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ABSTRACT
Peer-to-Peer (P2P) applications continue to grow in pop-
ularity, and have reportedly overtaken Web applications as
the single largest contributor to Internet traffic. Using traces
collected from a large edge network, we conduct an exten-
sive analysis of P2P traffic, compare P2P traffic with Web
traffic, and discuss the implications of increased P2P traffic.
In addition to studying the aggregate P2P traffic, we also
analyze and compare the two main constituents of P2P traf-
fic in our data, namely BitTorrent and Gnutella. The results
presented in the paper may be used for generating synthetic
workloads, gaining insights into the functioning of P2P ap-
plications, and developing network management strategies.
For example, our results suggest that new models are neces-
sary for Internet traffic. As a first step, we present flow-level
distributional models for Web and P2P traffic that may be
used in network simulation and emulation experiments.

Categories and Subject Descriptors
C.2.2 [Computer-Communications Networks]: Network
Protocols; I.6.6 [Simulation and Modeling]: Model De-
velopment

General Terms
Measurement, Performance

Keywords
Web, Peer-to-Peer, Traffic Characterization, Traffic Models

1. INTRODUCTION
In the mid-1990s, a significant proportion of Internet traf-

fic was from applications that used HTTP, the standard
protocol for exchanging Web documents. The distinguish-
ing characteristics of Web-dominated Internet traffic include
small-sized flows, short-lived connections, asymmetric flow
volumes, and well-defined port usage. For the past decade,
these characteristics have underpinned the traffic models
used in network simulation and emulation experiments.

The introduction of Peer-to-Peer (P2P) file sharing appli-
cations, such as Napster in 2000, triggered a paradigm shift
in Internet data exchange. P2P applications typically share
large multimedia files with individual hosts (called peers),
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which act as both content providers and consumers. A peer
can obtain portions of a file concurrently from multiple peers
and/or obtain portions of the same file from a single peer
using one or more persistent connections. P2P usage has
grown steadily since its inception, and recent empirical stud-
ies indicate that Web and P2P together dominate today’s
Internet traffic [17,21].

In this paper we use recent packet traces, collected at
the gateway of a large university, to extensively characterize
and compare traffic generated by Web and P2P applica-
tions. Our focus is on characterizing the behaviors of these
applications at the flow-level and host-level. The goal of
this characterization is to develop flow-level distributional
models that may be used to refine models of Internet traffic
for use in network simulation and emulation experiments, to
provide insights into the similarities and differences between
Web and P2P traffic, and to obtain insights into how current
P2P applications work.

A distinguishing aspect of our work is the use of recent
full-payload packet traces. Popular P2P applications, in-
cluding BitTorrent, Gnutella, and eDonkey, are known to
use dynamic ports, in addition to well-known ports [6,11,20].
Identification of P2P traffic by default port numbers is likely
to miss a significant portion of this type of traffic. In fact,
our data suggests that as much as 90% of P2P traffic may
be on random ports. In this work, we utilize payload-based
signature matching to accurately identify P2P traffic.

Our study highlights the evolving nature of Internet traf-
fic due to growing P2P traffic. In addition to studying the
aggregate P2P traffic, we also analyze and compare two pop-
ular P2P applications: Gnutella and BitTorrent. This study
of individual P2P applications aids in understanding the ag-
gregate P2P traffic trends and also helps in understanding
how these two applications work. We consolidate our under-
standing of these traffic types by developing distributional
models for each type of traffic; these models can help re-
fine models of Internet traffic. We present high-level re-
sults and key observations from our study in Tables 1 and 2.
Table 1 summarizes the similarities/dissimilarities between
Web and P2P traffic, while Table 2 summarizes the similari-
ties/dissimilarities between Gnutella and BitTorrent traffic.

The remainder of this paper is structured as follows. Our
trace collection, traffic identification, and analysis method-
ologies are described in Section 2. Sections 3 and 4 present
flow-level and host-level characterization results, respectively.
Section 5 reviews related work. Issues related to trace data
collection and analysis are discussed in Section 6. Section 7
summarizes our contributions and lists future work.
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Table 1: Key results: Comparing Web and P2P traffic
Characteristics Web P2P Section

Flow Size Introduces many mice but few elephant flows. Introduces many mice and elephant flows. 3.1
Model: hybrid Weibull-Pareto distribution. Model: hybrid Weibull-Pareto distribution.

Flow Inter-arrival time Typically short inter-arrival time. Typically long inter-arrival time. 3.2
Distribution is long-tailed. Distribution is heavy-tailed.
Model: two-mode Weibull distribution. Model: hybrid Weibull-Pareto distribution.

Flow Duration Typically short-lived. Typically long-lived. 3.3
Model: two-mode Pareto distribution. Model: hybrid Weibull-Pareto distribution.

Flow Concurrency Most hosts maintain more than one concurrent
flow. Hosts maintain concurrent flows with a
few distinct hosts.

Many hosts maintain only one flow at a time.
Hosts that maintain more than one flow do so
by connecting with many distinct hosts.

4.1

Transfer Volume Large transfers are dominated by downstream
traffic. Heavy-hitters account for a large por-
tion of total transfer and their transfers follow a
power-law distribution.

Large transfers happen in either upstream or
downstream direction. Heavy-hitters account
for a huge portion of total transfer and their
transfers follow a power-law distribution.

4.2

Geography Most external hosts are located primarily in the
same geographic region.

External peers are globally distributed. 4.3

Table 2: Key results: Comparing Gnutella and BitTorrent traffic
Characteristics Gnutella BitTorrent

Flow Size Both small and large flows are observed. Elephants
are relatively more frequent.

Small flows are prevalent. Elephants are less fre-
quent, but comparatively large.

Distribution is heavy-tailed. Distribution is heavy-tailed.
Model: hybrid Lognormal-Pareto distribution. Model: hybrid Lognormal-Pareto distribution.

Flow Duration Typically short-lived. Typically long-lived.
Distribution is heavy-tailed. Distribution is long-tailed.

Flow Concurrency Peers mostly connect to a single host at a time. Peers maintain many concurrent flows with a large
number of distinct hosts.

