
Enhanced Hierarchical Classification via Isotonic
Smoothing

Kunal Punera
Yahoo! Research

701 First Ave.
Sunnyvale, CA 94089

kpunera @ yahoo-inc.com

Joydeep Ghosh
University of Texas at Austin

Austin, TX 78712
ghosh @ ece.utexas.edu

ABSTRACT
Hierarchical topic taxonomies have proliferated on the World Wide
Web [5, 18], and exploiting the output space decompositions they
induce in automated classification systems is an active area of re-
search. In many domains, classifiers learned on a hierarchy of
classes have been shown to outperform those learned on a flat set of
classes. In this paper we argue that the hierarchical arrangement of
classes leads to intuitive relationships between the corresponding
classifiers’ output scores, and that enforcing these relationships as
a post-processing step after classification can improve its accuracy.
We formulate the task of smoothing classifier outputs as a regular-
ized isotonic tree regression problem, and present a dynamic pro-
gramming based method that solves it optimally. This new problem
generalizes the classic isotonic tree regression problem, and both,
the new formulation and algorithm, might be of independent inter-
est. In our empirical analysis of two real-world text classification
scenarios, we show that our approach to smoothing classifier out-
puts results in improved classification accuracy.

Categories and Subject Descriptors
H.4.m [Information Systems]: Information Storage and Retrieval

General Terms
Algorithms, Experimentation

Keywords
Hierarchical Classification, Taxonomy, Regualrized Isotonic Re-
gression, Dynamic Programming

1. INTRODUCTION
Hierarchical taxonomies play a crucial role in the organization of

knowledge in many domains. Taxonomies structured as hierarchies
make it easier to navigate and access data as well as to maintain and
enrich it. This is especially true in the context of a vast dynamic en-
vironment like the World Wide Web where the amount of available
information is overwhelming; this has lead to a proliferation of hu-
man constructed topic directories [5, 18] Because of their ubiqui-
tousness there has been considerable interest in automated methods
for classification into hierarchical taxonomies, and numerous tech-
niques have been proposed [6, 14, 3, 10]. In this paper, we will
introduce ideas as well as algorithms that serve to further improve
the accuracy of hierarchical classification systems.
Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

While studying systems that classify instances into a taxonomy
of classes we have to consider many different aspects of the prob-
lem. Some of these result from variations in characteristics of tax-
onomies themselves, such as whether or not instances are allowed
to belong to classes at the internal nodes, while others are because
of variations in the way classifiers are trained. We illustrate some
of these issues by considering a few real-world scenarios. We will
refer to these scenarios throughout the paper to place the applica-
bility of our approaches in context. A taxonomy constructed on the
20-newsgroups dataset (Figure 1) will be used as a running exam-
ple below.

• Scenario I: In the 20-newsgroups dataset all instances be-
long to leaf-level classes of the taxonomy (Figure 1). Sup-
pose while learning the classifiers at each node, the positive
(negative) set of instances are from leaf nodes within (out-
side) the subtree rooted at the node. For instance, for the clas-
sifier at the node comp.*, the positive document set comes
from all computer related leaf-level classes, and the nega-
tive document set from all other classes. In this scenario,
when a test document is classified as belonging to a class
(say, comp.graphics) all internal classes on the path to the
root must also be labeled positive. Similarly, if an internal
node class is labeled as positive for a document at least one
of the leaf-level classes under it must also be labeled positive.

• Scenario II: There exist taxonomies in which instances some-
times belong to classes that are internal nodes and not to
any leaf-level classes. Once again consider the taxonomy for
the 20-newsgroups dataset. We can imagine that the internal
node comp.* might contain documents that discuss comput-
ers in general, and not software or hardware (MS or Mac) in
particular. Now, if the classifiers are learned as in Scenario I
- distinguishing the documents within the subtree from those
outside - we can see that, if a node is labeled positive for a
document then all internal classes on the path to the root must
also be labeled positive. However, since there is no restric-
tion that the document be associated to any leaf-level classes,
it is not necessary that at least one child of the node also be
labeled positive.

In addition to these two scenarios several other variations in the
structure of the taxonomy and construction of classification prob-
lems can be imagined. A common aspect, however, is the mecha-
nism for classifying new data instances into the taxonomy. For this
purpose each learned classifier is applied to the new data instance
to obtain membership scores. The membership scores outputted
may be binary, or they can be thresholded to determine the classes
that are labeled positive.

151

WWW 2008 / Refereed Track: Data Mining - Algorithms April 21-25, 2008 · Beijing, China

Figure 1: Taxonomy of classes in the 20-newsgroups dataset.

However, from our discussion of different classification scenar-
ios we know that in many cases these membership scores are related
across nodes. For example, in case of the 20-newsgroups dataset
under Scenario I, it cannot be that the class comp.graphics is la-
beled positive and class comp.* is labeled negative for the same
document. In other words, due to characteristics of taxonomies and
specifics of classifier training, relationships between classes in a
taxonomy lead to relationships between outputs of their classifiers.
Furthermore, these properties can also be devised from knowledge
of the application domain or the behavior of classification algo-
rithms.

OUR CONTRIBUTION.
The central idea in this paper is that once we have identified the

exact property that the outputs of classifiers in a taxonomy must sat-
isfy, we can post-process the classification scores to enforce these
constraints. Whenever classifier scores violate these constraints we
will replace them with consistent scores that are as close as possi-
ble to the original ones. Since only a few classifiers are likely to
make mistakes on any one instance it is hoped that the outputs of
the incorrect ones will be modified appropriately.

In this paper, we will formulate the problem of enforcing con-
straints on classifier outputs under Scenarios I and II as regular-
ized tree isotonic median regression problems. These are general-
izations of the classic isotonic regression problem. We will also
provide a dynamic programming based algorithm that finds the
optimal solutions to these more general optimization problems in
O(n2 log n) time; this is equal to the best known algorithms for
the classic problem. This new problem formulation and algorithm
might be of interest independent of the hierarchical classification
task. We will present empirical analysis on a real-world text dataset
to show that post-processing of classifier scores results in improved
classification accuracy.

2. REGULARIZED ISOTONIC REGRESSION
In this section we will formulate the problem of smoothing clas-

sifier outputs as a regularized isotonic regression problem and give
an efficient algorithm to solve it optimally. Before we proceed,
however, let us establish some notation.

NOTATION.
Let C be a set of n classes in a taxonomy that have a one to

one mapping with the nodes of a rooted tree T . Let leaf(T) and

root(T) represent the set of leaves and the root of the tree T re-
spectively. Let v be a node of T (written as v ∈ T) and let Tv

denote the subtree rooted at v. We will refer to a node in the tree T
sometimes as a class. We use parent(v) to denote the parent of v
in T , child(v) to denote the set of all immediate children of v in T .
Let D denote the set of all data instances. These instances belong
to one of the classes in C; this mapping is denoted by function τ .
Depending on the real-world scenario being modeled, τ may map
instances to only a subset of classes in C.

