
KeySurf: A Character Controlled Browser for People with
Physical Disabilities

Leo Spalteholz
Department of Electrical and

Computer Engineering
University of Victoria
Victoria, BC, Canada

V8W 3P6
leos@ece.uvic.ca

Kin Fun Li
Department of Electrical and

Computer Engineering
University of Victoria
Victoria, BC, Canada

V8W 3P6
kinli@ece.uvic.ca

Nigel Livingston
CanAssist

University of Victoria
Victoria, BC, Canada

V8W 3P6
njl@uvic.ca

Foad Hamidi
CanAssist

University of Victoria
Victoria, BC, Canada

V8W 3P6
foad@canassist.ca

ABSTRACT

For many users with a physical or motor disability, using a
computer mouse or other pointing device to navigate the web
is cumbersome or impossible due to problems with pointing
accuracy. At the same time, web accessibility using a key-
board in major browsers is rudimentary, requiring many key
presses to select links or other elements. We introduce Key-
Surf, a character controlled web navigation system which
addresses this situation by presenting an interface which al-
lows a user to activate any web page element with only two
or three keystrokes. Through an implementation of a user-
centric incremental search algorithm, elements are matched
according to user expectation as characters are entered into
the interface. We show how our interface can be integrated
with a speech recognition input, as well as with specialized
on-screen keyboards for people with disabilities. Using the
user’s browsing history, we improve the efficiency of the se-
lection process and find potentially interesting page links
for the user within the current web page. We present the
results from a pilot study evaluating the performance of var-
ious components of our system.

Categories and Subject Descriptors

H.5.2 [Information interfaces and presentation]: [User
Interfaces – Input devices and strategies.]; K.4.2 [Computers

and society]: [Social issues – Assistive technologies for per-
sons with disabilities.]

General Terms

Human Factors

Keywords

Web Accessibility, Keyboard Access, Web Navigation

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

1. INTRODUCTION
For people with physical or motor disabilities, using a

pointing device accurately can be difficult or impossible. As
modern graphical user interfaces (GUIs) are generally mouse
driven, much work has been done to facilitate accessibility
via the keyboard for those users unable or unwilling to use
a pointing device. In general, this has resulted in modern
GUI applications being efficiently accessible for both key-
board and mouse users. However, with the proliferation of
the web, more and more time is spent accessing web pages
and web applications via a web browser, instead of using
local applications.

For users without the option of using a pointing device,
manipulating the interface of web pages with a keyboard is
often very cumbersome. Although guidelines for web acces-
sibility – which include best practices for keyboard accessi-
ble design – have been developed by the Web Accessibility
Initiative [18], adoption rates amongst web authors are still
poor [8]. Currently, an alternative web navigation system
is only practically useful if it is compatible with an over-
whelming majority of popular websites, regardless of their
conformance to accessibility standards.

In previous work, we proposed a web navigation system
that laid the framework for efficient navigation on the World
Wide Web for any users able to use a keyboard or equivalent
device [15, 16]. This system, termed KeySurf, is based on
the concept of using a layered, incremental search mecha-
nism to select links and other clickable elements on a web
page. KeySurf generates a suitable textual description for
each clickable element and allows users to select these el-
ements by entering several characters with any keyboard-
equivalent input device. In this paper, we refine our in-
cremental search selection method, propose extensions that
help users discover potentially interesting content, and make
interesting content easier to select.

2. BACKGROUND
In addition to our work, the problem of navigating the web

for people with physical disabilities has been approached

31

WWW 2008 / Refereed Track: Browsers and User Interfaces April 21-25, 2008 · Beijing, China

from various angles. Schrepp surveyed the accessibility of
current websites for both mouse and keyboard users [14],
with the conclusion that while the state of website design
for mouse users was quite good, the majority of websites
are very cumbersome to navigate for keyboard users (using
the Tab key to move through links). For popular online
resources, even able-bodied keyboard users (simulated with
a GOMS model) required between 4 to 10 times as much
time to complete navigation tasks than mouse users.

The poor state of keyboard accessibility in major browsers
and most websites has prompted several implementations
of keyboard navigation systems based on automatically as-
signed keyboard shortcuts. For Firefox, the extensions Hit-
a-Hint [9] and Conkeror [7] are examples of such a technique.
With these systems, the user can press a key to bring up a
small numbered label beside every clickable element on the
page. By typing in the number code of the desired element
and pressing Enter, the system“clicks”on that element, thus
following the link or activating the button.

While these types of number code systems are quite effec-
tive, we believe the design imposes some limits on efficiency
and adds an extra cognitive step to the navigation process.
If the shortcut labels are not shown on page load, an extra
key press is required to show them; while if they are shown
on page load, the extra elements cause visual clutter and oc-
clusion problems when there are many labels. In addition,
there is no semantic connection between the keyboard short-
cut and the clickable element (for instance, the shortcut for
a link labeled “Sports News” would be something like 42).
A user must bring up the labels, make the connection be-
tween the numeric shortcut and the element, and then type
in the code. To the best of our knowledge, shortcuts are
assigned sequentially with no consideration for user history
or the relative importance of clickable elements.

