
The Discoverability of the Web

Anirban Dasgupta Arpita Ghosh Ravi Kumar
Christopher Olston Sandeep Pandey Andrew Tomkins

Yahoo! Research, 701 First Ave, Sunnyvale, CA 94089.

{anirban, arpita, ravikumar, olston, spandey, atomkins}@yahoo-inc.com

ABSTRACT
Previous studies have highlighted the high arrival rate of
new content on the web. We study the extent to which this
new content can be efficiently discovered by a crawler. Our
study has two parts. First, we study the inherent difficulty of
the discovery problem using a maximum cover formulation,
under an assumption of perfect estimates of likely sources
of links to new content. Second, we relax this assumption
and study a more realistic setting in which algorithms must
use historical statistics to estimate which pages are most
likely to yield links to new content. We recommend a simple
algorithm that performs comparably to all approaches we
consider.

We measure the overhead of discovering new content, de-
fined as the average number of fetches required to discover
one new page. We show first that with perfect foreknowledge
of where to explore for links to new content, it is possible
to discover 90% of all new content with under 3% overhead,
and 100% of new content with 9% overhead. But actual
algorithms, which do not have access to perfect foreknowl-
edge, face a more difficult task: one quarter of new content
is simply not amenable to efficient discovery. Of the re-
maining three quarters, 80% of new content during a given
week may be discovered with 160% overhead if content is
recrawled fully on a monthly basis.

Categories and Subject Descriptors
H.3.m [Information Storage and Retrieval]: Miscella-
neous

General Terms
Algorithms, Experimentation, Measurements

Keywords
Crawling, discovery, set cover, max cover, greedy

1. INTRODUCTION
In this paper we are concerned with crawling the web in

order to discover newly-arrived content. Figure 1 illustrates
the key challenges of our problem. First, page p5 may be
discovered by crawling either page p1 or page p3, introduc-
ing a combinatorial cover problem that is NP-hard to solve

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

exactly. Second, pages p6 and p7 may be discovered only by
crawling new page p4. We will study policies for recrawling
known pages in order to minimize the overhead of discover-
ing new content.

Figure 1: Old pages linking to new pages.

Our study has three goals: to characterize the arrival of
new content; to provide algorithms for discovery that ex-
ploit this characterization; and to measure the overhead of
discovering this content for various levels of freshness and
coverage.

1.1 Motivation
Search engines today have strong freshness requirements

at multiple timescales. Within minutes of breaking events,
users expect to visit a search engine to gain access to news,
blog posts, and other forms of content related to the event.
Freshness requirements for such information ranges from
minutes to hours. For less immediate content such as reviews
of a new product, users are disappointed if a review exists on
the web but not in the search engine index; freshness require-
ments here range from hours to days. And finally, obscure
content that meets an information need should make its way
to the index within days to weeks.

Despite these requirements, there are serious limitations
on the ability of the crawler to procure new content in a
timely manner. First, bandwidth remains limited, so down-
loading the entire web every day is not practical. But more
importantly, requests per second to an individual website is
also limited by politeness rules. Many sites are so large that
they cannot be crawled from start to finish within a week
under standard politeness assumptions. And many sites re-
port crawler traffic as a significant fraction of total traffic,
including multiple downloads of unchanged pages. Thus,
careful management of the limited accesses available to a
crawler is now mandatory.

Additionally, all crawlers must trade off recrawl of existing
pages against first crawls of unseen pages; an understanding
of the discoverability of new content allows an understanding
of the diminishing returns of increasingly aggressive discov-
ery policies.

WWW 2007 / Track: Search Session: Crawlers

421

Finally, an analysis of the discoverability of the web ex-
poses an evolutionary property of the graph that is not well
understood, namely, the mechanism by which new pages
are “linked in” to the graph by modifications to old pages.
Our lack of understanding of these matters raises concerns
about the effectiveness of graph generators and even the ef-
fectiveness of the crawling model as an approach to timely
discovery of new content going forward.

1.2 Problem discussion
There are two primary mechanisms by which new pages

arrive on the web. First, a website puts up a new page, and
links to this new page from an existing page. Second, an
entirely new website appears and is linked-to from an exist-
ing website. A third possible mechanism is that one website
puts up a new page without linking to it, and another web-
site provides a link to the new page — this situation is very
uncommon in our data, and we do not study it.