Each class v ∈ T has associated with it a function cv : D →
[0, 1], where cv(d) is the degree of membership of instance d in
class v. In our application setting this value can be interpreted
as a posterior probability; using an appropriate threshold it can be
rounded to a boolean value. An instance d can be represented by
a function xd where the xd(v) represents the value cv(d). Since
each class corresponds to a unique node in the taxonomy T , we
can think of x(.) as being values assigned to nodes of T . Hence-
forth we will use T , v, and x(v) as metaphors for the taxonomy, a
class or a node, and the classifier score or node value respectively.
In our application settings we distinguish between an instance be-
longing to a class (implying that τ(d) = v) and associating with
a class (implying that because of the way classifiers were trained
we expect xd(v) = 1). However, when it is clear from context, we
will use the term belonging to refer to both situations.

2.1 Formulation
Consider the Scenario I described above. The data instances un-

der this setting always belong to one of the leaf-level classes1; the
range of τ is leaf(T). Moreover, for an internal node v ∈ T the
positive set of instances for training classifier cv is the union of in-
stances that belong to leaf(Tv). Consequently, this means that the
true labeling of any instance is a leaf-level class v and all its parents
on the path to the root(T). This property can be succinctly stated
as follows:

PROPERTY 2.1 (STRICT CLASSIFICATION MONOTONICITY).
An instance belongs to a class in the taxonomy if and only if it
belongs to at least one of its children classes.

This means that we expect x(v) = 1 ⇐⇒ ∃u ∈ child(v) :
x(u) = 1.

However, as each classifier cv processes the instances indepen-
dently of other classifiers, they miss this intuitive relationship amongst
classifier outputs; x(·) need not satisfy Property 2.1. Hence, we
need to transform x(·) into smoothed classifier scores y(·) such
that elements in y(·) satisfy the monotonicity property.

We have defined the monotonicity property for boolean classi-
fication values, so we first consider a natural generalization in or-
der to handle real-valued classifier scores. Suppose y(·) are the
smoothed classifier scores, then they satisfy generalized strict clas-
sification monotonicity property if for every internal node v, with
children u1, . . . , u`, y(v) = max{y(u1), . . . , y(u`)}, i.e., the
smoothed score of an internal node is the equal to the maximum of
its children’s smoothed scores. Note that generalized monotonicity
ensures that whenever an instance is associated with a class v, first,
it’s also associated with parent(v), and second, it’s also associated
with at least one child of v, if any.

Moreover, we assume that the individual classifiers have reason-
able accuracy and so we want to obtain y(·) that is as close as pos-
sible to the original scores x(·) while satisfying the monotonicity
property. This gives us the following problem:

1Our formulations and algorithms also hold for setting where an
instance belongs to more than one leaf-level nodes.

152

WWW 2008 / Refereed Track: Data Mining - Algorithms April 21-25, 2008 · Beijing, China

Figure 2: Examples of hierarchies with scores on nodes. The
green circles highlight correct scores and the red squares erro-
neous ones.

PROBLEM 2.2. Given classifier scores x(·), find smoothed scores
y(·) that minimize X

v∈T

|x(v)− y(v)| (1)

while satisfying the generalized version of Property 2.1.

Here we compute the distance between x(·) and y(·) via the L1

distance, however, any other distance measure could also have been
used. We chose L1 distance over L2 because of its robustness to
noise.

Now consider Scenario II mentioned above. In this situation
there exist some instances that belong only to internal nodes, and
not to any of the leaf nodes. Moreover, the positive set of instances
used for training classifier cv for node v ∈ T is the union of in-
stances that belong to all nodes in the subtree Tv . This implies that
the true labels for an instance will be a node v ∈ T and all its
parents on the path to root(T). However, unlike Scenario I, its no
longer necessary for at least one child of v to also be included in
the true labels.

As is evident, this relationship between classifiers scores is not
covered by Property 2.1, which enforces that every instance must
belong to at least one leaf node. In order to incorporate situations
such as Scenario II we state the relaxed monotonicity property.

PROPERTY 2.3 (RELAXED CLASSIFICATION MONOTONICITY).
The classifier score of a node is always greater than or equal to the
classifier scores of its children.

Let y(·) be the smoothed classifier scores, then y(·) satisfies re-
laxed monotonicity if for every internal node v, with children
u1, . . . , u`, y(i) ≥ max{y(u1), . . . , y(u`)}. Finding such a y(·)
while minimizing Equation (1) will help us correct some of the er-
rors introduced by the classifiers.

For instance, consider the classification scores on the tree A in
Figure 2. The nodes that are shaded by a red square represent the
errors in the classification. The leaf-node with score 1 clearly vio-
lates monotonicity constraints since its ancestors’ scores are lower
than its own. This error will be corrected since it is more expensive
to increase all the ancestors’ scores than it is to reduce the erro-
neous node’s score.

However, the relaxed monotonicity property will allow certain
other types of errors that might occur frequently. For example,
consider the error node in tree B of Figure 2. This node doesn’t
violate the relaxed monotonicity property since its parent’s score is
higher than its own. However, this error node’s score would have
been corrected by the strict monotonicity property, which would
have required at least one child of the error node to have the same
score. It would have cost less (in terms of Equation (1)) to reduce
0.6 to 0, than to increase a whole series of values from 0 to 0.6.

In order to correct the latter type of errors we introduce an ad-
ditional regularization term in our objective function, which penal-
izes violations of strict monotonicity. Hence, while we will accept
smoothed scores y(·) that satisfy the relaxed monotonicity property
as valid solutions, they will be charged for all the violations of the
strict monotonicity constraints. In the case of the tree B in Figure 2,
if the penalty is high enough, it will cost lesser to reduce the error
node’s value to 0 than to leave the scores as it is, thus correcting
the false positive error. Regularization can also be useful for reduc-
ing false negative errors when it is cheaper to increase a child node
value than to pay the penalty.

Taking into account this regularization we state a new problem:

PROBLEM 2.4 (REGULARIZED TREE ISOTONIC REGRESSION).
Given classifier scores x(·), find smoothed scores y(·) that mini-
mizeX
v∈T

wv · |x(v)− y(v)|+
X
v∈T,

{ui}=child(v)

γv · (y(v)−max{y(ui)})

(2)
while satisfying Property 2.3, where wv and γv are node-specific
weights and penalties, respectively.

In Equation (2) wv are the node-specific weights that control the
amount each classifier’s score contributes to the total cost. We
can set these weights to reflect our belief in the classifier’s accu-
racy. The γv values are weights that control the extent to which
violations of strict monotonicity constraints are prohibited. These
penalty values can also be set in a node-specific fashion.

Problem 2.4 is a regularized version of isotonic regression prob-
lem on trees which has been widely studied [1, 13]. It reduces to
the standard isotonic regression when all the penalties are set to 0.
Moreover, we can also enforce strict monotonicity (Property 2.1)
by setting γv = ∞.

2.2 Algorithm for the case γ =∞
We first present an algorithm for the special case of penalty γ =

∞; in fact, we’ll solve Problem 2.2. The dynamic programming
based algorithm presented in this section is similar in structure
to the more general algorithm presented in the next section, and
serves as a good starting point in introducing the ideas behind the
approach.