Trewin et al. have approached the problem from a dif-
ferent perspective. Instead of attempting to provide a key-
board navigation system for web users with disabilities, they
proposed a method of steadying the mouse cursor such that
users are able to more accurately hit targets with the pointer
[17]. Bilmes at al. have provided an alternative to mechani-
cal cursor control entirely, by proposing a Vocal Joystick to
allow users to control a mouse pointer with continuous voice
control [1].

3. TARGET USERS
The KeySurf system is primarily designed for users with

a physical disability that have trouble accurately using a
pointing device (such as a mouse, joystick, or trackball) or
are not able to use a pointing device at all. More gener-
ally, the system is suitable for any user who can type two
or three characters (with a keyboard or equivalent input de-
vice) faster than they could acquire a small target (such as
a hypertext link or form button) with a pointing device.
For convenience, we refer to the process of entering char-
acters into the KeySurf interface as typing in this paper.
However, the interface can be controlled by any input de-
vice capable of textual output at some stage, be it a regular
computer keyboard, Morse code from a single switch device,
any specialized hardware or software for text input, or a
speech-based interface as discussed in Section 4.2.1.

Although the KeySurf system is primarily designed for
disabled users who are unable to accurately use a pointing
device, it can also be beneficial to non-disabled users who are

faster or more comfortable with keyboard input than mouse.
With the proliferation of mobile devices and public wireless
access points, it is often impractical to connect a computer
mouse to a laptop or hand-held device, potentially making
an efficient keyboard web navigation system very useful.

4. SYSTEM OVERVIEW
The relationship between the major components of the

KeySurf system are depicted in Figure 1. KeySurf compo-
nents can be logically classified as either part of the mech-
anism underlying link selection, or comprising the naviga-
tional support offered by the knowledge of user interests.
The visible user interface is minimal, thereby maximizing
available space for website display. KeySurf is independent
of the input device in the sense that it can be controlled
by any input device that is capable of producing character
output in some way. If information about which characters
are easiest to produce with the given input device is avail-
able (the Input Device Efficiency Model), it can be used to
generate more efficient labels for unlabeled elements on a
page.

The link selection mechanism relies on web page elements
from the current page being extracted, assigned a relative
priority for the current page, and unlabeled elements being
given a label before selection can be commenced. Once char-
acters are entered into the browser, the User Centric Search
module (Section 4.1) determines which element is most likely
to be that which the user intended, based on the character-
istics of the matching elements. Matches are marked by the
Match Highlighter module, with a green highlight for the
default match, and yellow for other possible matches.

As pages are loaded, the User Browsing History compo-
nent keeps track of user browsing activity such as page view-
ing time and key terms from web pages (Section 5.1.1). More
explicit indicators of user interest such as a user’s search
terms or pre-seeded interest keywords are taken into account
as well (Section 5.1.3). Web browsing history is used to
calculate the interest score corresponding to keywords from
extracted pages, which is used in conjunction with the el-
ements on a loaded page to suggest potentially interesting
links to users on long pages (Section 5).

4.1 User Centric Search
The concept of using incremental search to find text or

select links on a page is not new. For example, this type
of search is implemented in the Mozilla family of browsers
under the name of “Find As You Type” (FAYT). As the user
types a character, the system searches the page starting from
the top and focus the first text link that contains that letter.
The match is continuously updated as more characters are
typed. While this represents a marked improvement over
simply iterating through links linearly (which is common
in other major browsers), the matched links are often not
what a user expects. Since the FAYT algorithm does not
take the location of the matched substring into account, the
first match is often found somewhere inside a word of link
text, resulting in matches that do not necessarily correspond
well with the user’s expectations. By default, links are also
searched starting from the top of the page, resulting in a
jarring transition for users as the web page view jumps to
off-screen matches.

To improve on this approach, we have implemented a se-
ries of algorithmic constraints on the incremental search al-

32

WWW 2008 / Refereed Track: Browsers and User Interfaces April 21-25, 2008 · Beijing, China

Figure 1: KeySurf system overview.

gorithm to more accurately match the user’s expectation
of the link that should be selected given a certain query.
These constraints are best summarized as a set of relations
between which types of matches are prioritized over others.
Note that all following examples represent possible matches
given that the user has typed an upper case “S”.

1. Currently visible links before off-screen ones.

2. Visually prominent links before subtle ones. Web au-
thors often indicate important links with a larger font
or emphasized text.

ex. Search before Sports.

3. Same case matches before case insensitive. We assume
the upper case letter was deliberately chosen, since
upper case letters require additional effort to produce
with most input devices.

ex. Sybase before systematic.

4. Starting characters of link before others. Left to right
reading order suggests that the beginning of the link
text is the most logical location to start typing letters
when starting to select a link.

ex. Sports News before Download SDK.

