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ABSTRACT 

This paper reports a safe regression test selection (RTS) approach 

that is designed for verifying Web services in an end-to-end 

manner.  The Safe RTS technique has been integrated into a 

systematic method that monitors distributed code modifications 

and automates the RTS and RT processes. 

Categories and Subject Descriptors 

D.2.5 [Testing and Debugging]: Testing Tools. 

General Terms: Algorithms, Design, Experimentation, 

Management, Reliability, Verification. 

Keywords: Regression Test Selection, Web Services, 

Automation, Control-Flow Graphs 

1. INTRODUCTION 
Web services must undergo rapid adjustments, since the 

businesses they support are frequently changing.  These 

modifications must be supported by rapid verification.  In addition 

to the correctness of the new functions, we have to assure that 

each modification does not impose any adverse effect on the 

unmodified functions.  A common practice is to rely on regression 

testing (RT).  Without a test selection process, regression testing 

would require retest all the existing test cases.  This approach over 

time becomes less and less affordable for complex systems, when 

more and more test cases are added to the test suite.  One of the 

key ideas of RT is to reduce the number of tests that need to be 

retested, or regression test selection (RTS).  Compared to other 

RTS techniques, the safe regression test selection techniques 

guarantee that no modification-revealing and thus possibly fault-

revealing test case will be left unselected and therefore untested 

[1].  However, there is no available mechanism to apply safe RTS 

techniques to Web services due to the distributed and autonomous 

nature of Web services.  While each service is thought of its own 

development island, the services utilize each other to perform 

complex business functions.  This leads to issues rooted in both 

the functional and verification dependencies between services. 

In this paper, we propose a safe RTS technique for verification of 

Web service systems in an end-to-end manner.  Our approach is 

based on the safe RTS algorithm by Rothermel and Harrold which 

was developed for monolithic applications using control flow 

graphs (CFG) [1].  Rather than requiring all the source code of the 

participating services and applications, we require CFGs from 

every party.  The granularity of the CFGs can vary from very 

detailed to very abstract.  Using hash code, the CFGs will be able 

to indicate changes but shield the program source code.  In this 

way, we have adopted the safe RTS, originally a white-box 

technique, into a grey-box technique that can work for inter-

enterprise systems.  Our approach has been designed to automate 

the RTS process, and be capable of precisely locating the sources 

of each fault.  We have been developing a framework that 

monitors distributed code modifications and automates the RTS 

process as well as the test-running management.   

There are quite a few regression testing techniques and tools for 

generating test cases and performing the regression testing for 

Web services.  Our most closely related works were Tsai’s RTS 

framework that enhances WSDL and uses UDDI [2], and 

Harrold’s RTS for component-based software that uses meta-

content [3]. 

2. A SAFE RTS FOR WEB SERVICES 
In principle, we follow the three main steps of the safe RTS 

technique: (1) constructing CFGs of old and new program; (2) 

identifying dangerous edges by comparing the corresponding 

CFGs; (3) selecting test cases that need to be rerun.  CFGs are 

generated from actual programs in any language or extracted from 

designs, which can be used as a common representation 

mechanism among Web services. 

2.1 Constructing Global Control-flow Graphs 
At each service, a CFG is generated for every operation.  Every 

CFG is identified by its corresponding operation name and the 

service’s URI.  In terms of granularity level of the CFGs, on one 

hand, we want to drill down to the statement level.  In a 

statement-level CFG, each statement corresponds to a node.  To 

support future comparison, every node records a hash code of its 

corresponding statement.  With such a detailed CFG, we will be 

able to precisely predict the impact scope of a given code 

modification.  On the other hand, we want to be able to ignore any 

unnecessary details.  In every modern Web service 

implementation, service implementations run in a framework such 

as the J2EE server or the .Net framework.  It is safe for us to treat 

the code provided or generated by the frameworks as unchanged 

libraries, and omit them in our analysis.  Thus, the CFG of each 

operation in each service will be generated from only those 

methods (functions) which are actually implementing the 

operation.  The CFGs of some services can be abstracted to a 

higher level such as the block level or the method (function) level.  

This node records a hash code of the entire unit of the code.  

Every CFG node carries four pieces of information represented by 

the self-interpreted variable names: (service_operation_ID, 

granularity_level, hash_code, is_changed, is_call_node).    

We limit our approach to static service composition only.  That is, 

every called operation is predetermined by the program without 

involving service discovery and lookup.  We have to analyze the 
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code and recognize the operations and their belonging services 

that the subject program calls.  (The subject program can be either 

a client or a composite service.)  In our experiments, we 

particularly studied the Axis Web service proxy in which the 

service locator object holds the service URI upon instantiation.  