Before we describe the algorithm we will discuss a crucial detail
of the structure of the problem. We show that the optimal smoothed
scores in y(·) can only come from the classifier scores x(·).

LEMMA 2.5. For Problem 2.2 there exists an optimal solution,
y(·), where, for all i ∈ T there is a j ∈ T such that y(i) = x(j).

PROOF. Consider the maximal connected subtree T ′ of nodes
in T such that (1) i ∈ T ′, and (2) for all j ∈ T ′, y(j) = y(i). If
y(i) is not the median of the set of scores {x(j) | j ∈ T ′}, then we
can push y(i) closer to the median by a small amount and decrease
the cost of the solution given by Equation (1); this follows since the
median is the minimizer for L1 distance.

This result shows that in the optimal solution the smoothed score
for each node will come from a finite set of values. Note that this
result also holds for the case of weighted L1 distance. In this case
each weighted node in the tree can be considered as multiple nodes,
which number proportional to the weight, and which always have
the same score. In this case too, the minimizer remains the median
of this expanded graph. And hence the smoothed score values come
from the finite set of original values.

153

WWW 2008 / Refereed Track: Data Mining - Algorithms April 21-25, 2008 · Beijing, China

Algorithm BUILDERRORSTRICT (v, x, x̂)
1. if (v is a leaf) then
2. for i = 1 : |x̂| /* all values node v can take */
3. err(v, i) = wv · |x(v)− x̂(i)|
4. else
5. for child u of node v
6. BUILDERRORSTRICT(u, x, x̂)
7. for i = 1 : |x̂| /* all values child u can take */
8. errheap(i) = err(u, i)
9. for i = 1 : |x̂| /* all values node v can take */
10. val∗ = argminj∈{1...|x̂|},x̂(j)≤x̂(i) errheap(j)
11. val(u, i) = val∗

12. err′(i)+ = err(u, val∗)
13. if (err(u, i)− err(u, val∗)) < minchilderr(i) then
14. minchilderr(i) = err(u, i)− err(u, val∗);

minchild(i) = u
15. for i = 1 : |x̂| /* all values node v can take */
16. val(minchild(i), i) = i
17. err(v, i) = err′(i) + minchilderr(i) + wv · |x(v)− x̂(i)|

Algorithm ISOTONESMOOTH (err, val, x̂)
1. val∗ = argmini∈{1...|x̂|} err(root(T), i)
2. p(root(T)) = val∗; y(root(T)) = x̂(val∗)
3. for v in a breadth-first search order of T
4. p(v) = val(v, p(parent(v))); y(v) = x̂(p(v))

Figure 3: Algorithm to solve Problem 2.2. Array x contains
the original classifier scores and x̂ is the set of unique values in
x. wv denote the node-specific weights. BUILDERRORSTRICT
constructs functions err(·, ·) and val(·, ·) which are then used
by ISOTONESMOOTH to find the smoothed scores y(·).

To solve Problem 2.2 optimally we construct a dynamic pro-
gramming based method (pseudo-code in Figure 3). The program
consists of two main algorithms, (1) BUILDERRORSTRICT, which
builds up the index function val and error function err, and (2) ISO-
TONESMOOTH, which uses the val function to compute the optimal
values for each node in the tree. Let x̂ be the set of unique values
in x(·), and let i be an index into this set. Then index function
val(v, i) holds the index of the value that node v should take in
the optimal solution when its parent takes the value x̂(i). In other
words, when y(parent(v)) = x̂(i) then y(v) = x̂(val(v, i)). In
order to compute the function val, BUILDERRORSTRICT computes
for each node v the function err(v, i), which holds the total cost of
the optimal smoothed scores in the subtree Tv when y(v) = x̂(i).

Initially BUILDERRORSTRICT is invoked with root(T) as a pa-
rameter. The function then recursively calls itself (step 6) on the
nodes of T in a depth-first order. While processing a node v,
for each possible value x̂(i) that v can set itself to, BUILDER-
RORSTRICT finds the best values for its children that are less than
or equal to x̂(i) (step 10). All children of v are assumed to be set to
their best possible values (step 11) and their costs (errors) are added
up (step 12). Also, since in the final solution one of the children’s
value has to be equal to value of v, BUILDERRORSTRICT main-
tains information about the child that would cost the least (steps 13
& 14) to move to x̂(i) (step 16). At the end the cost of all children
and the additional cost of the “minchild” that is moved are added
(step 17) to obtain the cost for the current node.

To demonstrate the correctness of this algorithm, we show that
the restriction of the optimal solution to a subtree is also the optimal
solution for the subtree under the monotonicity constraint imposed
by its parent.

Consider the subtree rooted at any non-root node v ∈ T . Now
suppose the smoothed score y(parent(v)) is specified. Then, let
z(·) be the smoothed scores of the optimal solution to the regu-
larized tree isotonic regression problem for this subtree, under the
additional constraint that z(v) ≤ y(parent(v)). Note that if v
is chosen as “minchild” in algorithm BUILDERRORSTRICT above,
the constraint is z(v) = y(parent(v)).

LEMMA 2.6. For all nodes i in the subtree of v, y(i) = z(i).

PROOF. Consider a smoothed solution w(·) where w(i) = z(i)
for all nodes i in the subtree of v, and w(i) = y(i) otherwise. It is
clear that since z(·) obeys the monotonicity property and
z(v) ≤ y(parent(v)), the solution w(·) obeys the monotonicity
property. Now, the cost c(w) is the sum of the cost for the smoothed
scores z(i) in the subtree of v and the cost for the scores y(k) for all
other nodes. Thus, the difference between c(w) and c(y) is just the
difference in costs for z(i) and y(i) in the subtree of v, for which
we know that z(·) is the optimal. The lemma follows.

THEOREM 2.7. Algorithm ISOTONESMOOTH in Figure 3 solves
Problem 2.2 exactly.

PROOF. The algorithm computes up the optimal smoothed scores
for each subtree, i.e., the err(·, ·) arrays, while maintaining Prop-
erty 2.3 for every possible smoothed score of the parent. Further,
the child that costs the least to move from its optimal position to
the parent value is moved. This causes the least increase in the
cost in Equation (1). Hence, the solution computed for each possi-
ble smoothed value of the parent is optimal. By Lemma 2.5, the
parent can take only finitely many smoothed scores in the opti-
mal solution, and by Lemma 2.6, combining the optimal smoothed
scores for subtrees yields the optimal smoothed scores for the entire
tree.

COMPLEXITY. Let |T | = n, and so |x̂| can at most be n. The
dynamic programming table takes O(n) space per node, and so the
total space required is O(n2). Next, we consider the running time
of the algorithm. In the algorithm BUILDERRORSTRICT-I, step 2
takes O(n2) time, step 7 takes O(n2) time amortized over all calls
(this loop is called for each node only once), and the loop in step
9 can be done in O(n2 log n) time by storing errheap values in a
heap and then running over the values i ∈ {1 . . . |x̂|} in descend-
ing order of x̂(i). Hence, the total running time is O(n2 log n).
Note that this is same as the best time complexity of previously
known algorithms for the non-regularized forms of tree isotonic re-
gression [1].