Transfer Volume Transfers are extremely asymmetric and dominated by
single direction traffic. Heavy hitters account for less
volume of traffic.

Transfers are comparatively less asymmetric and
more balanced. Heavy-hitters contribute more traf-
fic volume.

Geography External peers are mostly concentrated in the same
geographic region.

External peers are from regions with broadband con-
nectivity.

2. METHODOLOGY

2.1 Trace Collection and Traffic Identification
The network traffic traces used in this work were collected

from the commercial Internet link1 of the University of Cal-
gary, a large research-intensive university with 28,000 stu-
dents and 5,000 employees. We used lindump2 running on
a dual processor 1.4 GHz Pentium system with 2 GB mem-
ory and 70 GB disk space to capture TCP/IP packets via
port mirroring.

Identifying P2P traffic correctly in the traces is a chal-
lenge. One approach, which has been used in some re-
cent P2P characterization studies [17,21,24], is to map net-
work traffic to applications using well-known port numbers.
However, many P2P applications including BitTorrent and
Gnutella use dynamic port numbers. This necessitated the
use of payload signatures [11,20] to identify applications.

We used Bro [15], an open source Network Intrusion De-
tection System, to perform the payload signature match-
ing. The built-in payload “signature matching engine” in
Bro was used to perform the mapping of network flows to
application types. We used the signatures described by Sen
et al. [20] and Karagiannis et al. [11]; details of our payload-
based identification scheme can be found in [6]. We identify
the start of a TCP flow using connection establishment se-
mantics (i.e., SYN-SYNACK-ACK packet transmissions) or by
the first packet transmission observed between hosts, and
end of a TCP flow after observing a FIN or RST packet. By
default, Bro considers a flow terminated if it is idle for more
than 900 seconds.

1
At the time of trace collection, the Internet link was a 100 Mbps

full-duplex connection.
2
http://awgn.antifork.org/codes/lindump.c

The payload-based identification technique requires traces
with relevant application-layer headers. The signature strings
for some P2P applications (e.g., Gnutella) can be buried
deep inside a packet [6]; therefore, successful string matching
requires full-packet payloads. This poses another challenge:
the huge storage space required for full-packet trace collec-
tion from a high-speed Internet connection for an extended
interval (e.g., a day or a week). For our work, we used non-
contiguous one-hour traces collected between April 6 and
April 30, 2006. The traces were collected each morning (9-
10 am) and evening (9-10 pm) on Thursday through Sunday
every week (i.e., eight one-hour traces per-week). Although
discontinuous traces limit the analysis of long-term traffic
behavior, we expect the traces to capture morning/evening
and weekday/weekend trends. Our methodology also cap-
tured behavioral aspects related to the academic calendar.

2.2 Trace Summary
The traces contain 1.12 billion IP packets totalling 639.4

Gigabytes (GB) of data. In this paper, attention is restricted
to only TCP/IP packets because these account for 84.4% of
the total packets and 92% of the total bytes in the traces.
Furthermore, Web and P2P applications such as Gnutella
and BitTorrent use TCP in most cases. In total, we consider
23.3 million TCP flows with 946 million IP packets and 588.3
GB of data.

Table 3 shows the breakdown by application type. Web
and P2P dominate in terms of bytes. Although P2P ac-
counts for only 2.8% of the total flows, it accounts for 33.1%
of the total bytes. The Unknown category includes HTTPS
(port 443), flows without payloads, and flows unclassified by
Bro. The Others category bundles together the remaining
traffic; the main contributors (by bytes) are email (5%), file
transfer (3%), and streaming (2%) applications.
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Table 3: Flow and byte count by applications

Application Flows % Flows Bytes (GB) % Bytes

Web 9,213,424 39.51 204.32 34.73
P2P 646,082 2.77 194.96 33.14

Unknown 9,275,013 39.77 68.42 11.62
Others 4,186,232 17.95 120.61 20.51

Total 23,320,751 100.00 588.31 100.00

Table 4: Flow and byte count for P2P
P2P Systems Flows % Flows Bytes (GB) % Bytes

Gnutella 137,024 21.21 151.51 77.71
BitTorrent 393,641 60.93 31.88 16.36
eDonkey 79,796 12.35 2.64 1.35

Other-P2P 35,621 5.51 8.93 4.58

Total 646,082 100.00 194.96 100.00

Table 4 categorizes the P2P flows present in our traces by
P2P application type. There are approximately 646,000 P2P
flows; these account for nearly 195 GB of traffic data. From
the table, we notice that BitTorrent has a lower byte-to-
flow ratio than Gnutella. Table 4 also reveals that although
eDonkey accounts for many P2P flows, the cumulative traf-
fic volume in bytes was relatively small. The Other-P2P
category consists of P2P applications that each contributed
less than 1% of the identified P2P flows.

2.3 Characterization Metrics
We consider three flow-level characterization metrics:

Flow Size – the total bytes transferred during a TCP flow.
Flows can be categorized as mice [25], buffalo [22] and ele-
phants [13]. We label flows as mice if they transfer less than
10 Kilobytes (KB), and as elephants if they transfer more
than 5 Megabytes (MB) of data. The rest are labeled as
buffalo.
Flow Duration – the time between the start and the end
of a TCP flow.
Flow Inter-arrival time – the time interval between two
consecutive flow arrivals.

We consider three host-level characterization metrics:
Flow Concurrency – the maximum number of TCP flows
a single host uses concurrently to transfer content.
Transfer Volume – the total bytes transferred to and from
a host during its activity period. Upstream transfer volume
is measured as the total bytes transmitted from an internal
host to the external hosts. Downstream transfer volume is
the total bytes received by an internal host from the hosts
external to the network.
Geographic Distribution – the distribution of the shortest
distance between individual hosts and our campus along the
surface of the Earth. This distance measure is known as the
great-circle3 distance.

2.4 Statistical Measures and Models
We use statistical measurements such as mean, median,

standard deviation, inter-quartile range (IQR), and skew-
ness to summarize trends of the sample data. Where neces-
sary, we also use the probability density function (PDF), cu-
mulative distribution function (CDF), and complementary
CDF (CCDF) of the sample data to obtain further insights.

