (λ = 1). As we can see from Fig-
ure 4(b), removing the parent-child edges results in a de-
crease in accuracy of segmentation. The decrease is around

(a) Cumulative distribution of AdjRAND scores for
webpages in the test-set.

GCuts GCuts-NP
λ = 0.5 λ = 1

AdjRAND 0.6 0.53
NMI 0.76 0.73

(b) Accuracy averaged over all web-
pages in test set.

Figure 4: Examining the effect of parent-child edges
on segmentation performance.

Figure 5: Performance of GCuts with parent-child
edges disabled averaged over test-set webpages with
varying λ.

10% in terms of the AdjRAND metric and around 5% in
terms of term of NMI. This shows that being able to in-
corporate parent-child edges is essential to obtaining good
webpage segmentation. Another interesting observation is
that the accuracy of GCuts-NP is still better than the ac-
curacy of the CClus algorithm. This shows that the perfor-
mance improvements of GCuts over CClus are only par-
tially due to the use of parent-child edges by GCuts. Fi-
nally, in Figure 4(a), we show the comparison of the GCuts
and GCuts-NP at the level of webpages. While GCuts
clearly outperforms GCuts-NP, the performances are sim-
ilar towards the higher end of scores.

Figure 5 shows the performance of GCuts-NP averaged
over webpages in the test-set for varying values of parameter
λ. An interesting observation is that averaged performance
of GCuts-NP peaks at a λ value which is higher than that
for GCuts. This is because the removal of some parent-
child edges from the cost function changes the two parts of
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GCuts GCuts-NL
λ = 0.5 λ = 1.5

AdjRAND 0.6 0.52
NMI 0.76 0.73

Table 1: Segmentation accuracy of GCuts and
GCuts-NL averaged over all webpages in test set

the cost function by different amounts. Since each parent
contributes only once to the Dp part of the cost but as many
times as the number of its children to the Vpq part of the cost,
the absence of parent-child edges reduces the Vpq part more.
Hence a larger λ is needed to obtain the right equilibrium
between the two counterbalancing parts of the cost function.

Impact of learning of weights. Recall that the Dp cost
takes the form of a Mahalanobis metric, while Vpq take the
form of weighted sums of features passed to a sigmoid func-
tion. As described in Section 4.3 the Mahalanobis metric
is learned using a metric learning algorithm [19] and the
feature weights for Vpq are learned using Logistic Regres-
sion [17]. Instead of learning the parameters from labeled
data, however, we could have used the Euclidean metric and
a uniformly weighted sum of features in the two cases re-
spectively. Here we measure the accuracy gains achieved by
learning the distance measures used in GCuts and CClus.

Here, by GCuts-NL we denote our GCuts algorithm run
with Dp and Vpq functions set without learning as mentioned
above. Similarly, for CClus-NL too we replace the Vpq

as mentioned above. The best values of λ for GCuts-NL
and CClus-NL are still computed using the validation-set
webpages.

Table 1 compares the accuracy of segmentations obtained
by GCuts and GCuts-NL. Both the AdjRAND and NMI
measures indicate a gain in segmentation accuracy for GCuts
over GCuts-NL, agreeing with our intuition that data-based
learning of the distance function helps the algorithm. For
CClus-NL, the segmentation completely fails when the Vpq

is used without learning, and so its results are not reported.
The results on these experiments show that learning the pa-
rameters of the distance function from labeled data is critical
to the performance of our algorithms.

5.2 Applications to duplicate detection
Duplicate webpages use up valuable search engine resources

and deteriorate the search user-experience. Consequently,
detection of these duplicate webpages is an active area of re-
search by search engine practitioners [4, 6]. In this section,
we will use this application to showcase the performance of
our webpage segmentation algorithms.

Webpage segmentation for duplicate detection. Most
duplicate detection algorithms rely on the concept of shin-
gles [6], which are extracted by moving a fixed size window
over the text of a webpage. The shingles with the smallest
N hash values are then stored as the signature of the web-
page. Two webpages are considered to be near-duplicates if
their signatures share shingles. Moreover, typical shingling
algorithms consider all content on a webpage to be equally
important: shingles are equally likely to come from any part
of the webpage.