2.3 Algorithm for Regularized Tree Isotonic
Regression

In the previous section we presented an algorithm to solve Prob-
lem 2.2. In this section we give an algorithm that solves the more
general regularized isotonic regression problem exactly. The main
difference between the two problems is that in the latter case the
hard constraint of a parent’s value being equal to at least one of its
children’s value is enforced via soft penalties. These violations of
the strict monotonicity rule are charged for in the objective func-
tion, so that if the cost of incurring the penalties is lower than the
improvement in L1 error, the optimal solution will contain vio-
lations. This makes the current problem much tougher to solve.

154

WWW 2008 / Refereed Track: Data Mining - Algorithms April 21-25, 2008 · Beijing, China

When constraints were strict each child only had two ways it could
set its own value: equal to the best possible value less than the par-
ent’s value or equal to the parent’s value. In the current problem
because penalties are soft, the child has more options of values it
can set itself to. However, we show that this set of possible values
is still finite.

Here we prove that the central result (Lemma 2.5) which facili-
tated the algorithm in Figure 3 also holds for the modified objective
function Equation (2).

PRELIMINARY FACTS.
Consider the maximal connected subtree T ′ of nodes in T such

that (1) i ∈ T ′, and (2) for all j ∈ T ′, y(j) = y(i). Let m be
the median of the set of original scores ST ′ = {x(j) | j ∈ T ′}.
The cost incurred by T ′ through the first term of Equation (2) (L1

distance between x and y) is minimized when y(i) = m. As we
raise or lower y(i) the increase in this cost is piecewise-linear, with
the discontinuities at the values in the set ST ′ . In other words, in
between any two adjacent values in ST ′ the rate of change in the
L1 cost is constant (we denote this rate by a function rm(·)).

Now lets consider the cost due to penalties. Let u be the “maxi-
mal” node in T ′, such that parent(u) 3 T ′. Note that, as T ′ is con-
nected and is a tree, there is a unique such node. Also, let {vi} ∈
T ′ be a set of nodes such that at least one child of each vi is not
in T ′. Some elements in the set PT ′ = {parent(u), child({vi})}
are involved in penalties for having values different from y(i). This
cost from penalties also changes in a piecewise-linear fashion with
possible discontinuities at the values in the set PT ′ . Let us denote
the rate of change of penalty-based cost as rp(·).

LEMMA 2.8. For Problem 2.4 there exists an optimal solution,
y(·), where, for all i ∈ T there is a j ∈ T such that y(i) = x(j).

PROOF. Let the cost of the optimal solution y(·) be c(y). We
will prove the above lemma for a solution y(·) that has the fewest
distinct score values of all solutions that have cost c(y). If this is
not the case, then we’ll show how y(·) can be converted to y′(·)
that has fewer distinct score values.

Consider the maximal connected subtree T ′ of nodes in T such
that (1) i ∈ T ′, (2) for all j ∈ T ′, y(j) = y(i), and (3) there does
not exist any j ∈ T such that y(i) = x(j). As mentioned above,
since y(i) 6= m (median of ST ′ = {x(j) | j ∈ T ′}), we can de-
crease the cost due to L1 error at the rate of rm(y(i)) by moving
y(i) towards m. Also, the cost due to penalties changes at the rate
of rp(y(i)) when we move y(i). If the values rm(y(i)) 6= −rp(y(i))
then we can move y(i) very slightly to decrease the overall cost.

Hence, we consider the case where rm(y(i)) = −rp(y(i)).
Let m1 ∈ ST ′ be the closest value to y(i) in between it and m.
Since the two rates of cost change counterbalance each other, small
changes in y(i) result in solutions with the exact same cost. In
fact, we can move y(i) to m1 without any change in the overall
cost, hence producing an optimal solution with satisfies the lemma.
To see why this happens, consider that as we move y(i) to m1,
rm(y(i)) will not change as explained above. The quantity rp(y(i))
will change if we encounter an element from the set PT ′ in be-
tween y(i) and m1. But this means that we can obtain a solution
with cost c(y) that has fewer distinct values, which violates our
assumption. Another way in which rp(y(i)) can change is if the
maximal node u stops/starts having the highest value of all its sib-
lings (stops/starts getting penalized) as we move y(i). However, it
can be easily verified that this can only reduce the cost of the new
solution further.

Now we are ready to present the dynamic program to solve Prob-
lem 2.4 (pseudo-code in Figure 4). The input to the system is x(·),

Algorithm BUILDERRORRELAX (v, x, x̂)
1. if (v is a leaf) then
2. for i = 1 : |x̂| /* all values node v can take */
3. err(v, i) = wv · |x(v)− x̂(i)|
4. else
5. for child u of node v
6. BUILDERRORRELAX(u, x, x̂)
7. for i = 1 : |x̂| /* all values child u can take */
8. errheap(i) = err(u, i)
9. for i = 1 : |x̂| /* all values node v can take */
10. val∗ = argminj∈{1...|x̂|},x̂(j)≤x̂(i) errheap(j)
11. val(u, i) = val∗

12. err′(i)+ = err(u, val∗)
13. errchildren(i, u) = err(u, i)− err(u, val∗)− γv · x̂(i)
14. if ((x̂(val∗) > maxchildval(i)) then
15. maxchildval(i) = x̂(val∗)
16. for i = 1 : |x̂| /* all values node v can take */
17. (val∗, u) = argminj∈{1...|x̂|},k∈child(v)&C errchildren(j, k)

where C = maxchildval(i) ≤ x̂(j) ≤ x̂(i)
18. val(u, i) = val∗

19. err′(i)+ =errchildren(val∗, u) + γv · x̂(val∗)
+γv · |x̂(i)− x̂(val∗)|

20. for i = 1 : |x̂| /* all values node v can take */
21. err(v, i) = err′(i) + wv · |x(v)− x̂(i)|

Algorithm ISOTONESMOOTH (err, val, x̂)
1. val∗ = argmini∈{1...|x̂|} err(root(T), i)
2. p(root(T)) = val∗; y(root(T)) = x̂(val∗)
3. for v in a breadth-first search order of T
4. p(v) = val(v, p(parent(v))); y(v) = x̂(p(v))

Figure 4: Algorithm to solve Problem 2.4. Array x contains
the original classifier scores and x̂ is the set of unique values in
x. wv and γv denote the node-specific weights and penalties.
BUILDERRORRELAX constructs functions err(·, ·) and val(·, ·)
which are then used by ISOTONESMOOTH to find the smoothed
scores y(·).

the original classifier scores; x̂ is the set of unique values in x.
The algorithm BUILDERRORRELAX, invoked on the root node, re-
curses over nodes of T in a depth first order (step 6) and fills up
the index function val and error function err. The index function
val(v, i) holds the index of the value that node v should take in
the optimal solution when its parent takes the value x̂(i), while
the function err(v, i) stores the total cost of the optimal smoothed
scores in the subtree rooted at v when y(v) = x̂(i). In these re-
spects, BUILDERRORRELAX is identical to the algorithm for the
strict monotonicity property presented in Section 2.2. The main
difference is that now the cost of the solution doesn’t just come
from the L1 error, but also from the penalties. Hence, while pick-
ing a value for a child node we have to consider both the cost of
the optimal solution in the subtree of the child and the cost of the
child’s value differing from the parent value. To add to the com-
plexity, we have to consider the latter cost only when the child has
the maximum value amongst its siblings.