5. Starting characters of words before other substrings.
Word boundaries present a more logical starting point
to begin typing than positions within words.

ex. Download SDK before Downloads.

Basic selection is accomplished using only these precedent
rules. If two or more elements cannot be separated by typ-
ing two letters, we provide a shortcut method to uniquely
select them with fewer keystrokes. For example, if the page
contains the links Download SDK and Download Sudoku,
typing “d” will highlight the first in green, while the second
link is highlighted yellow and the number “1” is overlaid in
a translucent box. Figure 2 shows an example of the three
possible types of element highlighting on a web page. With

only the rules previously mentioned, a user would have to
type“download su” to select the second link, which is clearly
not acceptable for users with low bandwidth key input.

Figure 2: Highlighted elements after typing “h”.

To select the second element with fewer inputs, the user
may either type the number one (1), or press the down arrow
key after they have typed “d”. These shortcuts were added
primarily for users with low bandwidth keyboard input, as
it establishes an upper bound of two keystrokes to select
any element (providing that the visible section of the page
does not contain more than 11 links with the same first
two characters, which is a valid assumption in most cases).
Users capable of faster character input retain the option of
typing just the letters of their desired link, which requires
less visual feedback (no processing of number overlays) at
the cost of some extra keystrokes. In the example given
above, an experienced user could also type “su” to select the
second link (due to constraint number 5).

4.2 Integration With External Input Devices
With prior knowledge of all possible selectable actions on

a page, it is possible to improve the performance of certain
types of input devices by constraining their set of possi-
ble outputs, and providing information about the relative
priority of characters. Although the additional information
provided by the KeySurf system can be used in any vir-
tual keyboard to improve word completion, this type of in-
tegration has the most benefit in ambiguous layout virtual
keyboards, which seek to improve typing efficiency by dy-
namically adjusting their layout based on the probability of

33

WWW 2008 / Refereed Track: Browsers and User Interfaces April 21-25, 2008 · Beijing, China

possible upcoming letters. These types of keyboards aim to
improve typing performance by making likely letters easy to
type. The Dasher project [19] and COGAIN’s Gazetalk [10],
as well as CanAssist’s Dynamic Keyboard [3] are examples
of such applications.

To facilitate the integration with input devices, our sys-
tem exposes the labels for all elements extracted from the
current web page, as well as their corresponding relative pri-
ority. Any virtual keyboard or other dynamic input device
may access these data to improve performance for the task
of typing characters to select an element. As a proof of con-
cept, we have begun implementing two interfaces using these
data: one using a speech recognition engine (Section 4.2.1),
and one using CanAssist’s Dynamic Keyboard (depicted in
Figure 3).

Figure 3: The interface of CanAssist’s Dynamic

Keyboard.

The CanAssist Dynamic Keyboard presents only five large
buttons containing the letters of the English alphabet, which
enables users to easily click buttons even with a very inaccu-
rate pointing device (such as a head mouse or eye tracking
system). During normal operation, the Dynamic Keyboard
uses a statistical language model to filter the available let-
ters, and move the most likely letters into their own buttons
(such that they can be selected with one click). This re-
arrangement can decrease the required pointer movement
and number of clicks per character. When the Dynamic
Keyboard is used to control KeySurf, the standard language
model is replaced by a language model generated from the
exposed website text and priorities. As there are far fewer
distinct letter sequences on a web page compared to the en-
tire English language, the probability of likely letters having
their own button is much higher than with a complete lan-
guage model, which reduces the required number of inputs
to produce characters.

4.2.1 Integration With Speech Recognition

For users unable to use a keyboard or pointing device but
able to verbalize their intentions, an alternative is the use
of a voice controlled interface. Although consumer speech
recognition tools have improved dramatically in recent years,
recognition accuracy for dictation is still an issue if the en-
gine is not adequately trained or users have difficulty with
clear pronunciation. However, it is clear that speech recog-

nition accuracy and speed can be improved by restricting
the recognition vocabulary to small sets and minimizing the
word length of commands [2, 12]. Given our objective of se-
lecting page elements with KeySurf, we constrain the recog-
nition set to only those words appearing in the link text and
generated labels on the current page. Thus, a user can di-
rectly select a link or other element by speaking words in
its name. Several similar interfaces have been developed in
the past, beginning with speech integration for the Mosaic
browser over ten years ago [11].

While the active vocabulary generated from each page is
small, any word in the page’s language can occur in this set,
which dictates that users be able to clearly pronounce a very
wide range of words. In a study by Christian et al. com-
paring the performance of a direct selection voice browser
with mouse interaction for non-disabled users, few recogni-
tion errors were encountered [4]. However, the tested pages
contained less than five visible links at a time, while modern
web pages being displayed on high resolution screens can
present dozens of selectable elements. In addition, words
appearing in link text must be recognizable by the speech
engine, which is often not the case for proper nouns or ab-
breviations. These limitations make direct selection systems
unsuitable for users with disabilities who have difficulty with
clear pronunciation, or who can only pronounce a small set
of words with sufficient clarity to be recognized by speech
recognition engines.