3
http://en.wikipedia.org/wiki/Great-circle_distance
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Figure 1: CDF of flow sizes

References to the “tail” of the CCDF refer to those values
in the upper 10% of the empirical distribution; the remaining
90% of the distribution is referred to as the body. CCDF
tails are often studied to determine how quickly or slowly
they decay. A distribution where the tail decays more slowly
than an exponential distribution is called long-tailed. A dis-
tribution is heavy-tailed if the tail asymptotically follows a
hyperbolic shape (i.e., shape parameter 0 < α ≤ 2).

We present statistical models that capture the salient fea-
tures seen in our data sets. We use the following distribu-
tional models: Pareto (CDF: 1 − (β

x
)α), Weibull (CDF: 1 −

e
−( x

β
)α

), and Lognormal (CDF: Φ
`

ln x−μ
σ

´
) where α and β

are shape and scale parameters, μ and σ are mean and stan-
dard deviation of the distribution, and Φ is the Laplace Inte-
gral; we also present models that are hybrid of the aforemen-
tioned distributions, where the model thresholds were deter-
mined manually such that the hybrid distribution passed a
goodness-of-fit test. We tested the statistical models for ac-
curacy using the Kolmogorov-Smirnov (K-S) goodness-of-fit
test. If the statistical model passed the K-S test at the 5%
significance level, we considered it to model our empirical
data well.4 Only these models are presented in the paper.

3. FLOW-LEVEL CHARACTERIZATION
In order to conduct realistic network simulations, mod-

els of flow size, inter-arrival time, and duration are needed.
In this section, we present our flow-level characterization
results and derive distributional models from the character-
ization results. Summary statistics for Web and P2P traffic
are presented in Table 5. The corresponding statistics for
Gnutella and BitTorrent are shown in Table 6.

3.1 Flow Size

3.1.1 Web and P2P Flow Sizes
Table 5 shows that P2P flows have a higher mean flow size

and lower median flow size than Web flows. These observa-
tions suggest that P2P applications generate many small
and many very large-sized flows compared to Web. The
CDF of Web and P2P flow sizes in Figure 1(a) corroborates
the aforementioned observation.

The preponderance of small-sized P2P flows is somewhat
unexpected as P2P applications are typically used to share
large audio and video files. There are at least three sources
of small-sized flows: extensive signalling, aborted transfers,
and connection attempts with non-responsive peers. We
also find some very large-sized P2P flows. These few P2P
flows are much larger than the occasional large Web trans-
fer. Our analysis indicates that P2P applications contribute
4
We validated the models using a distribution fitting tool called Easy-

Fit: http://www.mathwave.com/products/easyfit.html.
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Table 5: Flow-level summary statistics of Web and P2P

Characteristic
Web P2P

Mean Median Std. Dev. IQR Skewness Mean Median Std. Dev. IQR Skewness

Flow size (KB) 21.50 2.53 341.92 7.38 44.03 362.40 1.17 12470 1.89 192.13
Flow Inter-Arrival (sec) 0.11 0.007 3.53 0.016 26.05 1.77 0.18 17.21 0.39 48.69
Flow duration (sec) 13.32 0.40 56.71 1.80 14.48 123.54 24.80 274.37 93.30 7.61

Table 6: Flow-level summary statistics of Gnutella and BitTorrent

Characteristic
Gnutella BitTorrent

Mean Median Std. Dev. IQR Skewness Mean Median Std. Dev. IQR Skewness

Flow size (KB) 1159.40 1.89 15549 2.73 94.68 84.95 0.96 11189 2.10 292.31
Flow Inter-Arrival (sec) 2.30 0.21 22.22 0.51 30.15 2.46 0.42 20.25 0.99 49.78
Flow duration (sec) 89.35 9.70 386.22 25.60 8.12 135.43 33.20 221.41 180.90 3.03
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Figure 2: CCDF of flow sizes

many mice and elephant flows, and possibly alters the mix
of these flow types in today’s IP networks. We elaborate on
this phenomenon in Section 3.1.3.

We examined the tails of the flow size distributions using
CCDF plots. Figure 2(a) presents the CCDF of flow sizes
for Web and P2P. In the body of the distribution, P2P flows
are smaller than Web flows, but in the tail (specifically, the
upper 3.5% of flows after the “crossover” point) P2P flows
are larger than Web flows. Also, the tail of the Web flow
size distribution decays more quickly than the correspond-
ing P2P distribution. These observations provide further
evidence of P2P’s large elephant-sized flows.

3.1.2 Gnutella and BitTorrent Flow Sizes
Table 6 indicates that Gnutella flow sizes are larger and

more dispersed than BitTorrent flow sizes. The empirical
CDF for the two P2P variants in Figure 1(b) shows that
both applications generate a similar percentage of small-
sized flows (e.g., 5 KB or less). Many of these smaller
flows are the result of control information exchanged be-
tween peers, which is a byproduct of the distributed nature
of P2P protocols. The ratio of large-sized to total flows for
BitTorrent is, however, less than that for Gnutella. For ex-
ample, approximately 5% of BitTorrent flows are larger than
10 KB, whereas 17% of Gnutella flows exceed this size. The
characteristics of these large-sized flows are analyzed next.

Figure 2(b) shows the CCDF of flow sizes of Gnutella
and BitTorrent applications. Gnutella appears to gener-
ate more large-sized flows than BitTorrent. BitTorrent uses
file segmentation to split an object into multiple equal-sized
“pieces” (256 KB each by default), and downloads these
pieces from either the same or different peers using parallel
flows. In contrast, Gnutella typically downloads the entire
object from a single peer. As a result, we observe fewer large
flows in BitTorrent than Gnutella.

3.1.3 Mice and Elephant Phenomenon
Table 7 shows the percentage of mice and elephant flows

among the total flows contributed by different applications.

