
Towards a Programming Language for Services Computing

Arun Kumar
IBM India Research Laboratory
4, Block C, Institutional Area,

Vasant Kunj, New Delhi 110070, India
kkarun@in.ibm.com

D Janakiram
Dept. of Comp. Sc. & Engg.

Indian Institute of Technology Madras,
Chennai-600036, Tamil Nadu, India
d.janakiram@cs.iitm.ernet.in

ABSTRACT

Services Computing is emerging as a new discipline. The
acceptance of web services technology stems from the fact
that services enable easy integration and interoperation of
enterprise level distributed systems. However, currently
software developers are forced to translate business level ser-
vice requirements and encode them into programs using low
level abstractions such as objects. We propose to introduce
language constructs for Service Oriented Programming that
would enable raising programming abstractions from objects
to services.

Categories and Subject Descriptors: D.3.3 [Program-
ming Languages]: Language Constructs and Features [data
types and structures, inheritance]

General Terms: Languages, Design

1. INTRODUCTION

Interoperability and manageability in the presence of
heterogeneity are two very important concerns for enterprise
IT system managers. Services computing promises to ease
these problems by creating an infrastructure of loosely cou-
pled components residing in an heterogeneous framework.
This has lead to several research efforts that explore ways
of increasing the level of automation in service discovery,
invocation, composition and interoperation [1, 4].

However, the current services based software development
model suffers from several drawbacks. The developers
are forced to take into consideration dynamics of the
runtime environment since services are actively running
components rather than passive function/class libraries.
Further, the developers are required to map high level
service requirements to programming constructs available
in current OO languages such as Java and C#. There is
a clear mismatch between the needs of services software
developer and the programming models available today. In
this paper, we propose new language constructs that enable
programming with services and discuss some benefits arising
from such an approach.

2. PROGRAMMING WITH SERVICES

In this section, we build upon our previous work [3] that
proposed granting a first class status to services. The
proposal used a semantic web services based representation

Copyright is held by the author/owner(s).
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

model [2] that applies the abstraction principle of classifica-
tion to services and defines the concepts of service types and
service instances [2, 1]. Service types capture the semantic
description of the service primarily in terms of its interface
description. A service instance, on the other hand, provides
an operational description of a service and represents an
actual running instance.

Web Service S/w Development

Environment

Registry of

ServiceType
Definitions

Developer

Deployable Program

(Program with Service Type variables 
and unbound ServiceInstance Variables)

Available 

Services

Compile Time

Phase

Run Time

Phase
Web Service Runtime Execution

Environment

Binding 
Component Registry

of Service

Instances

Limited

Search

Execution Engine

Executable 

Program

Other 

Libraries

Figure 1: Programming Model for Services

Figure 1 shows the resulting programming model for
service oriented software development that enables to split
the development process across design time and runtime
phases. This is essential to shield the developers from the
dynamics of runtime environment.

As shown in the figure, the development environment
provides a service types registry using which the developers
could program to service interfaces without worrying about
live instances. These service oriented programs could then
be deployed by binding the service variables to actual
running instances available at that time. The runtime
execution environment provides access to instances registry.

To utilize this programming model, we introduce two new
language constructs namely ServiceType and ServiceIn-

stance. ServiceTypes and ServiceInstances are analogous
to Classes and Objects, respectively, yet different. While
ServiceTypes refer to definition of a service just like a class
defines an entity and ServiceInstance refers to a live service
similar to objects, the difference lies in the fact that both
ServiceTypes and ServiceInstances are first class entities.
Classes are typically not first class entities such as in C++.
The ServiceType variables can be used to encode logic
applicable at compile time while ServiceInstance variables
allow encoding of logic applicable at runtime.

They could be declaratively defined as partially shown in

1153

WWW 2008 / Poster Paper April 21-25, 2008 · Beijing, China



ServiceType{

functionalSpec{

interfaceTypeA{

inputTypes { .. };

outputTypes { .. };

preconditions { .. };

effects { .. }; 

};

….

};

modelDescription{ .. };

stateDescription { 

<List of types of data 

members>

};

nonFunctionalReqmts{

<QoS and other reqmts.>

};

}

ServiceInstance{

serviceTypeRef;

operationalSpec{

interfaceA{

inputs {..};

outputs{..};

}

….

}

state{

<list of data variables>

}

nonFunctionalCapability{

<QoS guarantees>

}

binding{

<list of protocols,ports>

}

}

Figure 2: ServiceType and ServiceInstance

Fig. 2. Alternatively, ServiceType could be defined with
the help of service type descriptions available in the types
registry. The definition in such a case would take the form:

new ServiceType(XMLFileRef FS, XMLFileRef MD, XMLFileRef

SD, XMLFileRef NFR)

ServiceType construct is composed of four elements - a
functional specification containing various interface descrip-
tions, a model description, description of State in terms
of a list of data types, and constraints on non-functional
capabilities of service instances. Similarly, ServiceInstance
could also be defined with the help of service instance
descriptions in instances registry as given below:

new ServiceInstance(serviceTypeRef, XMLFileRef OS,

XMLFileRef State, XMLFileRef NFC, XMLFileRef binding)

The ’new’ operation here creates a new ServiceInstance
entity and binds it to an actual running service instance,
in the services registry, whose service details are provided
through the XMLFile references in the parameters.