An alternate voice interface is simple voice spelling. As
selecting any element with the KeySurf system is designed
to require only two or three characters, recognizing a whole
word is more than is required to uniquely select an element.
To represent the letters of the English alphabet, we use a
slightly modified version of the NATO Phonetic Alphabet
(Alpha, Bravo, etc.) which allows much more robust recog-
nition than using the letters directly. This initial alphabet
serves as a good starting set, but letters can be mapped to
any word that is distinct from other words in the set and
that a user is able to pronounce clearly. The addition of
numbers and some common browser commands gives a final
vocabulary size of 47 words. We use the CMU Sphinx speech
recognition engine [6] to recognize user commands and con-
vert them to the appropriate character. These characters
are then transmitted to KeySurf, where they are treated the
same as any other text input.

We conducted a small scale user study involving 32 users
of varying age (20 to 60 years), gender and ethnic back-
ground to assess the accuracy of the untrained Sphinx speech
recognition engine on our set of words. Users achieved an ac-
curacy of 94% on the first attempt. We anticipate that even
higher recognition rates can be achieved with more advanced
speech engines. This shows that the simplified spelling inter-
action combined with the KeySurf system has the potential
to be a very robust yet efficient voice browsing alternative.

4.3 Accessing Bookmarks
For the most part, the major web browsers provide ade-

quate keyboard shortcuts for common web browser actions
(Back/Forward, Bookmark page, etc). For these common
actions, no additional support is necessary to facilitate use
by people with disabilities. Accessing bookmarks, however,
is usually quite cumbersome, with users having to manually
scroll through each bookmark entry in the menu to locate
their desired bookmark (with a bidirectional menu contain-

34

WWW 2008 / Refereed Track: Browsers and User Interfaces April 21-25, 2008 · Beijing, China

ing n bookmarks, activating a bookmark requires on average
at least n/4 + 3 keystrokes, depending on the exact organi-
zation of items in the menu). Accessing even a moderate
number of bookmarks can be slow.

To address this problem, we have extended our link se-
lection process to also select from bookmarks. Since book-
marks can be represented as simple textual links, the same
selection process applies as to that for web pages. If the
user activates the “Bookmarks Mode” (via the “.” key), the
system renders all of the user’s bookmarks on a single page,
grouped by folder. Individual bookmarks can then be se-
lected by typing letters as normal. This system places an
upper limit on the number of required keystrokes to activate
a given bookmarked site to four keys (one key to show the
bookmarks, and a maximum of three to activate any link,
providing that all bookmarks can be rendered on a single
page).

5. BRINGING INTERESTING PAGES

CLOSER
Scrolling through long pages to find interesting content

requires many repeated key activations, which can represent
significant effort for users with low bandwidth input. To
go beyond a navigation system for visible content, we have
developed an addition to the KeySurf system to help the
user find interesting content on long pages. After a page
loads, we use our estimation of user interest (Section 5.1)
to suggest a number of links that may be interesting to the
user. If interesting links are found on the page, they are
displayed beside the loaded web page in a list. These links
serve to highlight sections of pages that may be of interest
to users, thus potentially saving time when searching a page
for relevant information. In addition, the links are numbered
to allow fast access using the same selection process as for
regular elements on the main page. Links in the side bar
are displayed with a small amount of surrounding text to
assist users in assessing the context of the link and making
a decision about whether to select it. A screen capture of
the browsing interface showing the suggested links bar is
depicted in Figure 4.

Figure 4: KeySurf interface showing suggestion bar.

For each word in each link on the page, the system queries
the keyword list to find a match (Section 5.1.2). If a word
cannot be located in the keyword list, it is stemmed (using
a JavaScript implementation of the Porter stemming algo-
rithm [13]) and the lookup is repeated. The score of each

word in the set defined by the intersection of the current
link text (L) and the keyword list (K) is summed to pro-
duce the link score LS = ΣKS(ki) where KS(ki) is the
keyword score for each keyword ki ∈ L ∩ K. For perfor-
mance reasons, we only check the highest priority elements
in the keyword list when calculating the keyword score for
link words on the page. The link interest scores are used to
determine interesting links in the suggestion bar.

5.1 Inferring User Interest
The browsing enhancement features of the KeySurf sys-

tem rely heavily on having a good estimate of the user’s
interests. To determine what may be of interest to the user,
we look at various aspects of a user’s browsing history, such
as pages visited, page activity, and topics searched. These
interest indicators are discussed in detail in the following
sections. Logging these interest indicators and computing
the estimated user interest scores has minimal impact on
browsing performance, as processing is performed after a
page has loaded and the user is not actively interacting with
KeySurf.

