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ABSTRACT
Most of the faster community extraction algorithms are based
on the Clauset, Newman and Moore (CNM), which is em-
ployed for networks with sizes up to 500,000 nodes. The
modification proposed by Danon, Diaz and Arenas (DDA)
obtains better modularity among CNM and its variations,
but there is no improvement in speed as its authors ex-
pressed. In this paper, we identify some inefficiencies in
the data structure employed by former algorithms. We pro-
pose a new framework for the algorithm and a modification
of the DDA to make it applicable to large-scale networks.
For instance, the community extraction of a network with 1
million nodes and 5 million edges was performed in about 14
minutes in contrast to former CNM that required 45 hours
(192 times the former CNM, obtaining better modularity).
The scalability of our improvements is shown by applying it
to networks with sizes up to 10 million nodes, obtaining the
best modularity and execution time compared to the former
algorithms.

Categories and Subject Descriptors: H.3.3[Information
Search and Retrieval]: Clustering

General Terms: Algorithms, Experimentation

Keywords: Community analysis, Clustering, Large-scale
networks

1. INTRODUCTION
The Internet provides services, such as the on-line social-

related services namely SNS, allowing interaction in huge
networks. One big challenge is developing efficient tech-
niques for identification of highly cohesive subgroups, called
communities, for large-scale networks. Clauset, Newman
and Moore (CNM) proposed a fast algorithm with O(n log2 n)[1]
that could be applied to networks with sizes of less than 500
thousand nodes. Then, Danon, Diaz and Arenas (DDA)[2]
made a modification to the CNM to improve the modular-
ity while retaining its speed. Wakita and Tsurumi (WT)[3]
proposed some heuristics to improve the speed of CNM, but
with compromises in modularity in their fastest heuristics.
All these algorithms are used for undirected networks.

Undirected networks allow representation in symmetric
matrices. There are two implementation frameworks, one
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for CNM and another for WT. Both of them basically use
a sparse matrix that stores both symmetric values ∆Qij

and ∆Qji, and keep them consistent at all times, which
impact the performance in both frameworks. For instance,
any update in a pair (i, j) takes O(1) but the update of
its symmetric pair (j, i) takes O(log n) because it requires
searching column j in row i.

In this paper, we propose a new implementation frame-
work to avoid unnecessary operations to the minimum and
a modification of the DDA to fit our framework, obtaining
improvements in speed and modularity compared to the for-
mer algorithms.

2. FRAMEWORK IMPROVEMENTS

2.1 Data structure improvement
The use of triangular matrices avoids or reduces the previ-

ously described implementation difficulties, accelerating the
algorithm, because it stores half of the information required
in frameworks of CNM and WT due to symmetry.
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Figure 1: A new framework.

We employ two triangular sparse matrices (Figure 1(a)).
The lower triangular matrix stores the values of every ∆Qij

where i < j, and the upper triangular matrix stores the
references to their symmetric values in the lower triangular
matrix. The reference matrix allows access over the columns
in the lower triangular matrix in O(1). We use a double-
linked sorted list for rows (Figure 1(b)). The advantage is
observed in deletions and updates of ∆Qij which is done in
O(1). We keep track of the maxj ∆Qij in row i only for
the lower triangular matrix, reducing the search range when
obtaining the maximum ∆Q of the row.

In order to iterate over all the neighbors of the commu-
nity i, or over the whole row in the symmetric matrix, it is
necessary to iterate over the elements in the lower triangular
matrix and then switch to elements of the upper triangular
reference matrix obtaining the position and access of their
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Figure 2: Results from the original CNN and CNM, DDA, DDA2, WT and WT2 under our framework

symmetric cells in the lower triangular matrix (Figure 1(b)).
This process is done by the creation of a special iterator to
switch the matrix when needed.

2.2 Reduction of unnecessary operations
When all values of ∆Qij in the lower triangular matrix are

negative for a certain row i, its maximum value is assigned
to a constant negative value in order to avoid unnecessary
updates in the max heap H.

In the same way, when combining two in-process commu-
nities i and j, we keep track of maxk ∆Qjk for the commu-
nity j. In the case that this value is negative after finish-
ing the combination, any further joining of two communities
linked to j will still produce negative ∆Q in the community
j. As a consequence, this in-process community will pro-
duce no positive value in any circumstances, therefore, we
eliminate these rows, reducing unnecessary operations.

2.3 Algorithm improvement
DDA provides better modularity when treating in-process

communities of different sizes as similar. DDA normalizes
the contribution in modularity by dividing the contribution
by the degree of the in-process communities. The main pur-
pose of this modification was to improve the modularity
rather than speed as pointed out in [2]. This modification
makes the matrix asymmetric, which requires the manipu-
lation of the full matrix. We make a slight modification to
the algorithm in order to use it in our triangular matrices.

∆Q∗
ij = ∆Qij/ai =⇒ ∆Q∗

ij = ∆Qij/min(ai, aj)

This modification will not compromise the result. Where
i and j have different degrees and i has the lowest degree,
(i, j) will produce a higher value than its symmetric (j, i).
Therefore, in any case the higher value (i, j) is preferable.

3. LARGE-SCALE NETWORK
We evaluate our improvements with networks of sizes up

to 10 million nodes and 50 million edges generated by the
CNNR model[4] that produces SNS-like networks.

We implemented the two most representative heuristics
of [3], renaming the HE to WT and HE’ to WT2. We cre-
ated another modification of DDA represented by DDA2
that uses our modified normalization of DDA only in the
max ∆Q value of each row, which will be inserted in the
max heap H. All the algorithms were implemented in our
framework using standard C++ and executed on a PC with
Xeon 2.8 GHz CPU, 64GB Ram, Red hat linux. We should
note that all programs are single process.

3.1 Experimental Results
The effectiveness of our framework is shown in Figure 2(a).

The CNM implemented under our framework is faster than
the original CNM, implemented and distributed by Clauset.
Two reference lines obtained by fitting the results show that
our framework is 7 times faster. Subsequent experiments
will employ the CNM implemented under our framework.

The effectiveness and scalability of all the algorithms are
shown in Figure 2(b-d). It should be noted that CNM was
applied to networks up to 1 million nodes because of lim-
itations for larger networks. Figure 2(b) shows the execu-
tion time, where all modifications of CNM are faster than
CNM, our DDA being the fastest. Figure 2(c) presents the
modularity obtained by all the algorithms, showing that
our DDA and DDA2 are the highest among all the algo-
rithms. It should be remembered that the original DDA
was modified to improve modularity, not for acceleration of
the CNM[2]. Figure 2(d) details the results obtained by all
the algorithms in a network of 1 million nodes and 5 mil-
lion edges. Though slower than DDA (still 53 times faster
than the former CNM), DDA2 provides the best modular-
ity among all the algorithms (13% improvement over the
former CNM), and is recommended for networks up to 1
million nodes.

4. CONCLUSIONS
We presented a new implementation and a modification

of the DDA to speed it up in our framework, obtaining an
improvement of 192 times faster than the original CNM.
Large-scale networks up to 10 million nodes and 50 million
edges were employed, showing that our modifications pro-
vide better modularity and require less time compared to
CNM and its modifications. As a result, our improvements
make it applicable to large-scale networks.
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