While operating on a node v, for each possible value x̂(i) that v
can set itself to, BUILDERRORRELAX first obtains the best value
assignments for its children that are less than or equal to x̂(i) (step
10). At this stage, only the cost of the optimal solutions in the sub-

155

WWW 2008 / Refereed Track: Data Mining - Algorithms April 21-25, 2008 · Beijing, China

tree of a child is considered while determining its best value (step
8); for now the cost, due to penalties, of a child’s value differing
from x̂(i) is ignored. The val array entries of the children are set
to these best values (step 11) and the costs are added up (step 12).
While processing each child this way another table errchildren is
populated with the additional cost of moving one of the children to
be the maximum child under v (step 13). Once all children values
have been set this way, in a second pass the errchildren table is
used to determine which child should be moved, and what value it
should be moved to, so that the sum of the cost from its subtree and
penalty w.r.t. the parent value is minimum (step 17). Once the child
and its new value are determined, step 18 and step 19 update the val
array and the cost of the current node v respectively. Note that the
initial assignment of values to children might not change in this sec-
ond pass if the original child with the maximum value also costs the
least once we take into account penalties. Once BUILDERRORRE-
LAX has filled the val array, the function ISOTONESMOOTH uses it
to compute the optimal values for each node in the tree.

To demonstrate the correctness of this algorithm, we first show
that the restriction of the optimal solution to a subtree is also the
optimal solution for the subtree under the constraints imposed by
its parent. Consider the subtree rooted at any non-root node v ∈ T .
Now suppose the smoothed score y(parent(v)) is specified and
also whether v has the maximum value of its siblings in the optimal
solution. If v does not have the maximum value then let z(·) be
the smoothed scores of the optimal solution to the regularized tree
isotonic regression problem for this subtree, under the additional
constraint that z(v) ≤ y(parent(v)). If v does have the maximum
value then let z(·) represent the optimal smoothed scores in Tv

such that they minimize c(z) + γv · |y(parent(v))− z(v)| subject
to z(v) ≤ y(parent(v)), where c(z) is the cost of the subtree Tv

under z(·).

LEMMA 2.9. For all nodes i in the subtree of v, y(i) = z(i).

PROOF. This Lemma can be proved by similar reasoning as
Lemma 2.6. Consider a smoothed solution w(·) where w(i) = z(i)
for all nodes i in the subtree of v, and w(i) = y(i) otherwise. It is
clear that since z(·) obeys the monotonicity property and z(v) ≤
y(parent(v)), the solution w(·) obeys the monotonicity property.
Now, the cost c(w) is the sum of the cost for the smoothed scores
z(i) in the subtree of v and the cost for the scores y(k) for all
other nodes, plus the penalty of each parent’s value differing for
the maximum of its children’s values. Thus, the difference between
c(w) and c(y) is just the difference in L1 and penalty costs for
z(i) and y(i) in the subtree of v, including the difference between
γv · (y(parent(v)) − z(v)) and γv · (y(parent(v)) − y(v)). For
this cost we know that z(·) is the optimal. The lemma follows.

In order to proceed with showing correctness of our algorithm,
we have to next show that the two separate loops in steps 9-15 and
steps 16-19 do an optimal job of assigning values to children nodes.
The first loop assigns children values only based on the costs within
their subtrees. The second loop then changes the value of a single
child node making it the maximum amongst all siblings. Hence,
we need to prove that this one transformation results in the optimal
assignments of values to children.

Consider a node v ∈ T with children u1, . . . , u`. Let y(·) be
the optimal solution to Problem 2.4 for the subtree Tv when y(v)
is constrained to be some value x̂(i). Also, let y′(·) be a valid
solution with y′(v) = x̂(i) obtained after execution of steps 5-15
in algorithm BUILDERRORRELAX in Figure 4.

LEMMA 2.10. For a node v ∈ T with children u1, . . . , u`, at
most one child um = argmax{y(ui)} will be such that y′(um) 6=

y(um). All other children will have the same values in y′(·) and
y(·).

PROOF. Let uj 6= um be a child of node v such that y′(uj) 6=
y(uj). There can be two cases, (1) y′(uj) ≤ y(um) and (2)
y′(uj) > y(um). For case (1), we can undo the move of uj from
y′(uj) to y(uj) and reduce the cost of the solution. This is be-
cause y′(uj) is the cheapest solution for uj less than or equal to
y(v) (from step 10 of BUILDERRORRELAX). This case implies
that y(·) is not the optimal solution and so it is not possible. For
case (2), once again we can reset uj from y(uj) to y′(uj) and ob-
tain a cheaper solution. This is because cost of the subtree Tuj is
lower at y′(uj) than at y(uj) (step 10), and since y′(uj) is closer
to y(v) than y(um), the cost from penalties is lower too. no other
node than um could have

THEOREM 2.11. Algorithm ISOTONESMOOTH in Figure 4 solves
Problem 2.4 exactly.

PROOF. By Lemma 2.8, in the optimal solution, a node can take
only take values from a finite sized set, and by Lemma 2.6, com-
bining the optimal smoothed scores for subtrees yields the optimal
smoothed scores for the entire tree. Hence, all that remains to be
shown is that BUILDERRORRELAX finds optimal assignments for
the children ul of a given node v. For each value x̂(i) the parent can
take, by steps 8 and 10 each child is assigned to its optimal value
val(ul, i) less than or equal to x̂(i). The additional cost of the max-
imum child ul assigned to x̂(j) is err(ul, j)−err(ul, val(ul, i))+
γv · (x̂(i)− x̂(j)). Hence, storing additional costs in errchildren
by step 13 and extracting smallest cost increases via step 17 returns
the child that causes the least increase in cost via Equation (2). By
Lemma 2.10 it is sufficient to adjust the value of only one such
child value to obtain the optimal solution.

COMPLEXITY. The space complexity of the algorithm is O(n2)
as there are O(n) entries in the dynamic programming table for
each node. In the algorithm BUILDERRORRELAX, step 2 takes
O(n2) time, step 7 takes O(n2) time amortized over all calls (this
loop is called for each node only once), and the loops in step 9 and
step 16 can be done in O(n2 log n) time by storing errheap and
errchildren values in heaps and then running over the values i ∈
{1 . . . |x̂|} in descending order of x̂(i). Hence, the total running
time is O(n2 log n). Note that this is same as the complexity of
the algorithm for the strict case (in Figure 4) and also the best time
complexity of previously known algorithms for the non-regularized
forms of tree isotonic regression [1].