5.1.1 Page Interest Score

As other authors have noted, while it may be more accu-
rate to explicitly query the user about their degree of inter-
est in visited pages or general topics, the rating process is
too intrusive and time consuming for most users. Especially
when considering the target population, where any selection
requires significant effort, explicit ratings are not feasible.
To address this problem, there has been significant prior
work in the area of implicitly determining user interest based
on a user’s browsing history. Previous approaches have at-
tempted to find a correlation between a user’s interests and
various factors such as page viewing time, scrolling time,
mouse clicks, and related activity (bookmarking, printing).
In a user study comparing explicit ratings with observed
factors, Claypool et al. concluded that time spent viewing
a page and the total time spent scrolling provide the best
indicators of interest in that page [5].

Since one of the goals of our system is to reduce scrolling
time by bringing interesting links to the top of a page, mea-
surements of scrolling time may no longer accurately reflect
user interest. Thus, page interest scores are calculated based
on the maximum amount of time spent viewing a page in
the user’s web history. Web page viewing times do not accu-
mulate if a user revisits the same page at a later date. This
prevents often loaded pages (such as the user’s home page)
from dominating the page viewing times, even though each
session may only last a few seconds. Additionally, pages
that are visited repeatedly often contain very dynamic con-
tent (news sites present a prime example), such that key
terms may change at every visit, and the page viewing time
for the previous visit cannot be meaningfully added to the
current viewing time.

We define page viewing time as the time elapsed between
when a page is rendered by the browser and the time just
before the page is hidden from view (either by navigating to
a new page or closing the browser). By only measuring time
after a page is rendered, we exclude the variable loading time
due to network congestion and page size. To detect when
a user is actively viewing a page (versus being distracted
by external events), we keep track of input activity (mouse
movements, key presses, and mouse clicks) while a web page

35

WWW 2008 / Refereed Track: Browsers and User Interfaces April 21-25, 2008 · Beijing, China

is open. If there are no input events for 2 minutes, the page
timer is paused until another input event occurs. To cal-
culate page score PS, we normalize page viewing times by
defining a maximum viewing time of 20 minutes as maxi-
mum interest, and scaling times to this maximum to obtain
page scores between 0 and 1.

5.1.2 Web Page Keyword Ranking

The keyword extraction and scoring algorithm is executed
on every web page visited by the user, starting from the time
the page is initially displayed by the browser. The algorithm
steps are as follows:

1. Web page loads and is displayed to the user.

2. System begins recording page viewing time (See Sec-
tion 5.1.1).

3. Web page is converted to plain text format, and pro-
cessed by a keyword extraction algorithm. To extract
keywords from the document, we make use of the Term
Extraction Service, part of Yahoo! Search Web Ser-
vices [20]. This allows us to send plain text docu-
ments to the web service using XMLHttpRequest and
retrieve a set of key terms. Although details of the al-
gorithm are not available, the use of the Term Extrac-
tion Service has the benefit of not requiring complex
term extraction algorithms and supporting data to be
implemented on the user’s computer. Users in need
of assistive technology often do not have the resources
for high performance computing hardware, and mini-
mizing the computational requirements of our system
is an important factor in its utility. In the future we
may implement a keyword extraction component on
our own servers to realize more control over the ex-
traction process.

4. Web page is closed (by navigating to another page).

5. Page score PS is calculated from the recorded user
activity on the page.

6. Keywords are assigned a normalized weight based on
their relative importance in the page (W1..Wn for the
n keywords on the page). Relative importance is deter-
mined by the keyword extraction process. Currently
we weight keywords from highest to lowest in the order
they are returned from the Term Extraction Service.

7. The keyword scores in the keyword list are updated as
follows:

• For each keyword that appeared on the current
page, a keyword score KSi is calculated from the
current page score PS and the keyword’s relative
importance Wi as follows:

KSi = PS ∗ Wi

Keyword scores are added to the keyword list us-
ing the incremental mean formula:

MKS(n + 1) = KSi +
n ∗ MKS(n)

n + 1
(1)

Where MKS(n) (Mean Keyword Score) is the
value previously stored in the keyword list and
n is the number of pages where this keyword has

occurred. Note that if the keyword does not ex-
ist in the list, the second term will be zero and
the keyword will be added with an initial score of
KSi. The value of n is incremented in the list for
each of these keywords.

• If a keyword on the list is not present on the cur-
rent page, its score in the list is reduced by a
constant aging factor A, where 0.9 < A < 1.0.
The aging factor is introduced to bias the list of
keywords to more recent user interests, and to en-
sure that isolated high interest keywords do not
dominate the top of the list. This factor is chosen
empirically to balance prioritizing newer interests
with maintaining long term interests in the list.

5.1.3 User Searches

A more direct indicator of user interest is search terms
entered into search engines or the search fields of other web-
sites. As we detect these search terms, they are processed
by the same keyword extraction algorithm as discussed in
Section 5.1.1. We treat these keywords similarly to those
extracted from visited pages. As there is no equivalent to
the page score for terms extracted from search fields, we add
these terms to the list with an empirically determined initial
score (close to 1).