The relative fractions of pages appearing as a result of
these two mechanisms depends on the elapsed time between
observations. As this window shrinks, we will discover new
sites at an earlier stage of their growth, and hence an in-
creasing fraction of pages will appear as new pages on old
sites. Even when the window is a full month, however, we
show that 85–95% of new pages appear on existing sites,
suggesting that the problem of analyzing known sites is of
paramount importance. We therefore study this problem in
greater detail.

Before proceeding, we must observe that no web crawler
may actually crawl the entire reachable web. Due to infi-
nite websites, spider traps, spam, and other exigencies of
the real web, crawlers instead apply a crawl policy to deter-
mine when the crawling of a site should be deemed sufficient.
Some sites are crawled exhaustively, while others are crawled
only partially. In this paper, we focus only on sites that are
to be crawled exhaustively, as the remaining sites have been
deemed lower priority in terms of absolute coverage.

Suppose the crawler has performed an initial complete
crawl of some site at time t. Now imagine that at time t+∆
the crawler must revisit the site and find all the new pages. If
it is the case that a small set of old pages collectively links to
all new pages, then the crawler can in principle discover new
pages with minimum overhead. For example, in Figure 1,
recrawling just page p1 leads to discovery of all new pages.

How well this idea can work on the real web is the subject
of this paper. The fundamental questions are as follows (this
paper tackles several of these, as indicated by the forward
pointers below; the remainder are left as future work):

Basic feasibility of the approach:

• Is it the case for real websites that most new pages can
be discovered via a small set of old pages? (Section 4)

Key characteristics that determine what crawling approaches
are likely to work well:

• To what extent are links to new content redundant (as
in p1 → p5 and p3 → p5 in Figure 1)? (Section 4)

• Does the set of old pages that link to many new pages
tend to remain consistent over time?

Efficient crawl policies for content discovery:

• What is a good choice of old pages to seed the discov-
ery process, given historical information and a crawl
budget? (Section 5)

• What fraction of the budget should be spent assessing
the usefulness of various old pages, versus exploiting
ones already known to be somewhat useful?

Our key findings are as follows. We show first that with
perfect foreknowledge of where to explore for links to new
content, it is possible to discover 90% of all new content with
under 3% overhead, and 100% of new content with 9% over-
head. But actual algorithms, which do not have access to
perfect foreknowledge, face a more difficult task: one quarter
of new content is simply not amenable to efficient discovery.
Of the remaining three quarters, 80% of new content dur-
ing a given week may be discovered with 160% overhead if
content is recrawled fully on a monthly basis.

1.3 Related work
Numerous early web studies focused on properties of a

snapshot of the web graph [2, 4, 12, 17, 18]. More recently,
attention has turned to evolutionary properties of the cor-
pus. In this evolutionary model, researchers have considered
the growth of the web [3], the rates of page and link churn [8,
14, 19], the rates of duplicate evolution [13], and the change
rates of individual pages [3, 5, 14, 22].

Parallel to this line of work, there has been a signifi-
cant body of work on refreshing already-discovered content,
which has been studied in [6, 9, 10, 21, 25]. Already-discovered
pages are recrawled to keep the search engine local reposi-
tory fresh so that the search queries are not answered incor-
rectly due to stale information, while the discovery of new
pages is important for ensuring that as many relevant query
results are shown as possible. It is tempting to view our
problem as equivalent, with new outlinks taking the role of
new content on existing pages, but there is a critical distinc-
tion: in our problem, many pages can be recrawled, each of
which points to a new page, but the value depends on the
union rather than the sum. If the pages all point to the
same new content, there is very little value from a discov-
erability standpoint, but great value from the standpoint of
the freshness of the recrawled pages. To our knowledge, this
specific problem has not been studied previously.

Finally, there has been work in ordering the frontier of
a crawl [7, 11], in which various policies are studied from
the perspective of estimating the quality of a candidate for
first-time crawl. This work is orthogonal to ours; once new
pages have been discovered, it remains to prioritize them for
crawling.