Table 7: Mice and elephant flow breakdown
Application Mice Elephants

% Flows % Bytes % Flows % Bytes

Web 75.78 8.89 0.04 15.35
P2P 92.93 0.47 0.81 93.43

Gnutella 83.41 0.14 3.05 93.14
BitTorrent 94.96 1.94 0.08 94.87

We observe that both categories of application generate many
mice flows. Although the mice flows originating from Web
applications are less prevalent than those from P2P appli-
cations, Web mice flows account for a relatively higher pro-
portion of the total Web bytes than P2P mice flows account
for the total P2P bytes. For example, approximately 9%
of total Web bytes are from Web mice flows, whereas only
0.4% of total P2P bytes are transferred by P2P mice flows.

Both applications generate a small proportion of elephant
flows. Nevertheless, these few elephant flows contribute a
significant fraction of the total bytes; the elephant-sized Web
flows contributed about 15% of the total Web-generated
bytes, while the elephant-sized P2P flows contributed as
much as 93% of the total P2P bytes. Network operators may
be interested in bandwidth-limiting these long-duration“ele-
phant” flows, or may be interested in assigning these flows
lower priority. As P2P applications become more popular,
we can expect networks to carry increasingly more elephant
flows. Our results also indicate that P2P elephant flows are
significantly larger than Web elephant flows.

We next analyze mice and elephant flows generated by
Gnutella and BitTorrent. While both P2P applications have
a similar proportion of mice flows, the BitTorrent mice flows
account for a much higher percentage of byte transfers than
Gnutella mice flows; that is, Gnutella mice flows are smaller,
on average, than BitTorrent mice flows. As mentioned ear-
lier, signalling between peers is a major contributor to the
pool of P2P mice flows. Our data suggests that BitTorrent
applications have more intense signaling activities compared
to Gnutella, resulting in relatively larger mice flows.

In our data, Gnutella has a much higher percentage of
elephant flows than BitTorrent, even though both Gnutella
and BitTorrent elephant flows account for a comparable pro-
portion of byte transfers. Thus, on average, BitTorrent ele-
phant flows are larger than Gnutella elephant flows. We
believe that the type of files exchanged using these P2P sys-
tems can provide an explanation for our observation. A 2005
study by CacheLogic5 showed that a majority of Gnutella
users shared mostly audio files (70%), whereas BitTorrent
users shared more video files (47%). Video files are, on av-

5
CacheLogic. Peer-to-Peer File Type Study, http://www.cachelogic.

com/home/pages/research/filetypestudy.php

290

WWW 2008 / Refereed Track: Performance and Scalability April 21-25, 2008. Beijing, China



 0

 0.2

 0.4

 0.6

 0.8

 1

43210-1-2-3

P
[X

<
=

x]

log10 (Flow Inter-arrival in seconds)

P2P-empirical
P2P-model

Web-empirical
Web-model

0

-1

-2

-3

-4

-5

3210-1-2-3

lo
g1

0 
(P

[X
>

x]
)

log10 (Flow Inter-arrival in seconds)

P2P-empirical
P2P-model

Web-empirical
Web-model

(a) CDF (b) CCDF

Figure 3: Web and P2P flow inter-arrival

erage, significantly larger than audio files. We believe that
the extremely large BitTorrent flows are due to the transfer
of multiple pieces of large video files over a single TCP flow.

3.1.4 Flow Size Models
In this section, we present statistical models that describe

the body and the tail of flow size (S) distribution. These
models may be used to generate transfer sizes of TCP flows
in network simulations. Figures 1 and 2 plot the statisti-
cal models in addition to the empirical distributions. Web
flow sizes are well-modeled by a concatenation of bounded
Weibull and Pareto distributions:

FWeb(S) =

8><
>:

1 − e−( S
2.7 )0.38

: S < 30KB

1 − ( 3
S
)1.05 : 30KB ≤ S ≤ 5MB

1 − ( 200
S

)2.35 : S > 5MB

We find that the tail of the Web flow size distribution is a
mix of heavy-tailed and long-tailed distributions.

Similarly, we find that P2P flow sizes are well-modeled by
a hybrid bounded Weibull and Pareto distributions:

FP2P (S) =

8><
>:

1 − e−( S
1.36 )0.81

: S < 4KB

1 − ( 0.005
S

)0.35 : 4KB ≤ S ≤ 10MB

1 − ( 400
S

)1.42 : S > 10MB

From the above-mentioned model, we can conclude that P2P
flow sizes are heavy-tailed.

Both the BitTorrent and Gnutella flow sizes are well-modeled
by combining bounded Lognormal and Pareto distributions:

FBT (S) =

8>>><
>>>:

Φ
`

ln S−0.03
0.95

´
: S < 2KB

1 − ( 1.07
S

)1.4 : 2KB ≤ S ≤ 50KB

1 − ( 3×10−9

S
)0.25 : 50KB < S ≤ 7MB

1 − ( 0.95
S

)0.78 : S > 7MB

FGnu(S) =

8><
>:

Φ
`

ln S−0.44
0.73

´
: S < 3KB

1 − ( 0.04
S

)0.3 : 3KB ≤ S ≤ 10MB

1 − ( 1800
S

)1.61 : S > 10MB

We find that both BitTorrent and Gnutella flow size distri-
butions are heavy-tailed; BitTorrent flow sizes, however, are
less heavy-tailed than Gnutella flows.

3.2 Flow Inter-arrival Times

3.2.1 Web and P2P Inter-arrival Times
Analysis of our data (see Table 5) shows that P2P flow

inter-arrival times (IAT) are much longer and more dis-
persed than Web flow IAT. Figure 3 shows the CDF and
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Figure 4: CDF of flow duration

CCDF of flow IAT for Web and P2P. Web flow IAT are
much shorter than those of P2P flows. For example, ap-
proximately 97% of Web flow IAT are less than 0.1 second,
whereas only 25% of P2P flow IAT are this short.

Another way to understand the difference between the
IAT of Web and P2P flows is to study their corresponding
flow arrival rates. Web traffic has a higher arrival rate of
approximately 80 flows/seconds, compared to P2P traffic,
which has arrival rate of only 6 flows/seconds. Another fac-
tor contributing to the lower arrival rate and the longer IAT
values for P2P flows is the persistent nature of their TCP
connections. How these persistent connections are used is
discussed in Section 4.1.