3. EXPERIMENTS
In this section we evaluate our approach and algorithm on the

text classification domain.

3.1 Experimental Setup

DATASET.
We perform our empirical analysis on the 20-newsgroups dataset2.

This dataset has been extensively used for evaluating text catego-
rization techniques [15]. It contains a total of 18, 828 documents
that correspond to English-language posts to 20 different news-
groups, with a little fewer than a 1000 documents in each. The
dataset presents a fairly challenging classification task as some of
2http://people.csail.mit.edu/jrennie/
20Newsgroups/

156

WWW 2008 / Refereed Track: Data Mining - Algorithms April 21-25, 2008 · Beijing, China

the categories (newsgroups) are very similar to each other with
many documents cross-posted among them (e.g., alt.atheism and
talk.religion.misc). In order to evaluate our classifier smoothing
schemes we use the hierarchical arrangement of the 20 newsgroups/classes
constructed during experiments in [14]. The hierarchy is shown in
Figure 1 and we refer to it as TAXONOMYI.

Since all documents in the 20-newsgroups taxonomy belong to
leaf level nodes, it serves to evaluate our approach on Scenario I.
In order to simulate the conditions encountered under Scenario II,
we constructed “hybrid” documents that represent the content of
internal nodes in the hierarchy. For each internal node class, hy-
brid document were constructed by combining documents from a
random number of its children classes. Care was taken to ensure
that the number of distinct words in a hybrid document as well as
its length were similar to the documents being combined. For each
internal node around 1000 new documents were created this way.
We refer to this modified taxonomy as TAXONOMYII.

OBTAINING CLASSIFIER SCORES.
We trained one classifier for each node, internal as well as leaf-

level, of both the 20-newsgroups taxonomies. Each classifier was
trained to predict whether a test document belongs to one of the
classes in the subtree of the node associated with the classifier.
Hence, while training the classifiers on TAXONOMYI, the positive
set of documents comes from leaf level classes in the subtree of the
node. All the documents from outside the node form the negative
class. In the case of TAXONOMYII, the positive (negative) set of
documents also included those from internal nodes within (outside)
the subtree. As classification algorithms, we used the Support Vec-
tor Machine [9] and Naive Bayes [12] classifiers, both of which
have been shown to be very effective in the text classification do-
main [14]. Another reason for choosing these particular classifica-
tion functions is that they can both output posteriors probabilities of
documents belonging to classes [8]. This ensures that the outputs
of distinct classifiers/nodes that being smoothed are comparable to
each other.

EVALUATION MEASURES.
We report on a few different evaluation measures to highlight

various aspects of our smoothing approach’s performance. A stan-
dard question that can be asked about performance is “How many
documents were placed in the correct class?”. To answer this ques-
tion, we report the classification accuracy averaged over the all
the classes in the dataset. The classification accuracy is fraction
of documents for which the true labels and the predicted labels
match; accuracy is micro-averaged over all the classes. In TAX-
ONOMYI classification accuracy was computed over 20 leaf-level
classes, while in TAXONOMYII it was computed over all 31 nodes
in the tree.

We can also ask performance questions from the perspective of
documents. Since each document has multiple true labels (a class
and all parents on the path to the root), we can ask “How many of a
document’s true labels were correctly identified?”. We answer this
question via the precision and recall of true labels for each docu-
ment. Precision is the fraction of class labels predicted as positive
by our approach that are actually true labels, while recall is the
fraction of true class labels that are also predicted by our approach
as positive. These precision-recall numbers can be summarized by
their harmonic mean, which is also known as the F–measure. We
also use a related measure called area under the ROC curve [7],
which summarizes precision-recall trade-off curves. An advantage
of AUC is that it is independent of class priors; a labeling that ran-
domly predicts labels for documents has an expected AUC score
of 0.5, while a perfect labeling scores an AUC of 1.

No With Smoothing
Smoothing γ = 0 γ = ∞

Classf. Acc. 0.74 0.734 0.86 (16.2% ↑)
AUC score 0.927 0.927 0.96 (3.6% ↑)
F-measure 0.87 0.872 0.91 (4.5% ↑)

Table 1: Performance increases through isotonic smoothing
when using SVMs.

No With Smoothing
Smoothing γ = 0 γ = ∞

Classf. Acc. 0.67 0.67 0.76 (13.4% ↑)
AUC score 0.907 0.907 0.935 (3% ↑)
F-measure 0.828 0.828 0.853 (3% ↑)

Table 2: Performance increases through isotonic smoothing
when using Naive Bayes.

PARAMETER SETTINGS.
All results reported in this section were obtained after a 5-fold

cross validation. Hence, in each fold 80% of the data was used for
training. Out of that 10% was held out to be used as a validation
set for adjusting parameters. Each performance number reported in
this section is averaged over the 5 folds. The variation in perfor-
mance across folds was typically on the order of the third decimal
place and so all improvements reported in Table 1 and 2 are statis-
tically significant.

The SVM classifier was trained with a linear kernel and the “C”
parameter was learned using the validations set by searching over
{0.1,1,10} as possible values. These set of values have been seen
to be effective in past work [14]. Both classifiers were trained with-
out any feature selection as both are fairly robust to overfitting (our
classification system’s performance is very close to what has been
previously recorded [14]). While performing smoothing on TAX-
ONOMYI the penalties for all nodes are set equal, while penalties
are set in a node-specific manner while performing smoothing on
TAXONOMYII. The details of penalties are mentioned later in this
section.

3.2 Results on TAXONOMYI
First we discuss the performance of isotonic smoothing in terms

of average classification accuracy per class and average AUC per
document. In Figure 5(a) we plot both these measures against vary-
ing values of penalty. As we vary the penalty from 0 to ∞, the
problem changes from simple isotonic regression to enforcing the
strict monotonicity constraints. We can see from the plots that this
progression of problems also translates into improved performance;
both classification accuracy and AUC increase significantly with
higher penalties. This shows that our method for smoothing classi-
fier scores improves performance from the perspectives of both the
classes as well as the documents.

Figure 5(b) plots the values for precision, recall, and F-measure
averaged across all documents. Once again, these values are plotted
against increasing penalty values. As we can see F-measure rises
as penalties are increased and we move towards enforcing strict
monotonicity constraints. These strict constraints ensure that the
value of the parent is equal to the value of at least one of its chil-
dren. This type of smoothing takes care of situations where leaf-
level classes are mislabeled while their parent nodes are correctly
labeled. In these cases, high penalty values make children conform
to the parent’s score correcting the error, resulting in increased pre-
cision and recall. However, strict constraints can also sometime
lead to some false positives - especially in shallow hierarchies like
the 20-newsgroups - causing a decrease in precision. These trends

157

WWW 2008 / Refereed Track: Data Mining - Algorithms April 21-25, 2008 · Beijing, China

Figure 5: Performance with SVMs under Scenario I. With iso-
tonic smoothing (bars). Without smoothing (horizontal lines).

are exactly what we observe in Figure 5(b). However, the increase
in recall compensates for the slight decrease in precision by far,
resulting in a higher overall F-measure score.