The key to making effective use of data entered into web
forms is to differentiate between search fields and other text
input fields, such as those used for web based email interfaces
or other personal information fields commonly found on web
pages. To detect search fields, we compare the text entered
into text fields with the GET parameters of the next loaded
page. If a match is found, we assume that the text was a
search term and process it as an indicator of user interest.
Although this simple method cannot detect all search fields
(some custom search fields use POST to submit terms), all
major search engines are supported.

6. EVALUATION
To evaluate the performance and usability of our web nav-

igation system, we conducted testing to evaluate the quan-
titative navigation efficiency of the selection mechanism, as
well as the usability for users with disabilities.

6.1 Average Navigation Efficiency
Using the selection shortcut of the user centric search

method (Section 4.1), we determined the upper limit of the
keys required to uniquely select any element to be two (three
to activate). However, the actual number of keys necessary
on typical web pages depends on the distribution and text
of visible elements. As the number of visible elements in-
creases, the probability of the first character of a desired
link being unique amongst the starting characters of all visi-
ble links on the page decreases. Due to the default selection
that allows the activation of the (green highlighted) link even
if there are other matches, if there are n visible links starting
with the same character, then one link will be uniquely se-
lectable with one keystroke, while n−1 elements will require
two keystrokes (assuming that not more than 11 links start
with the same two characters). To find the average number
of required keystrokes, we implemented a modified version of
the KeySurf system that automatically loads randomly se-
lected web pages, and calculates the average keystroke cost
for each visible element on that page.

36

WWW 2008 / Refereed Track: Browsers and User Interfaces April 21-25, 2008 · Beijing, China

The system analyzed a set of 726 unique web pages, chosen
randomly by the system by following links from several root
sites (various popular web portals). Results are shown in
Figure 5.

Figure 5: Average required keys per element selec-

tion.

The average number of visible elements (elements visible
on page load) was 66.4, with each element requiring on av-
erage 1.63 keys to select. Activating an element after it
has been selected adds one key, giving an average of 2.63
keys required to follow a link or activate another web page
element. Performance with page sequences from real user
sessions is expected to improve further over these results,
as KeySurf attempts to prioritize elements that the user is
likely to select.

6.2 Usability for People With Disabilities
To determine the usability of the system for those with

disabilities, we conducted preliminary testing to gather evi-
dence on how KeySurf performs for some representatives of
the target audience. This initial testing is aimed to com-
pare our system to the browsing method that study par-
ticipants are most familiar with. At this point we do not
aim to compare KeySurf to other keyboard navigation sys-
tems, as none of the participants were using such systems,
and we wanted to initially determine if KeySurf would be
an improvement over their usual browsing method. Partici-
pants are described in Section 6.2.1, the experimental setup
is detailed in Section 6.2.2, and results are presented and
discussed in Section 6.2.3.

6.2.1 Participants

We conducted our test on four persons with Cerebral Palsy.
Participant age varied from 17 to 35, with all participants
having experience using computers and navigating on the
web. Three participants used pointer based input devices
to navigate the web at home, while one used a regular key-
board. One participant was deaf and non-verbal but was
able to communicate by using sign language and reading
lips. One other participant was also non-verbal and commu-
nicated with a text to speech assistive device.

The test consisted of participants performing a web nav-
igation task with a pointer device using a regular browser,
and a keyboard device using KeySurf. Table 1 shows the

Subject User’s Accustomed Keyboard Device

Device

A Penny Giles Trackball Regular keyboard
B InfoGrip Joystick Plus Intellikeys USB
C Penny Giles Trackball Regular keyboard
D Regular keyboard Regular keyboard

Table 1: Input devices used by test subjects.

input devices used during the test by each user. Both the
pointer and keyboard devices were chosen individually for
each user to match the device they used at home as closely
as possible.

Subjects A and C used a large Penny Giles track ball de-
signed specifically for people with disabilities to control the
mouse cursor. Although pointing accuracy was a problem
for subject A due to difficulty with fine motor control, sub-
ject C was quite accurate at the expense of movement speed.
Subject B used a joystick to control the mouse cursor with
good accuracy and speed. Subject D was not able to use
any pointing device and used a keyboard for both tasks.

For interfacing with KeySurf, subjects A and C used a reg-
ular computer keyboard, on which they typed letters with
one finger, while subject B used a larger, pressure sensi-
tive keyboard designed for people with disabilities (Intel-
likeys USB). The plastic key guard for this custom keyboard
which subject B was accustomed to was not available during
testing, which slightly impaired his/her typing performance.
Subject D used a regular computer keyboard for both tests,
using his/her mouth to press keys. With an unmodified
browser, subject D presses the Tab key to advance the ele-
ment focus on web pages.