We examine the tails of flow IAT for Web and P2P in
Figure 3(b). Flow IAT from both applications show similar
decay throughout the tails. At the upper tail, we observe
sharp decay due to the limited duration of our traces. Flow
IAT from individual P2P applications are found to follow
similar patterns, and thus are not shown here.

3.2.2 Inter-arrival Time Models
We find that Web flow IAT can be modeled by a two-mode

bounded Weibull distribution:

FWeb(IAT ) =

(
1 − e−( IAT

0.01 )0.76
: IAT ≤ 0.06 sec

1 − e
−( IAT

3×10−5 )0.15

: IAT > 0.06 sec

In contrast, P2P flow IAT are well-modeled by a hybrid
Weibull-Pareto distribution:

FP2P (IAT ) =

8><
>:

1 − e−( IAT
0.35 )0.87

: IAT ≤ 0.1 sec

1 − e−( IAT
0.45 )0.65

: 0.1 < IAT ≤ 1 sec

1 − ( 0.18
IAT

)0.97 : IAT > 1 sec

These distribution models indicate that Web IAT are long-
tailed, whereas P2P IAT are heavy-tailed. Our models pro-
vide evidence of the inapplicability of memoryless Poisson
models for Web and P2P flow arrivals [16].

3.3 Flow Duration

3.3.1 Web and P2P Flow Durations
Our statistical analysis (cf. Table 5) indicates the presence

of many short-duration flows. Figure 4 shows the CDF of
flow durations. From Figure 4(a) we observe that approx-
imately 30% of P2P flows are shorter than 10 seconds in
duration. Some of these short-duration transfers are either
failed or aborted flows, while other short-duration flows are a
byproduct of the P2P applications’ signaling behavior. Note
that short-duration flows typically transfer a small amount
of data, but the converse does not always hold. There are
a few long-duration mice flows; these flows arose due to re-
peated unsuccessful connection attempts by peers. We also
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Figure 5: CCDF of flow duration

observe that a large proportion, approximately 40%, of P2P
flow durations are between 20 and 200 seconds. We found
that some P2P connections are bandwidth-limited, and thus
of long-duration. Bandwidth limitations reflect the available
bandwidth between peers (e.g., peers with asymmetric In-
ternet access have limited uplink capacity) as well as flow
management on our network (cf. Section 6). Approximately
70% of the Web flows last no longer than 1 second. End users
have excellent Internet connectivity in our campus network,
and most Web servers are also well-provisioned. Thus, we
expect low response times for Web requests. The remaining
Web flows that are longer than 1 second are typically re-
sponsible for either downloading large objects (e.g., stream-
ing video from youtube.com) or transferring multiple objects
from Web pages using persistent HTTP/1.1 connections.

In Figure 5 we analyze the tail of the flow duration dis-
tributions. Figure 5(a) shows the CCDF of Web and P2P
flow durations. We find that the probability of long-duration
flows is higher for P2P than Web.

3.3.2 Gnutella and BitTorrent Flow Durations
Summary statistics in Table 6 show that, on average, Bit-

Torrent flows last longer than Gnutella flows; furthermore,
the flow durations are dispersed over a wide range of values.

Figure 4(b) shows the CDF of Gnutella and BitTorrent
flow durations. This graph reaffirms the aforementioned
point. We find that these relatively longer flows of Bit-
Torrent resulted due to its protocol architecture. BitTor-
rent utilizes a rarest first piece selection policy to exchange
data. At any given time, a fixed number of concurrent
uploads/downloads are permitted. BitTorrent architecture
allows persistent connections between peers and controls
downloads/uploads using its piece selection policy which re-
sults in connections periodically being idle. Furthermore,
concurrent download from a single BitTorrent peer splits
the bandwidth available at uploaders for downloading. In
contrast, Gnutella can use a single flow for downloading an
object and thus does not need to share bandwidth. Occa-
sionally, Gnutella peers may share bandwidth, for example,
when the same object is requested by other peers or when
different objects are requested by the same peer.

Figure 5(b) shows the CCDF of Gnutella and BitTorrent
flow duration. Two observations can be drawn. First, before
the crossover point, BitTorrent shows a higher percentage
of long-duration flows than Gnutella; however, following the
crossover point (upper 2% of flows), the probability of long-
duration flows in Gnutella is higher than that in BitTorrent.
Second, at the distribution tail, BitTorrent flow durations
decay more quickly than Gnutella flow durations. We found
earlier that extremely large transfers are not very common
in BitTorrent, due to its file segmentation feature. We also
found a positive correlation (correlation coefficient is 0.69)
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Figure 6: CDF of host flow concurrency

between BitTorrent flow size and duration, and therefore,
observe a lower proportion of extremely long-duration flows
in BitTorrent. Other factors such as file size, swarm popu-
lation, and availability of pieces in the swarm can also influ-
ence the duration of BitTorrent flows. These factors result in
the BitTorrent tail being long-tailed instead of heavy-tailed.

3.3.3 Flow Duration Models
This section outlines the statistical models of flow dura-

tions (D) (see Figures 4 and 5). Web flow duration is well-
modeled using two bounded Pareto distributions:

FWeb(D) =

(
1 − ( 0.1

D
)0.43 : D ≤ 60 sec

1 − ( 10
D

)1.5 : D > 60 sec

The preceding model shows that Web flow durations are
heavy-tailed. A similar analysis shows that P2P flow dura-
tions can be well-modeled by a concatenation of bounded
Weibull and heavy-tailed Pareto distribution:

FP2P (D) =

8><
>:

1 − e−( D
88.3 )0.35

: D < 20 sec

1 − e−( D
57.2 )0.55

: 20 ≤ D ≤ 300 sec

1 − ( 65
D

)1.53 : D > 300 sec

BitTorrent flow durations are well-modeled by a hybrid
bounded Weibull and Pareto distributions, whereas Gnutella
flow durations are well-modeled by a hybrid bounded Log-
normal and Pareto distributions:

FBT (D) =

(
1 − e−( D

83.5 )0.48
: D ≤ 300 sec

1 − ( 200
D

)3 : D > 300 sec

FGnu(D) =

(
Φ

`
ln D−2.1

2.7

´
: D ≤ 10 sec

1 − ( 5
D

)0.73 : D > 10 sec

The above-mentioned statistical distributions show that Bit-
Torrent flow durations are long-tailed (tail fits a Pareto dis-
tribution with α > 2) but not heavy-tailed. In contrast,
Gnutella flow durations are heavy-tailed.