2. PRELIMINARIES

2.1 Formulation
A snapshot Gt of a given site at time t is a directed graph

(Vt, Et), where Vt is the set of nodes (pages) and Et is the

set of directed edges (hyperlinks). Define Xt
∆
= ∪t−1

j=1Vj to

be the set of old nodes at time t, and define Yt
∆
= Vt \ Xt

to be the set of new nodes at time t. The old nodes Xt are
nodes that appeared before time t and the new nodes Yt are
nodes that appeared first at time t.

WWW 2007 / Track: Search Session: Crawlers

422

For convenience, we use the following representation for
the old and new nodes at any time t. Let Ht = (Xt, Yt, Zt)
be a bipartite graph consisting of the old nodes Xt, the
new nodes Yt, and an edge set Zt. This graph will re-
flect information relevant to our discovery problem, but will
not reflect all information in the original graph. An edge
z = (x, y) exists whenever y ∈ Yt is efficiently discoverable
from x ∈ Xt, i.e., there is a path from x to y of the form
x → y1 → y2 → · · · → yk = y where each yi ∈ Yt is a new
node. In this case we say that each yi is covered by x0. Fig-
ure 1 shows the motivation for this definition: by crawling a
node that reveals the start of a long chain of new nodes, we
may now proceed to download the entire chain of new con-
tent recursively with no additional discovery overhead (as
each node of the chain is new, and hence must be crawled
anyway).

The problem of discovering new content is then the follow-
ing: cover the new nodes in Yt using as few nodes from Xt

as possible. Combinatorially speaking, there are two natu-
ral (unweighted) versions of this problem. The first is called
the k-budgeted cover problem, where we are given a budget
k, and want to cover as many nodes in Yt as possible using
k nodes from Xt. The second is called the ρ-partial cover
problem, where we are given ρ ≤ 1 and the goal is to cover
at least ρ|Yt| nodes in Yt using as few nodes from Xt as
possible. Both problems are NP-hard [24].

We study different algorithms for these problems based on
the amount of information that is available at the time when
a node must be crawled. First, in Section 2.2 we describe
an algorithm called Greedy, which has complete informa-
tion about Ht; this algorithm should be viewed as an upper
bound on the performance of any realistic algorithm.1 Next,
in Section 5 we describe a family of algorithms that use in-
formation that is realistically available at the time when a
node must be crawled. In particular, they do not have access
to Ht, but depending on the model, they may have partial
information about Xt and statistical information about Ht

based on partial information about Ht′ for t′ < t.
Note that we have not addressed the issue of nodes dis-

appearing/dying between crawls. Our algorithms may be
adapted in a straightforward manner to this case, but we
focus in this paper on the basic case in which nodes do not
disappear.

Notation. For each x ∈ Xt, we denote by N(x) the set
of new nodes efficiently discoverable from x, i.e., N(x) =
{y | (x, y) ∈ Zt}. For a subset S of Xt, we define N(S) =
∪x∈SN(x).

The Jaccard coefficient between two nodes x and y is

Jxy =
|N(x) ∩N(y)|
|N(x) ∪N(y)| .

A Jaccard coefficient close to 1 means that x and y point
to a very similar set of nodes, and a value close to 0 means
that they are almost non-overlapping.

Key metric: overhead. In general, if a set O of old pages
are crawled to discover |N(O)| new pages, then we define the
overhead of O as |O|/|N(O)|. Overhead numbers should be

1This algorithm is not strictly speaking an upper bound, as
it makes approximations in order to solve an NP-hard prob-
lem; however, the information available to the algorithm
allows it to perform substantially better than any realistic
algorithm we have seen.

read as follows: if 100 new pages may be captured by a cover
of size five, then an algorithm must perform five “wasted”
fetches, in the sense that they do not return new pages,
in order to generate enough information to fetch the 100
new pages. The overhead is 5%, and is a direct measure
of the fraction of additional fetches necessary to gather a
given number of new pages, in other words, a measure of
efficiency.

2.2 An algorithmic upper bound: Greedy

While the maximization problem of k-budgeted cover ad-
mits a (1 − 1/e)-approximation algorithm, the minimiza-
tion problem of ρ-partial cover can only be approximated to
within a log |Xt| factor [16, 23]. Coincidentally, the same
greedy algorithm can be used for both problems. For com-
pleteness, we present the greedy algorithm below. In words,
the algorithm proceeds by repeatedly returning the old node
that covers the most uncovered new nodes.