6.2.2 Experimental Design

We designed tests to measure the time necessary to select
a visible link using each subject’s accustomed input device
and compared it to the time required using KeySurf with
a character based input device (such as a keyboard). We
picked two sets of 12 Wikipedia articles with similar layout
such that one can navigate from page 1 to page 12 in each set
by following links. The two sets were chosen such that the
spatial location of each link leading to the next page was
similar between sets, but different in successive pages. In
other words, if LAi represents the location of the target link
in the ith page of set A, then LAi ≈ LBi and LAi 6= LAi+1.
Page content was not considered in our choice of articles.

Prior to commencing the test, operation of our system was
verbally explained to users. As some subjects have commu-
nication difficulties, the time required for this was variable,
but did not exceed five minutes. The steps required to select
a link with KeySurf were explained as follows:

1. Type the first letter of your link.

2. If your link turns green, press “Enter” to activate it.

3. If your link turns yellow with a number beside it, type
the number and press “Enter”.

4. If your link turns yellow without a number, type the
next letter in the link and press “Enter”.

Users were given time to practice selecting links on several
Wikipedia pages of their choice with both input methods

37

WWW 2008 / Refereed Track: Browsers and User Interfaces April 21-25, 2008 · Beijing, China

until they felt comfortable with both. Two random subjects
were assigned to start with KeySurf, while the other two
started with their usual method. Times for the selection
process on each page were recorded separately.

To test selection performance, the first page in a set was
loaded and the desired link was pointed out to the user (by
physically pointing at the link on the screen). At the same
time, a timer was started which measured the time the user
required to follow the link. The procedure was repeated
on all pages in the set and again using the other selection
method on the other set of pages.

6.2.3 Results and Discussion

Experimental results for each user are presented in Figure
6.

0

5

10

15

20

25

30

35

40

45

50

Subject A Subject B Subject C Subject D

A
v

er
a

g
e

L
in

k
 A

ct
iv

a
ti

o
n

 T
im

es
 (

s)

 .

Regular Browser

KeySurf

Figure 6: Mean link acquisition times with KeySurf

and unmodified web browser.

For users accustomed to using a pointing device to nav-
igate on the web, the resulting times show that the rela-
tive performance of KeySurf depends on the user’s typing
rate versus their ability to accurately control the on-screen
pointer. To determine the significance of the differences in
mean selection times, we performed independent T tests as-
suming unequal variances and a null hypothesis of no differ-
ence in means. P values for subjects A through D were 0.79,
0.014, 0.0042, and 0.0060, indicating that the null hypoth-
esis could be rejected with high confidence for all subjects
except A.

While the mean selection times for subject A were not
significantly different between methods, the range of values
is more constrained using KeySurf than with the pointing
device. This is due to the fact that subject A frequently
had problems with involuntary movement when controlling
the track ball. This led to highly variable selection times, as
some links could be selected very quickly, while others re-
quired several attempts. In contrast to this, subject A’s typ-
ing performance was quite constant, making selection times
with KeySurf much more predictable. However, more study
is necessary to determine if the use of KeySurf would be
beneficial to subject A.

Although subject C was accurate with the trackball de-
vice, performance with the KeySurf was significantly better,
with a mean time of 6 seconds versus 12 for the trackball

selection. In an informally extended testing session with
subject C, the advantage of KeySurf was found to increase
further for selection tasks that required scrolling, since with
the trackball the subject has to move to the scroll bars to
scroll down, and then move back to the web page content to
make a selection.

Subject B did not benefit from the keyboard selection pro-
cess used in KeySurf. In fact, mean link activation time with
the joystick was significantly lower than with the keyboard.
This result stems from the fact that subject B was very accu-
rate with the joystick, but had trouble accurately pressing
keys without the help of the plastic key guard. Although
KeySurf performance for subject B may increase with the
use of a better keyboard, we anticipate that for this subject
the regular pointing interaction is more suitable.

Since subject D already used a keyboard to navigate the
web, it was expected that any improved keyboard navigation
system would have a large effect on element activation times.
This was verified by our testing, where mean selection time
using KeySurf decreased by 60% over this subject’s accus-
tomed method. Subject D was very pleased with KeySurf
and has begun using the system at home.

7. FUTURE WORK
Although we hypothesize that the sidebar with suggested

links will be useful to find interesting content and to reduce
scrolling time, this component of our system remains to be
tested. Effective user testing of this component is difficult,
as the performance of the recommendation system depends
on an accurately populated interest keyword list for a given
user, which can only be obtained through regular use. We
are currently planning extended user testing, where users
will be asked to use the KeySurf system as part of their
home web browsing routine for a period of several weeks.
During this time, the system will record usage statistics such
as sidebar use, page activity, and element selection cost to
build a more accurate estimate of the system’s performance
for real world use.

An additional important factor determining the viability
of the KeySurf system is its perceived usability by users.
As KeySurf presents an interface that users are likely not
familiar with, qualitative feedback will be very important to
judge its value as a web navigation tool.