4. HOST-LEVEL CHARACTERIZATION
This section presents a host-level characterization of Web

and P2P traffic. This characterization provides information
to network administrators for tasks such as bandwidth man-
agement and capacity planning, and also provide insights
into the functioning of modern P2P systems. The results
presented here may also be used to develop synthetic work-
loads and design realistic network simulations.
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4.1 Flow Concurrency
Figure 6 shows the CDF of host flow concurrency for Web,

P2P, Gnutella, and BitTorrent. From Figure 6(a), we ob-
serve (surprisingly) that many P2P hosts in our network
maintain only a single TCP connection. We explain the ob-
servation later in this section by analyzing flow concurrency
for individual P2P applications. While analyzing the flow
concurrency for Web hosts, we ignore the Web servers inter-
nal to our network. From the analysis, we find that a sig-
nificant proportion of the internal Web hosts maintain more
than one concurrent TCP connection. Web browsers often
initiate multiple concurrent connections to transfer content
in parallel. This parallel download feature increases the de-
gree of flow concurrency in HTTP-based applications. How-
ever, a high-degree of flow concurrency (e.g., above 30) is
not typically observed for general Web clients; rather, Web
proxies and content distribution nodes account for this high
degree of flow concurrency.

The CDF of host flow concurrency for Gnutella and Bit-
Torrent is shown in Figure 6(b). We observe that most
Gnutella hosts connect with only one host at a time. As
discussed earlier, Gnutella applications typically download
a whole object from another Gnutella host using a single
TCP flow. We observed a few Gnutella hosts that main-
tained more than 10 concurrent TCP connections. These
hosts likely acted as “super peers” in Gnutella’s peer hierar-
chy. In contrast, most BitTorrent hosts exhibit a high degree
of flow concurrency. Approximately 24% of the BitTorrent
hosts use more than 100 concurrent flows. This high degree
of concurrency is a natural occurrence in BitTorrent. Bit-
Torrent clients obtain a peer list from a tracker, and then
attempt to connect with these peers. Once connections are
established, BitTorrent uses its rarest first piece selection
policy and tit-for-tat fairness mechanisms to determine how
pieces are shared [3]. Typically, only a small number of these
concurrent connections actively transfer file pieces.

We also study the correlation between the maximum num-
ber of concurrent flows seen at a host and the number of
distinct hosts connected at that time. Figure 7 shows scat-
ter plots of flow concurrency versus distinct hosts for Web
and P2P hosts. (The plots for Gnutella and BitTorrent are
similar to that of P2P, and thus not shown here.) From Fig-
ure 7(a) we observe that most of the points are well-below
the diagonal. In other words, the number of concurrent Web
flows far exceed the number of Web hosts concurrently con-
tacted. From Figure 7(b), we observe that P2P hosts use
concurrent flows to connect to many distinct hosts as illus-
trated by the concentration of points along the diagonal.
This behavior is not unexpected, since P2P protocols such as
BitTorrent and eDonkey encourage connectivity with multi-
ple hosts to facilitate widespread sharing of data.
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Table 8: Fair-share ratio in P2P systems
Downstream (MB) Minimum Fair-share Ratio

< 1 none
1 - 20 0.01
20 - 40 0.25
40 - 60 0.35
60 - 80 0.45
80 - 100 0.55
> 100 0.65

4.2 Transfer Volume
This section studies the transfer activity of hosts in terms

of their transfer volume. Figure 8 show the CDF of the
transfer volume for Web and P2P hosts. We observe that
approximately half of the distinct P2P and Web hosts trans-
fer small amounts of data (e.g., less than 1 MB); these hosts
are typically active for less than 100 seconds. We find that
these P2P hosts repeatedly yet unsuccessfully attempt to
connect with serving peers. Connection requests are unsuc-
cessful for a variety of reasons including insufficient resources
or no useful content at the contacted peers. In contrast, Web
transfers in this region result from Web browsing, widgets
that retrieve information from the Web periodically (e.g.,
weather updates, stock prices), and downloading small files.

We find that approximately 35% of Web hosts and 15% of
P2P hosts transfer data ranging from 1 to 10 MB, and are
active mostly for 100 to 1000 seconds. These P2P host trans-
fers are due to sharing small objects, whereas these Web host
transfers are due to prolonged Web browsing, downloading
software/multimedia files, and HTTP-based streaming. The
proportion of hosts that transfer large amounts of data (e.g.,
10 MB or more) and are active for over 1000 seconds, is sig-
nificantly higher in P2P than in Web.

4.2.1 Transfer Symmetry in P2P Systems
Transfer symmetry is a major concern for P2P system

developers, who want to encourage fair sharing among par-
ticipating peers. Many content sharing portals require that
users maintain a minimum ratio of upstream to downstream
transfer volume, which we refer to as the minimum fair-share
ratio. Table 8 shows the minimum ratios of fair-sharing we
defined for different levels of downstream traffic. Note that
hosts transferring less than 1 MB of data in total are not
sharing any content and thus are excluded from our trans-
fer symmetry calculation. In most cases, we used equal-sized
bins to assign minimum fair-share ratios; however, for above
100 MB of data transfer, we used a single bin as only 10%
of P2P hosts fall in this category.

We divide P2P hosts into three categories (freeloaders,
fair-share, and benefactors) according to their transfer ratios
(i.e., upstream/downstream ratios) and corresponding min-
imum fair-share ratios from Table 8. We define freeloaders
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Table 9: Transfer symmetry in P2P systems
Systems Freeloader Fair-share Benefactor

Gnutella 56.93% 10.00% 33.07%
BitTorrent 10.30% 39.91% 49.79%
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Figure 9: CDF of ranked hosts

as those hosts who have a transfer ratio less than the min-
imum fair-share ratio. Benefactors are hosts that have a
transfer ratio of 2 or greater. The remaining hosts are in
the “fair-share” range.