Since we are evaluating on a dataset that falls under Scenario
I, and the strict monotonicity property was framed for just such a
scenario, it makes sense that of all penalty values, γ = ∞ results
in best performance. However, it is also interesting to observe the
behavior of our dynamic programming based method for low and
high range of penalties. As we can see from Figure 5(a) and Fig-
ure 5(b) for penalty values between 0 and 1 there is hardly any
change in performance from simple isotonic regression (γ = 0).
This is because, in this range of penalty the cost to a node for de-
viating from its parent’s smoothed value is less than the cost from
L1 error for deviating from its own original value. Hence, the reg-
ularization term gets no chance to correct certain types of common
errors, especially in shallow hierarchies like TAXONOMYI. Also, as
penalty increases well above 1 (γ ≈ 5) the increase in performance
saturates. This is because once penalty becomes sufficiently large
it becomes impossible to violate any strict monotonicity constraints
(a node’s value always equals the maximum of its children’s value)
and the smoothing behaves as if penalty was set to ∞.

We summarize the performance of our smoothing approach in
Table 1 and Table 2. As we can see, over and above just classifica-
tion smoothing provides considerable gains in terms of classifica-
tion accuracy over classes and precision-recall of labels for a doc-
ument. According to our results simple isotonic regression without
penalties results in almost no improvement highlighting that the
gains are due to the regularization aspect our approach.

Figure 6: Performance with SVMs under Scenario I with miss-
ing values. Isotonic smoothing (blue solids). Without smooth-
ing (pink).

THE EFFECT OF MISSING CLASSIFIER SCORES.
In certain applications, especially those involving dynamic, fast

changing, and vast corpora like the Web, we may not have the time
or the data to train classifiers for each node (internal or leaf-level) in
a hierarchical classification system. In such situations we can clas-
sify test instances for nodes with trained classifiers, while resorting
to guessing at values for nodes without classifiers. In this section
we evaluate whether smoothing the outputs of classifiers that have
been trained can help us predict scores for classifiers that haven’t
been learned.

In order to simulate situations like these we randomly select a
set fraction of nodes in our 20-newsgroups taxonomy that we don’t
train classifiers for. Then we apply our smoothing approach to the
tree of nodes (some with missing values) and see if the smoothed
scores of the nodes with missing values match the true labels. In
our dynamic programming based method the nodes with missing
values are given a weight of zero so that they don’t contribute to
the L1 error. The smoothing approach, hence, replaces the values
of the missing nodes with whatever value that helps reduce the cost
of isotonic smoothing. However, as the number of missing nodes
increases the amount of information provided to the smoothing al-
gorithm decreases and, therefore, we expect the performance of the
whole system to also degrade.

In order to provide baseline performance we replace the miss-
ing classifier scores randomly with a true or a false - we bias the
random predictions by the observed priors for the missing class.
This class prior information is gathered from the training data for
the class. In situations where classifier values are missing because

158

WWW 2008 / Refereed Track: Data Mining - Algorithms April 21-25, 2008 · Beijing, China

of lack of training data, we can use other priors for these replace-
ments (maybe average size of other classes in the data). Note that
we didn’t use the class prior information in the smoothing approach
to predicting missing values.

In Figure 6 we examine the performance of our system as the
fraction of missing classes is increased (on the X-axis). The per-
formance is measured in terms of the metrics mentioned earlier in
this paper. As we can see from the plots, as the fraction of missing
values increases the performance decreases. However, the decrease
in the quality of smoothed outputs is far lower than the baseline
predictions. Even though the smoothed and baseline predictions
start with similar accuracy values, the difference between their per-
formances grows dramatically with increasing number of missing
values. For instance, in Figure 6(a) the classification accuracy after
smoothing is 16% higher than baseline with no missing values and
this difference grows to 254% at 50% missing values. Similarly,
the corresponding numbers for AUC are 3% and 24%. Figure 6(b)
graphs performance in terms of precision, recall, and F-measure
against varying amounts of missing values. Once again as the num-
ber of missing values increases, the difference in performance of
smoothed outputs over baseline balloons: at 50% missing values,
smoothing outperforms baseline by 155% in terms of F-measure.

The decrease in performance of baseline predictions is very dra-
matic at the beginning but after sufficient number of values are
missing the effect of predicting with priors kicks in and the ac-
curacy stabilizes. Since our smoothing approach does not use the
knowledge of class priors, its performance never stops decreas-
ing and at around 90% missing values the accuracy of smoothed
scores and baseline scores is similar again. Hence, devising a well
founded way to incorporate such prior information into the smooth-
ing will improve the performance of our approach even more, es-
pecially in adverse conditions with many missing values.

3.3 Results on TAXONOMYII
In this section we evaluate the performance of our smoothing

approach under Scenario II, where documents also belong to inter-
nal nodes. Here while smoothing we cannot assume that a node’s
score must equal the maximum of its children’s score. The doc-
ument being classified may not belong to any of the children and
hence a node’s score can be larger than all its children’s scores.
In such a scenario the role of regularization is more subtle than in
previous experiments. Very aggressive regularization will enforce
strict monotonicity constraints which do not match the problem.
Hence, the regularization penalty will have to be large enough to
undo classification errors but also low enough to leave room for
legitimate cases where documents are not classified into any child.

In fact, we observe exactly this behavior in the plots in Fig-
ure 7(a) and Figure 7(a). As we increase the penalty from 0 to
∞, the performance measures first increase and then decrease. The
only exceptions to this trend of rise and fall are the Recall and
AUC measures. Recall increases because as we increase the penalty
(and start enforcing strict monotonicity), more children classes are
forcefully and erroneously labeled positive. This increase in Re-
call and AUC is offset by a decrease in Precision and, hence, the
F-measure.

These above results showcase a scenario where penalties need to
set in a node-specific manner. When we used a standard penalty
value for all nodes we didn’t see any improvement in performance
upon smoothing. This was because the same penalty that lead to
correction of an error at a leaf-level class, introduced errors in other
cases where a document belonged to an internal node (and not to
any of its children). Hence, gains in classification accuracy in one
part of the tree were offset by losses in others. Figure 7(a) and

Figure 7: Performance with SVMs under Scenario II. With iso-
tonic smoothing (bars). Without smoothing (horizontal lines).

Figure 7(a) correspond to experiments in which penalties for nodes
were set in proportion to the chance that a document belonging to
the node also belongs to one of its children (the value on the X-
axis is the proportionality constant). At a given node, the more the
chance the higher its penalty value was set, as this ensured that the
node’s value was close to the maximum of its children’s values.

Even with the node-specific penalties, the performance gains
at the best values of penalty are very modest: at penalty=0.1, F-
measure and Classification Accuracy increase above the baseline
by 2% and 1.3% respectively. This is because the hypothesis that
we are trying to enforce here is very weak, and many erroneous
classifications of a document pass the hypothesis. A stronger prop-
erty that relates classification scores of adjacent nodes (like in Sce-
nario I) will lead to higher performance gains.