8. CONCLUSIONS
We have presented KeySurf, a novel character controlled

web navigation system designed for users with disabilities
that prevent them from accurately controlling a pointing de-
vice. By implementing several constraints on the matching
algorithm that prioritize likely elements, we improve on the
incremental search selection process and allow the user to
select any element on a web page with very few keystrokes.
Taking into account indicators of user interest, we provide a
link suggestion system to aid in finding interesting content,
and reduce the need for scrolling on long pages. Results
from a pilot study indicate that the KeySurf web navigation
system can significantly decrease selection time for people
who have difficulty with accurate pointer control, even if
their typing speed is slow.

38

WWW 2008 / Refereed Track: Browsers and User Interfaces April 21-25, 2008 · Beijing, China

9. REFERENCES
[1] J. A. Bilmes, X. Li, J. Malkin, K. Kilanski, R. Wright,

K. Kirchhoff, A. Subramanya, S. Harada, J. A.
Landay, P. Dowden, and H. Chizeck. The vocal
joystick: A voice-based human-computer interface for
individuals with motor impairments. In Human

Language Technology Conference and Conference on

Empirical Methods in Natural Language Processing,
Vancouver, October 2005.

[2] R. V. Buskirk and M. LaLomia. A comparison of
speech and mouse/keyboard GUI navigation. In CHI

’95: Conference Companion on Human Factors in

Computing Systems, page 96, New York, NY, USA,
1995. ACM.

[3] canassist.ca. CanAssist Dynamic Keyboard.
http://canassist.ca/dynamickeyboard/, Oct 2007.

[4] K. Christian, B. Kules, B. Shneiderman, and
A. Youssef. A comparison of voice controlled and
mouse controlled web browsing. In Assets ’00:

Proceedings of the 4th International ACM Conference

on Assistive Technologies, pages 72–79, New York,
NY, USA, 2000. ACM.

[5] M. Claypool, D. Brown, P. Le, and M. Waseda.
Inferring user interest. IEEE Internet Computing,
5(6):32–39, 2001.

[6] cmusphinx.org. CMU Sphinx: The Carnegie Mellon
Sphinx Project. http://cmusphinx.org, Oct 2007.

[7] conkeror.mozdev.org. Conkeror.
http://conkeror.mozdev.org, Feb 2008.

[8] S. Hackett, B. Parmanto, and X. Zeng. Accessibility of
internet websites through time. In Assets ’04:

Proceedings of the 6th International ACM

SIGACCESS Conference on Computers and

Accessibility, pages 32–39, New York, NY, USA, 2004.
ACM Press.

[9] hah.mozdev.org. Hit-a-Hint. http://hah.mozdev.org/,
Feb 2008.

[10] J. P. Hansen, A. S. Johansen, D. W. Hansen, K. Itoh,
and S. Mashino. Language technology in a predictive,
restricted on-screen keyboard with ambiguous layout
for severely disabled people. In EACL 2003, 2003.

[11] C. T. Hemphill and P. R. Thrift. Surfing the web by
voice. In MULTIMEDIA ’95: Proceedings of the 3rd

ACM International Conference on Multimedia, pages
215–222, New York, NY, USA, 1995. ACM.

[12] S. Oviatt. Interface techniques for minimizing
disfluent input to spoken language systems. In CHI

’94: Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, pages 205–210, New
York, NY, USA, 1994. ACM.

[13] M. F. Porter. An algorithm for suffix stripping.
Program, 14(3):130–137, 1980.

[14] M. Schrepp. On the efficiency of keyboard navigation
in web sites. Universal Access in the Information

Society, 5(2):180–188, 2006.

[15] L. Spalteholz, K. F. Li, and N. Livingston. Generating
efficient labels to facilitate web accessibility. In WWW

’07: Proceedings of the 16th International Conference

on World Wide Web, pages 1319–1320, New York,
NY, USA, 2007. ACM.

[16] L. Spalteholz, K. F. Li, and N. Livingston. Efficient
navigation on the world wide web for the physically
disabled. In Proceedings of the 3rd International

Conference on Web Information Systems and

Technologies, pages 321–326, Mar. 3-6, 2007.

[17] S. Trewin, S. Keates, and K. Moffatt. Developing
steady clicks - a method of cursor assistance for people
with motor impairments. In Assets ’06: Proceedings of

the 8th International ACM SIGACCESS Conference

on Computers and Accessibility, pages 26–33, New
York, NY, USA, 2006. ACM.

[18] w3.org. Web Accessibility Initiative (WAI) Home
Page. http://www.w3.org/WAI/, Oct 2007.

[19] D. J. Ward, A. F. Blackwell, and D. J. C. MacKay.
Dasher - a data entry interface using continuous
gestures and language models. In UIST ’00:

Proceedings of the 13th Annual ACM Symposium on

User Interface Software and Technology, pages
129–137, New York, NY, USA, 2000. ACM Press.

[20] yahoo.com. Content Analysis Web Services: Term
Extraction. http://developer.yahoo.com
/search/content/V1/termExtraction.html, Oct 2007.

39

WWW 2008 / Refereed Track: Browsers and User Interfaces April 21-25, 2008 · Beijing, China