Table 9 shows the percentage of Gnutella and BitTorrent
hosts as freeloaders, fair-share hosts, and benefactors. We
find that approximately 10% of BitTorrent hosts are acting
as freeloaders, whereas 57% of Gnutella hosts are freeload-
ers. Benefactors are common in both BitTorrent (∼50%)
and Gnutella (∼33%) hosts. Therefore, Gnutella host be-
havior appears to be dominated by extreme downstream and
upstream transfers. We find that approximately 40% of Bit-
Torrent peers and 10% of Gnutella peers reside in the fair
share zone. BitTorrent introduced a “tit-for-tat”mechanism
to encourage fair sharing among the peers [3]. Every peer in
the BitTorrent system is encouraged to upload for obtaining
the opportunity to download. Therefore, we observe more
freeloaders in Gnutella and better fairness in BitTorrent.

4.2.2 Heavy-hitters
Figure 9 plots the CDF of hosts ranked by transfer volume

(the higher the amount of data transferred, the higher the
rank). We find that a few hosts account for much of the
volume transferred; we call these hosts heavy-hitters.

Figure 9(a) shows that the top 0.1% of Web hosts account
for 14% (28 GB) of the total Web transfer. Similarly, the
top 0.1% of P2P hosts transfer 12% (24 GB) of the total
P2P data. Moreover, top 1% of Web and P2P hosts account
for 70 GB (34%) and 82 GB (42%) of the total Web and P2P
bytes, respectively. Clearly, heavy-hitters are present in both
Web and P2P. Examination of the upstream to downstream
transfer ratio for the P2P heavy-hitters shows that most P2P
heavy-hitters are either freeloaders or benefactors.

Figure 10 shows the transfer volume of ranked Web and
P2P hosts. We observe that the total amount of data trans-
ferred by the top 10% Web and P2P hosts follows a power-
law distribution (with α ≈ 0.27); we emphasize that the
power-law does not apply to the body and the tail of the
ranked distribution. The only difference seen between the
applications is the total transfer volume; top-ranked P2P
hosts transfer an order of magnitude more data than top-
ranked Web hosts.

Figure 9(b) shows the CDF of ranked transfer volume for
Gnutella and BitTorrent hosts. We find that the top 1%
of BitTorrent hosts transfer 20 GB (60% of total BitTorrent
traffic), whereas the top 1% of Gnutella hosts account for 53
GB (35% of total Gnutella traffic). Our data suggests that
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Figure 11: Geographic distribution of hosts

BitTorrent heavy-hitters account for a much larger fraction
of that application’s total bytes than Gnutella heavy-hitters
do for their total bytes. We also found that the transfer
volume of top-ranked Gnutella and BitTorrent hosts did not
follow a power-law distribution.

4.3 Geographic Distribution
This section discusses the geographic distribution of hosts

external to the campus network. We calculated the great-
circle distance between individual hosts and our campus us-
ing a geolocation database6. This database provides the
geographic coordinates, country name, and city name for an
IP address range.

Figure 11 shows the geographical distribution of the exter-
nal hosts. Note the plateau between 3, 500 and 7, 000 kilo-
meters represents the Atlantic ocean. Figure 11(a) shows
the geographical distribution of the external Web and P2P
hosts. Most of the external Web hosts, approximately 75%,
are in North America; Asia and Europe each account for
10% of the external Web hosts. The results here are not
surprising. We know that most of the external Web hosts
are Web servers. O’Neill et al. [14] had shown that in 1999
and 2002, 49% and 55% of the public Web sites, respectively,
were associated with entities located in the United States.
In addition, we believe that cultural pecularities may also
affect the results. A majority of our campus Web users are
English-speaking, and thus they are more likely to visit Web
sites located in predominantly English-speaking countries.

In contrast to the geographic distribution of external Web
hosts, we found that approximately 40% of P2P hosts are
located in North America, 30% in Europe, 18% in Asia, 6%
in Australia, and 5% in South America. This indicates that
connectivity between P2P hosts does not appear to strongly
rely on host locality, rather it depends on resource availabil-
ity during the connection establishment phase. The non-
interactive nature of P2P applications makes latency only a
secondary concern; the primary goal is to find the requested
file. In addition, our results suggest that files being shared
using these systems transcend geographic divides.

6
MaxMind: GeoIP City Database, http://www.maxmind.com/app/city
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The host geographical distribution for the P2P variants
are shown in Figure 11(b). It shows that majority of ex-
ternal Gnutella hosts (∼70%) are from North America. Ap-
proximately 18% of the Gnutella hosts are located in Europe
and the rest are in Asia (6%), Australia (2.3%), and South
America (2.3%). This suggests that either Gnutella peers
prefer to connect with hosts that are in close proximity or
that Gnutella clients are widely used in North America for
file-sharing. In contrast, only 30% of external BitTorrent
hosts are located in North America. Among the rest, ap-
proximately 40% of BitTorrent hosts are located in Europe,
18% in Asia, 6% in Australia, and 3% in South America.
We know BitTorrent hosts connect to peers from a peer-list
provided by trackers. We believe that the list from trackers
is created based on host bandwidth availability in a swarm
and thus, we see a bias towards regions with high broad-
band penetration. We did observe, however, that although
BitTorrent peers connect to other distant peers for obtaining
content, most of the successful transfers originate from the
peers located in the same geographic region.

5. RELATED WORK
Web traffic has been extensively characterized. Many

studies concentrate on the user-level behavior such as the
size and number of request/response messages, and Web
application-specific properties such as page complexity and
document referencing(e.g., [1, 2]). Flow-level properties of
Web traffic have also been studied (e.g., [4, 16]). One key
observation from prior work is that Poisson arrival process
may not be appropriate for Web flows [4,16]. Our data reaf-
firms this observation, and also shows that Poisson models
may not be appropriate for modeling P2P flow arrivals.

There are many studies of popular P2P systems in the
literature, including Napster [19], KaZaA [8], Gnutella [19,
21, 26], BitTorrent [9, 10, 18], and eDonkey [17, 24]. These
studies have focussed on different aspects of P2P systems
such as query traffic [12], data traffic [8,21], flow characteris-
tics [17,24], peer behavior [21], system architecture [9,10,18],
and system dynamics (e.g., churn) [23, 26]. In this section,
we discuss closely related prior work.