This is problematic because a significant fraction of con-
tent on webpages is noisy [11]. These types of content, typ-

Total Pairs GCuts CClus FullText

Duplicate 1711 1056 587 529
(61.7%) (34.3%) (30.9%)

Non- 1707 1706 1620 1515
Duplicate (99.9%) (94.9%) (88.7%)

Table 2: Number of duplicate and non-duplicate
pairs detected by the shingling approach upon us-
ing content in largest segment found by removing
the noisy segments detected by GCuts and CClus.
FullText indicates all text in the webpage was used.

ically navigation bars, copyright notices, etc., do not repre-
sent the core functionality of the webpage and should not
be used to compare whether two webpages are duplicates or
not. Moreover, such noisy segments often manifest them-
selves by being repeated across several pages on a website.
This might cause a shingling approach to consider two dis-
tinct webpages from the same website to be duplicates in
case the shingles hit the noisy content. Similarly, false neg-
atives might occur if two true duplicate webpages exist on
different websites with different noisy content. In this sec-
tion we use our segmentation algorithm as a pre-processing
step before finding shingles on the webpages. Moreover, we
only shingle the content that is contained within the largest
segment found on the webpage, working under the assump-
tion that the largest segment typically contains the infor-
mative content. As we will show next this simple approach
results in significant increase in the accuracy of duplicate
detection.

The method employed in this section is not proposed as a
duplicate detection scheme. In a realistic setting, one would
employ a function that would label each segment found by
our approach as informative or noisy content. Then all the
content within the informative segments will be used for
shingling. However, we wanted to isolate the performance
of only our segmentation approach without involving an ad-
ditional labeling function, and hence we chose to only use
the content within the largest segment for shingling.

The Lyrics dataset. We use the Lyrics dataset to demon-
strate the improvements given by our segmentation algo-
rithms when they are used as a pre-processing step to du-
plicate detection. The dataset is constructed by obtaining
webpages containing the lyrics to popular songs from three
different websites. Thus, we know a-priori that the webpages
from different websites containing lyrics to the same song
should be considered duplicates1. Moreover, we know that
webpages containing lyrics of different songs irrespective of
what website they come from should be considered non-
duplicates. The dataset consists of 2359 webpages from the
websites www.absolutelyrics.com, www.lyricsondemand.
com, and www.seeklyrics.com containing lyrics to songs by
artists ABBA, BeeGees, Beatles, Rolling Stones, Madonna,
and Bon Jovi. The artists were deliberately chosen to be
diverse to minimize the possibility of cover songs. In our ex-
periments in this paper we used 1711 duplicate pairs (web-
pages with lyrics of the same song from different websites)
and 1707 non-duplicate pairs (webpages with lyrics of differ-
ent songs from the same website) from the Lyrics dataset.

1Actually, these might only be near-duplicates, due to tran-
scription errors on the different pages. However, this affects
all algorithms equally.
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Experimental setup. While segmenting the webpages in
the Lyrics dataset we used the best settings of GCuts and
CClus found using the validation set in Section 5.1. Hence
GCuts was run with the setting λ = 0.5 and CClus with
λ = 0.6.

The standard shingling process was used. Before shin-
gling, all text on the webpage was converted to lowercase
and all non-alphanumeric characters were removed. The
window size used for shingling was 6 words, and 8 shingles
with the minimum hash values were used as the signature of
a webpage. A pair of webpages were tagged as duplicates if
their signatures shared at least 4 out of the 8 shingles. The
duplicate detection results are reported under 3 different set-
tings depending on the input to the shingling process: (1)
text content within the largest segment found by GCuts,
(2) text content within the largest segment found by CClus,
and (3) all text content on the webpage (FullText).

Results. The results from our experiments in this section
are presented in Table 2. The numbers in bold are the re-
sults of shingling after using GCuts as a pre-processing
step; we can recover around 60% of duplicate and almost
all non-duplicate pairs this way. Moreover, the performance
with GCuts for pre-processing is far better than the perfor-
mance with FullText: 100% improvement for Duplicate
Pairs and around 12% improvement for Non-Duplicate pairs.
Finally, we can see that GCuts significantly outperforms
CClus in terms of segmentation accuracy.

It should be noted that the Lyrics dataset is not repre-
sentative of the distribution of duplicate or non-duplicate
pairs on the Web and hence these improvements are not
directly translatable to the Web in general. However, this
dataset serves as a useful comparison for different segmen-
tation mechanisms that can act as pre-processing steps to
the shingling process. Finally, we must note that these im-
pressive gains in performance were achieved using the simple
heuristic of retaining the text contained in only the largest
segment. Therefore, more sophisticated methods for dis-
criminating between informative and noisy content (such as
in [8]) can be expected to give significant further improve-
ments when used to label the segments obtained by GCuts.

6. CONCLUSIONS
In this paper we studied the problem of webpage segmen-

tation. We proposed a combinatorial approach to this prob-
lem and considered two variants, one based on correlation
clustering and another based on energy-minimizing graph
cuts. We also proposed a framework to learn the weights of
our graphs, the input to our algorithms. Our experiments
results show that the energy-minimizing cuts perform much
better than correlation clustering; they also show that the
learning the weights helps improve accuracy. An interesting
future direction of research is to improve the efficiency of
the graph-cut algorithm for our special case. Another direc-
tion is to apply our algorithm in specialized contexts, such
as displaying webpages on small-screen devices.
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