Algorithm Greedy (Xt, Yt, Zt)

Set Ct = ∅.
While “not done” do,

Find x ∈ Xt \ Ct that maximizes |N(x) \N(Ct)|;
break ties arbitrarily.

Set Ct = Ct ∪ {x}.
Return Ct.

For the k-budgeted cover problem, the predicate “not
done” is true as long as |Ct| ≤ k. For the ρ-partial cover
problem, this predicate is true as long as |N(Ct)| < ρ|Yt|.

3. DATA
We consider two datasets, to address two distinct prob-

lems within our scope. First, we consider a sequence of com-
plete crawls of a number of websites. This dataset allows us
to study in detail the process by which new pages on a site
are incorporated into the existing graph of the site. Second,
we consider a sequence of complete crawls of the Chilean
web. This dataset by contrast allows us to study inter-site
linking, and particularly, the problem of discovering entirely
new websites. We describe these two datasets below.

Site recrawl dataset. We consider a repeated crawl of
200 web sites over a period of many weeks. This dataset was
used in earlier work by Ntoulas, Cho, and Olston; see [20] for
more details about the crawl and the principles used to select
the web sites. The authors of that work have continued to
collect data, and have generously allowed us to employ more
recent snapshots than those in their reported results.

Of the 200 web sites they crawl, we removed those sites
that contained fewer than 100 pages in any snapshot (i.e.,
the site did not have significant size) or more than 200,000
pages (which was a crawler-imposed upper bound on the
number of pages per site, introducing skew into the analysis
of new pages). This resulted in 77 sites. Of these sites, we
selected 42 that were well-represented at each snapshot, and
that did not show any gross anomalies.

The 42 websites in the results dataset were crawled repeat-
edly over a period of 23 weeks from 11/14/2004 to 6/12/2005
(the crawler did not execute during every week). The to-
tal number of pages at the first timestep was 640,489 and
223,435 new pages appeared over this period, of which about
40% are directly linked to some old page.

WWW 2007 / Track: Search Session: Crawlers

423

For each of the web sites and for each snapshot, we first
parsed the crawl output, and extracted the outlinks and
redirect information. We omitted all off-site links and fo-
cused only on on-site links. We also discarded orphans —
pages in Yt that are not covered by any page in Xt. Orphans
accounted for less than 5% of the new pages in our dataset.
We then constructed the bipartite graph Ht defined above
for the purposes of analysis; recall that this step involves
examining paths from old pages to new pages.

Chilean web dataset. We employ a new data set to study
this problem, based on the Chilean web. We have three
snapshots of the Chilean web, based on complete crawls
performed monthly for three months; the first snapshot had
7.40M pages and 67.50M edges and the third snapshot had
7.43M pages and 70.66M edges.

4. MEASUREMENTS
In this section we present a series of measurements on

both of our datasets. In addition to basic properties of the
data, we will study in detail the extent to which algorithm
Greedy is able to efficiently cover the new content.

We will begin with a series of experiments on the site re-
crawl dataset, studying the discovery of new pages on exist-
ing sites. Based on the results of this analysis, we will then
turn in Section 4.4 to an analysis of the Chilean dataset, in
which we will study the relative prominence of new pages
on existing sites, versus new pages on new sites.

4.1 Cover size
For each site at each time, we construct the bipartite

graph H and employ Greedy to cover all new pages. Fig-
ure 2 plots a point for each site, each timestep, and each
partial cover (i.e., for a cover of size 10, we show a point
for the first node of the cover, the first two nodes, and
so forth—each successive partial cover captures more nodes
with higher overhead than the previous partial cover). A
point at location (x, y) represents a cover of size x that cov-
ers y new pages. The figure represents approximately 400
trajectories, one for each site at each timestep, but many of
these are overlapping; the lower graph of the figure shows a
breakout of the smaller trajectories at a larger scale.2

The graph clearly shows the diminishing returns as each
cover grows. Further, an examination of the knee of the
curves shows that most covers efficiently capture 90% of the
total new pages, but must work much harder to cover the
remaining 10%.

We present a detailed aggregation of these numbers in
Figure 3(a-b). We perform an experiment in which we em-
ploy Greedy for a particular site at a particular time, but
terminate processing when either all new pages have been
covered, or the current cover has reached a certain size k;
this corresponds to the k-budgeted cover problem. In Fig-
ure 3(a-b), the x-axis represents the threshold k that is the
maximum size cover we will employ for any site/time pair.