The functional specification in the ServiceType definition
enables the software developers to write logic that reasons
upon the functionality of the service they are dealing with.
The operational specification in ServiceInstances allows logic
that invokes the service’s functionality.

Operations on Service Types are defined based upon
the notion of classification, composition and inheritance
defined for services in [2],

-Classification: isEquivalentTo(ST) returns a degree of
match between the current service type and the service
type supplied as parameter; isBound() returns true if a
service type has been instantiated or bound to at least
one instance; getInstance(ST) returns an existing bound
ServiceInstance or creates a new binding to an actual
running service instance and returns it as a ServiceInstance;
isServiceTypeOf(SI) returns a value indicating a degree of
match i.e. direct type of the service instance vs a super
type in chain.

- Composition: isComposedOf(ListofSTs) and isCompo-
nentOf(CompositeST) return a true if the current service
type is composed of the supplied list of service types and if
it is a component of the supplied service type respectively.

- Inheritance: isSuperTypeOf(ST) and isSubTypeOf(ST)
return true if the current service type is a supertype and if
it is a subtype of the specified service type respectively.

Operations on Service Instance variables include the
functional methods (i.e. actual functionality offered by the
instance) and others operations that are related to querying
the interface descriptions or sending commands to the

instance and verifying the health of the instance by invoking
their management interfaces. The functional methods
are invoked by referring to the interface names (such as
interfaceA in Fig. 2) through the ServiceInstance variable.
Queries for interface descriptions are supported by invoking
an appropriate operation on the associated ServiceType.
Such operations on instances would help automatic agents
to programmatically interpret and subsequently invoke the
interface of new services. The management commands and
health check operations are dependent upon the manage-
ment interfaces implemented by the instances.

3. RELATED WORK

ServiceJ [4] proposes extensions to Java to enable support
for service oriented computing in OO languages. Declarative
language constructs are proposed to transparently deal
with service selection at runtime as well as for applying
a filtering and ranking criteria. However, their exten-
sions deal primarily with non-functional aspects and it is
not clear how their compiler works without having access
to functional description of services available at compile
time. The ServiceType and ServiceInstance constructs
proposed in this paper address the functional as well as
non-functional aspects of services in a unifying development
framework. Zimmermann et al. [6] motivate the need for
a Service Oriented Analysis and Design (SOAD) approach
that leverages and builds upon existing approaches of
Object Oriented Analysis and Design (OOAD), Enterprise
Architecture frameworks and Business Process Modeling
concepts. Papazoglou [5] provides a detailed comparison
between services in SOA and objects in OOAD. However,
they felt that concepts like polymorphism etc. are not
applicable to SOA. The language constructs proposed by
us enable such OO features by raising the programming
abstraction from objects to services.

4. CONCLUSION

We have proposed programming language constructs to
enable programming with services. The constructs incorpo-
rate well established object oriented software development
principles such as classification, composition and inheritance
into a service oriented programming model. We are cur-
rently in the process of developing a compiler for introducing
these constructs as extensions to Java.

5. REFERENCES

[1] V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar, A. Kundu,
S. Mittal, and B. Srivastava. A Service Creation Environment
based on End to End Composition of Web Services. In
Proceedings of WWW, May 2005.

[2] A. Kumar, A. Neogi, and D. J. Ram. An OO Based Semantic
Model for Service Oriented Computing. In Proc. of IEEE
SCC, USA, Sept. 2006.

[3] A. Kumar, S. Pragalapati, A. Neogi, and D. Janakiram.
Raising Programming Abstraction from Objects to Services. In
Proceedings of ICWS, July 2007.

[4] S. D. Labey, M. van Dooren, and E. Steegmans. ServiceJ: - A
Java Extension for Programming Web Service Interaction. In
Proc. of IEEE ICWS, Jul 2007.

[5] M. P. Papazoglou. Service-Oriented Computing: Concepts,
Characteristics and Directions. In Proc. of WISE, Dec 2003.

[6] O. Zimmermann, P. Krogdahl, and C. Gee. Elements of
Service-Oriented Analysis and Design: An interdisciplinary
modeling approach for SOA project.
http://www.ibm.com/developerworks/webservices/
library/ws-soad1/, June 2004.

1154

WWW 2008 / Poster Paper April 21-25, 2008 · Beijing, China