Saroiu et al. [19] studied Gnutella and Napster systems
using traces collected using crawling techniques. They ob-
served Gnutella hosts had high-bandwidth, high-latency, and
low user-activity periods when compared to Napster hosts.
Sen and Wang [21] studied DirectConnect, Gnutella, and
FastTrack traces from a large ISP’s network. They found
that the traffic volume, peer connectivity, and mean band-
width usage distributions are extremely skewed, which is
similar to our observations. Recently, Zhao et al. [26] an-
alyzed traffic from modern Gnutella systems. They ob-
served a significant decrease in free-riders over the past few
years. Our results, however, indicate pronounced free-riding
in Gnutella. We believe free-riding needs to be further stud-
ied.

Guo et al. [9] analyzed and modeled BitTorrent systems
based on traces collected from a popular tracker site. They
found that swarm popularity decreases exponentially over
time, and that the distribution of swarm population is heav-
ily skewed. Pouwelse et al. [18] studied performance, robust-
ness, and content integrity of BitTorrent systems.

Tutschku [24] and Plissonneau et al. [17] analyzed eDon-
key traffic observed on the protocol’s standard port. Tutschku
found that eDonkey flow sizes follow the lognormal distribu-
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Figure 12: Flow size versus flow duration

tion, that flow IAT are exponentially distributed, and that
eDonkey flows do not appear to alter the mice-elephant mix
of flows. Similar to our observations, Plissonneau et al.
found that eDonkey systems generates many short duration
flows, have significant unfairness, and do not exploit geo-
graphic locality when exchanging data. Plissonneau et al.
did not present any traffic models in their work.

Our study complements prior work on Web and P2P traf-
fic analysis. We used recent traces that reflect the emerging
traffic trends in a large edge network, and employed appli-
cation signature matching to identify Web and P2P traf-
fic accurately. We explored the similarities and differences
in flow-level and host-level characteristics of Web and P2P
flows, and developed models for both types of traffic.

6. DISCUSSION
In this section, we discuss two related issues: identification

of P2P traffic and impact of network traffic management.
Many recent P2P characterization studies (e.g., [17, 21,

24]) have relied on identification by port numbers. Our
full payload packet traces allow us to apply application sig-
nature matching to identify P2P traffic that would other-
wise not be identified had we only relied on port numbers
for traffic identification. We believe that future character-
ization of P2P traffic should not rely solely on port num-
bers for identification of this traffic. Because collection of
traces with payloads poses unique challenges (e.g., process-
ing cost, longer-term data collection) and are often difficult
to obtain, alternative approaches are necessary. For exam-
ple, recently proposed machine-learning techniques that use
only flow statistics (see [6, 7] and the references therein) or
heuristics-based techniques [5,11] that leverage characteris-
tic behavior of P2P applications may be suitable candidates
for identifying P2P traffic.

A consequence of increased use of P2P applications is the
deployment of bandwidth management solutions in edge net-
works. Any analysis of network traffic, therefore, needs to
be aware of the potential implications of traffic management
as some characteristics of interest such as flow duration and
flow concurrency may be affected by flow management. At
the University of Calgary, traffic is managed using a com-
mercial packet shaping device. The packet shaper (to the
best of our knowledge) employs a combination of applica-
tion signatures and port numbers to identify traffic. At the
time of trace capture, the network policy in place was to
group together all identified P2P flows (except those from
the student residences) and collectively limit their band-
width to 56 Kbps. Figure 12 shows a scatter plot of P2P
flow size and duration for our trace. The scatter plot in-
cludes a straight line that marks the 56 Kbps boundary;
P2P flows (i.e., points) above this line represent an achieved
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flow throughput exceeding 56 Kbps. We should also note
that points below this line do not necessarily imply that the
flow’s bandwidth was limited by the traffic shaping device.
Flow rates may be below this line for other reasons such
as multiplexing of flows, flow control, or congestion control
mechanisms. The key observation from the plot is that we
do not observe a strong positive correlation between flow size
and duration. This suggests that some P2P flows are indeed
identified and limited by the packet shaping device. Never-
theless, we do see many points above the 56 Kbps thresh-
old; these P2P flows clearly escaped detection by the traffic
shaper.

The final comment we make is regarding the representa-
tiveness of our observations and models. Our study is based
on observations from one vantage point, and on a network
that employs some form of bandwidth management. Clearly,
there is a need to study traffic from different networks to
validate the models we propose and also to develop general
models for Web and P2P traffic. Nevertheless, we believe
that our results are still useful as they provide a snapshot of
Web and P2P traffic characteristics from a large edge net-
work, and thus should be representative of other large edge
networks with similar population and network management
policies. In cases where the network differs significantly in
design or management policy, our methodology can be ap-
plied to develop representative models.

7. CONCLUSIONS
This paper presented an extensive characterization of Web

and P2P traffic using full packet traces collected at a large
edge network. We considered three flow-level metrics, namely
flow size, flow IAT, and flow duration, and three host-level
metrics, specifically flow concurrency, transfer volume, and
geographic distance. We observed a number of contrasting
features between Web and P2P traffic. Typically, Web flows
are short-lived whereas P2P flows are long-lived. Both Web
and P2P host transfers are asymmetric; however, P2P host
transfers are dominated by both upstream and downstream
traffic, but not both. Web hosts maintain a high degree of
flow concurrency, whereas many P2P hosts maintain a single
flow at a time. Finally, P2P traffic exacerbates the“mice and
elephants”phenomenon in Internet traffic. Flow-level distri-
butional models were developed for Web and P2P traffic;
these models can be used in network simulation and emu-
lation experiments. We believe much work remains. Traffic
from other networks should be studied to facilitate develop-
ment of general models for Web and P2P traffic. Similarly,
traffic from other non-Web applications, for example P2P
streaming applications such as PPLive, P2P VoIP, and other
P2P applications, should be examined, and their impact on
Web-based applications studied.
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