With the reference of the WSDL document of the Web service 

corresponding to the URI, we can scan the subject program and 

find each service-call statement.  For each remote service call, we 

create a special node in the CFG called “call node”.  Every call 

node records the operation name and the service URI of the call. 

If a CFG has no call node, it is a terminal graph because it is ready 

to support RTS processing.  However, if a CFG contains a call 

node, then this CFG cannot directly support RTS processing.  

Thus we call such a CFG a non-terminal graph.  Once all the 

CFGs are in place, we can convert every non-terminal CFG to a 

terminal one by inserting the corresponding CFG into each call 

node.  Since the inserted CFG may contain call nodes, the 

conversion process is generally recursive.  In updating and 

transmitting CFGs, we impose a rule that allows any CFG holder 

to deliver terminal CFGs only; this rule eliminates any 

unnecessary communication. 

2.2 Identifying Dangerous Edges 
When the code of an operation is modified, a new CFG is created, 

which is then compared to the old CFG by performing a dual-

traversal of both CFGs.  Such a comparison determines which 

parts of the graph are different.  The differences can be either 

structural (topological) change or a modification of the contents 

of the corresponding nodes.  Detecting the structural difference is 

straightforward because the dual-traversal comparison is devised 

for this purpose.  The content difference is detected by comparing 

the hash code stored in both of the CFG nodes.  Once the changed 

nodes are marked, the downstream edges in the CFG are marked 

as dangerous.  When applying this approach to Web service 

system, we have to consider two special situations among others: 

(1) the modification is made in a different (remote) site; (2) 

multiple changes happen concurrently.   

Case (1) is caused by the distributed nature of Web services.  A 

modification of an operation, M, in a service can affect other 

services’ operations that directly or indirectly call M.  To find the 

set of these potentially impacted remote operations and their 

hosting services, we use a call graph, in which each node (vertex) 

represents an operation or a client program; each arc represents a 

call relationship: the operation (or the client program) represented 

by the source node calls (invokes) the operation represented by 

the pointed node.  Every node is associated with a box that 

represents a Web service.  The “service boxes” merely indicate the 

locality of the operations.  An example of such a call graph was 

shown in Fig. 1.  Obviously, if operation x calls operation y, then 

a change in y may affect x.  Let P be a node, and p be the 

operation corresponding to P.  In general, starting from P, all the 

reversely reachable nodes compose of the inverse closure of P on 

the call graph.  The operations corresponding to the nodes in the 

inverse closure are all the possibly affected operations due a 

change in p.  They should be tested.  Thus, the services hosting 

these operations should carry out a round of RTS process.     

Case (2) is interesting and challenging.  Autonomous services can 

modify their operations concurrently.  The RTS will be carried out 

on each site separately.  If there are failures, we wish to be able to 

precisely determine which change is causing the trouble.  

However, two changes in a system may conflict in such a way that 

there is no way to determine which change caused the failure 

upon the tests.  We need to find a good order to select the test 

cases and to run the cases, if concurrent running is not allowed.  

Here, we use the call graph to help us analyze.   

If two changes happen in two operations that are mutually 

independent, that is, none of these two operations is reachable 

from the other operation in the call graph.  Obviously, these two 

changes can be tested concurrently.  We will be able to determine 

which change cause the fault and act appropriately.  

If the two changes occur on the same path, that is, one changed 

operation is reachable from another changed operation in the call 

graph the two changes conflict.  We use a rollback mechanism to 

handle conflict. Cascading rollbacks, which may occur in this 

scenario, must be avoided by forcing changes in a call graph path 

to be applied in the order of “downstream changes first”.  Once a 

failure happens, no upstream change should be attempted before 

the troubled unit is fixed.   

2.3 Selecting Test Cases 
The result of the second step is a set of dangerous edges.  Using a 

table that recording the coverage relationships between the test 

cases and the edges, selecting test cases is straightforward given 

the set of dangerous edges.  This is performed in the exact same 

manner as described by [1].  

3. AUTOMATING THE FRAMEWORK 
A CFG is generated, integrated, stored and maintained by an RTS 

agent at every participating service site.  A straightforward way to 

synchronize the RTS processes at multiple sites is to establish a 

central Web service that creates and maintains the global call 

graph.  This service would have three operations: request_change 

(op_ID), report_pass(op_ID), withdraw_change (op_ID).  An 

alternative distributed solution can be implemented using the 

event-subscription model.  Once every agent completes the 

subscriptions for every remote operation, the RTS agents start 

periodical CFG updating following a token-passing algorithm, the 

goal of which is to enforce the “downstream changes first” rule in 

CFG updates and RTS processes among all the participating 

service sites. 
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