2The outlier trajectory in the top graph of Figure 2 is from
the site oreilly.com. It came about when a content man-
agement change caused over 2,000 catalog entries to intro-
duce a link to a new variant of the same page; the new
destination was discoverable from no other page on the site.
Thus, the limit of the anomalous trajectory is a line of slope
1, in which each recrawl event yields a single page of new
content.

Figure 2: Cover size versus the number of pages
covered.

Figure 3(a) shows two curves. The higher curve is measured
on the left axis; it shows for each value of k the average num-
ber of new pages captured by the cover. However, notice
that for a fixed value of k, each site/time pair might have a
cover of k or smaller, depending on whether a smaller cover
was adequate to capture all the new pages. We therefore
also include the lower curve, which is measured on the right
axis. It shows for each value of k the overhead of the cover.
As k grows large, the number of pages covered tops out at
about 300 on average, which is a reflection of our dataset.
However, the overhead never exceeds 9%, indicating that
although the rightmost region of the curve returns 300 new
pages per cover, with k = 600, nonetheless the “average”
cover size is in fact only 9% of 300, or about 27.

We mention in passing that, while the x-axis of the figure
has been truncated at 600 to focus on the region of inter-
est, the remainder of both curves are stable at 300 and 9%
respectively.

Figure 3(a) is therefore a measure of how efficiently covers
truncated at a certain size can return new content, but so far
we have said nothing about what fraction of the total new
content has been returned. Figure 3(b) covers this question.
Once again, the x-axis represents the threshold k on the
cover size, and the y-axis now shows the overall fraction of
new pages that would be covered, if all covers were truncated
at size k. Setting k = 200, we cover 97.3% of all new content.
We cover 90% of new content once k reaches 83.

4.1.1 90% covers
Based on the above observations, it appears possible to

cover 90% of new content with relatively low overhead. We
therefore adopt this somewhat arbitrary threshold, and study

WWW 2007 / Track: Search Session: Crawlers

424

Figure 3: (a) Overhead and number of covered pages, (b) fraction of new pages covered, (c) 90% cover
statistics.

Figure 4: Histogram of 90% cover sizes.

the nature of covers that capture at least 90% of the new
pages for a give site/time pair. Figure 3(c) is a scatter plot
showing a detailed breakout of this information. A point at
(x, y) means that a particular site at a particular time had
a cover of size x that covered y new pages.

As algorithm Greedy adds a page only when it results
in the discovery of at least one page of new content, there
are no points below the line y = x. The figure is promising
to the extent that there is a significant mass of points far
from the line. Note that the figure is shown in log-log scale,
and there are clearly numerous points in which a small cover
produces a large number of new pages.

We may ask about the distribution of sizes of these 90%
covers. Figure 4 shows this distribution as a histogram,
showing the number of site/time pairs for which the 90%
cover has a certain absolute size. Small covers of five or
fewer pages suffice to capture 90% of the new content of
most sites, but for a nontrivial number of sites, covers of
more than a hundred pages are required. No site in our
sample ever required a 90% cover of more than one thousand
pages.

4.2 Node redundancy
If no two old pages link to the same new page, then the

cover problems addressed by Algorithm Greedy become
trivial; the problem is interesting only when there is overlap
in the set of new pages covered by old pages. In our data,
most pairs of pages (within a site) fall into one of two cate-

Figure 5: Overlap distribution.

gories: either they link to almost the same set of new pages,
or they have almost no new pages in common. Figure 5
shows that a significant fraction of pairs have Jaccard coef-
ficient very close to 0 or very close to 1. This has important
algorithmic implications, as we will see later in Section 5.2.

4.3 Overhead of discovering new pages
Figure 6 shows the overhead for various cover sizes. As

the figure shows, and as stated above, we attain 90% covers
with 3% overhead, and 100% covers with 9% overhead.

Recall, however, that these numbers are the results of a
thought experiment in which a crawler happens to pick a
near-perfect set of pages to crawl in order to find new con-
tent; they represent a goal we would like to attain. The
reader should be heartened that the numbers look so promis-
ing, but should await Section 5 to determine whether these
numbers can be matched by a real algorithm that must
search for new content in a more hit-or-miss fashion.