4. RELATED WORK
While we are not aware of any work that explicitly post-processes

classifier outputs in a taxonomy in order to correct errors and im-
prove accuracy, in this section we present some existing work on
related topics.

HIERARCHICAL TEXT CLASSIFICATION.
Hierarchical classifiers have been used to segment classification

problems into more manageable units at the nodes of the hierar-
chy [3]. Using well defined hierarchies ensures that a smaller set of
features suffices for each classifier [6, 10]. Dumais et al. [6] work
with SVM classifiers on a two-level hierarchy and show that hier-
archical classification performs better than classification over a flat
set of classes. Similar results are shown by Punera et al. in [14],
where the effect of quality of hierarchy on classification accuracy
is examined.

159

WWW 2008 / Refereed Track: Data Mining - Algorithms April 21-25, 2008 · Beijing, China

EXPLOITING CLASS RELATIONSHIPS IN CLASSIFIER.
The inter-class relationships in hierarchies can be exploited to

improve the accuracy of classification. One of the early works in
this area employed a statistical technique called shrinkage to im-
prove parameter estimates of nodes in scarce data situations via the
estimates of parent nodes [11]. Chakrabarti et al. [4] present Hyper-
class, a classifier for webpages that, while classifying a page, con-
sults the labels of its neighboring (hyperlinked) webpages. Finally,
there is some recent work on generalizing support vector learning
to take into account relationships among classes mirrored in the
class-hierarchy [17].

Our work differs from these approaches by exploiting inter class
relationships as a post-processing step leaving classifiers to treat
each class individually. There are a couple of distinct advantages
of this paradigm. First, by separating monotonicity enforcement
from classification, we drastically simplify the latter step and can
use any off-the-shelf classifier. This way we can take advantage of
all the different classifier that have been developed, many of them
for specialized domains. Second, while the above classifiers can be
trained to follow monotonicity rules there is no guarantee that on
a test instance they will produce monotonic outputs, a requirement
that might be critical in some domains.

ISOTONIC REGRESSION.
Isotonic regression has been used in many domains such as epi-

demiology, microarray data analysis [1], webpage cleaning [2], and
calibration of classifiers [19]. Similarly, many works have pro-
posed efficient algorithms for finding optimal solutions. For com-
plete orders the optimal solutions can be computed in O(N log N)
for L1, and O(N) time for L2 distance metrics [16]. For iso-
tonic regression on rooted trees the best known algorithms work
in O(N log N) time for L2 [13] and O(N2 log N) time for L1

metrics [1]. A regularized version of the isotonic regression prob-
lem is solved in [2], once again in O(N2 log N) time for the L1

metric.
In this paper we have introduced a different isotonic regression

problem in which the regularization term only depends on the par-
ent value and the maximum of its children’s values. This distinct
constraint is motivated by the classifier output smoothing problem.
We presented a dynamic programming based method to solve this
new problem optimally in O(N2 log N) time for the L1 metric.

5. CONCLUSION AND FUTURE WORK
In this paper we formulated the problem of smoothing classifier

outputs as a novel optimization problem that we call regularized
isotonic regression. To solve this problem, we presented an effi-
cient algorithm that gives an optimal solution. Moreover, using a
real-world text dataset we showed that performing smoothing as
a post-processing step after classification can drastically improve
accuracy.

Interesting future work includes applying isotonic smoothing of
hierarchical classifiers to other domains (with novel cost functions
and constraints), and devising well founded ways to incorporate
prior knowledge (like class priors) into the smoothing formulation.

ACKNOWLEDGMENTS. The authors thank Deepayan Chakrabarti
and Ravi Kumar for valuable discussions.

6. REFERENCES
[1] S. Angelov, B. Harb, S. Kannan, and L.-S. Wang. Weighted

isotonic regression under the L1 norm. In Proc. of Annual
ACM–SIAM Symposium on Discrete Algorithms, pages
783–791, 2006.

[2] D. Chakrabarti, R. Kumar, and K. Punera. Page-level
template detection via isotonic smoothing. In Proc. of
International Conference on World Wide Web, pages 61–70.
ACM Press, 2007.

[3] S. Chakrabarti, B. Dom, R. Agrawal, and P. Raghavan.
Scalable feature selection, classification and signature
generation for organizing large text databases into
hierarchical topic taxonomies. VLDB Journal: Very Large
Data Bases, 7(3):163–178, 1998.

[4] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext
categorization using hyperlinks. In Proc. of ACM SIGMOD
International Conference on Management of Data, pages
307–318. ACM Press, 1998.

[5] DMOZ. Open directory project,
http://www.dmoz.org.

[6] S. Dumais and H. Chen. Hierarchical classification of web
content. In Proc. of Annual International ACM Conference
on Research and Development in Information Retrieval,
pages 256–263. ACM Press, 2000.

[7] T. Fawcett. ROC graphs: Notes and practical considerations
for data mining researchers. Technical Report HPL-2003-4,
Hewlett Packard Laboratories, Jan. 17 2003.

[8] T.-K. Huang, R. C. Weng, and C.-J. Lin. Generalized
Bradley-Terry models and multi-class probability estimates.
Journal of Machine Learning Research, 7:85–115, 2006.

[9] T. Joachims. Text categorization with support vector
machines: learning with many relevant features. In Proc. of
European Conference on Machine Learning, pages 137–142,
1998.

[10] D. Koller and M. Sahami. Hierarchically classifying
documents using very few words. In Proc. of International
Conference on Machine Learning, pages 170–178. Morgan
Kaufmann Publishers Inc., 1997.

[11] A. McCallum, R. Rosenfeld, T. M. Mitchell, and A. Y. Ng.
Improving text classification by shrinkage in a hierarchy of
classes. In Proc. of International Conference on Machine
Learning, pages 359–367. Morgan Kaufmann Publishers
Inc., 1998.

[12] T. Mitchell. Machine Learning. McGraw Hill, 1997.
[13] P. M. Pardalos and G. Xue. Algorithms for a class of isotonic

regression problems. Algorithmica, 23(3):211–222, 1999.
[14] K. Punera, S. Rajan, and J. Ghosh. Automatic construction of

n-ary tree based taxonomies. In Proc. of IEEE International
Conference on Data Mining - Workshops, pages 75–79.
IEEE Computer Society, 2006.

[15] J. Rennie and R. Rifkin. Improving multiclass text
classification with the support vector machine. AI Memo
AIM-2001-026, Massachusetts Institute of Technology,
2001.

[16] Q. Stout. Optimal algorithms for unimodal regression.
Computing Science and Statistics, 32:348–355, 2000.

[17] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.
Large margin methods for structured and interdependent
output variables. Journal of Machine Learning Research,
6:1453–1484, 2005.

[18] Yahoo! Web directory http://dir.yahoo.com.
[19] B. Zadrozny and C. Elkan. Transforming classifier scores

into accurate multiclass probability estimates. In Proc. of
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 694–699, 2002.

160

WWW 2008 / Refereed Track: Data Mining - Algorithms April 21-25, 2008 · Beijing, China