4.4 Overhead of discovering new sites
In this section we study the relative importance of dis-

covering new pages on old sites, versus new pages on new
sites. We have presented statistics showing the performance
of Algorithm Greedy on each individual site, aggregated
in various ways. We now ask how Greedy might perform
across all sites at once, by operating on the union of the
bipartite graphs Ht corresponding to each individual site.

WWW 2007 / Track: Search Session: Crawlers

425

Figure 6: Global discovery of new pages on old sites.

Snapshot new pages new pages Pr[new site
on new sites on old sites | new page]

1 → 2 452,461 2,404,045 16%
2 → 3 173,537 2,272,799 7%

Table 1: Fraction of new pages appears on new sites
versus old sites in the Chilean web data set.

When asked for a 90% cover, such an algorithm may cover
90% of each site, or may cover many sites completely while
covering others only superficially, based on the relative gains
of each crawl event. We observe in passing that such an al-
gorithm is simple to implement once Algorithm Greedy has
already run on each site: a greedy cover of disjoint sets may
be constructed simply by interleaving the greedy covers of
each set, in a greedy manner. That is, each site may be
viewed as a set of candidate pages, ordered according to the
greedy cover for that site. The algorithm must choose the
top remaining page from some site, and it does so by se-
lecting the one that covers the largest number of uncovered
resources.

We perform the following experiment on the three snap-
shots of the Chilean web. We begin by observing that a
site that appears for the first time during the second or
third month contains on average 18.1 pages. Thus, the ef-
fort of discovering such a site may be amortized across the
18+ pages that will be returned by crawling the site. Ta-
ble 1 considers each page that occurred for the first time in
the second or third month of the crawl, and checks to see
whether the domain of the page occurred earlier. As the
results show, 16% of new pages in the second snapshot, and
7% of pages in the third snapshot, occur on sites that did
not appear during the previous snapshot. This suggests that
the vast majority of new content appears on existing sites,
rather than new sites.

Figure 7 shows the number of existing pages that must
be crawled in order to discover new web sites. Comparing
Figures 6 and 7, we see that many more pages must be
crawled to discover new sites than to discover new pages
on existing sites. (The main reason the latter problem is
easier is the propensity of webmasters to include useful pages
guiding us to new information, e.g., the “What’s new” page.)
In the new site discovery problem, depending on the fraction
of new sites that must be covered, each page fetch will yield
between 1.5 and 3 new sites. However, as we observed above,
each of these sites will return on average 18.1 pages, resulting

Figure 7: Chile site-level discovery.

in an overall overhead of just 3.7%, even for 100% coverage.
These results, combined with the observation from Table 1
that most new pages occur on old sites, convince us to focus
the remainder of our exploration on existing sites.

5. HISTORY-BASED ALGORITHMS
In the previous section we studied the feasibility of using a

small set of existing nodes to cover most of newly generated
content — i.e., we measured whether there exists a small
set of old nodes with links to most of the new content. In
this section we move to the algorithmic question of choosing
such a set of nodes when we do not have access to the entire
bipartite graph Ht. We assume that we have access to the
old nodes Xt but not to Zt, the set of edges, or to Yt, the
set of new nodes. (In reality, we may only have access to
a subset of Xt since some nodes in Xt may not have been
discovered at t due to incomplete crawling before t. We
ignore this for now.)

In this section we explore algorithms that use historical
information, i.e., statistics from Ht−i, in order to discover
new content in Ht. There are two separate questions: how
to aggregate information from the various Ht−i to estimate
relevant statistics, and second and more open-ended, which
statistics lead to good covers?

To address this, we describe and evaluate three algorithms
that employ different statistics gathered from past observa-
tions to solve the k-budgeted cover problem. The first al-
gorithm, Od, crawls pages according to the number of new
pages discovered historically when crawling the page. The
second algorithm Cliq employs past degree information as
well, and in addition uses information about overlaps in the
set of pages discovered by each pair of pages. Rather than
computing and storing all pairwise information between ex-
isting pages, Cliq groups existing pages into clusters that
have produced the same set of pages in the past, according
to the gap observation of Section 4.2, and employs this in-
formation in order to choose a cover. The third algorithm
Cov uses historical results of the algorithm Greedy, i.e.
it chooses to track pages that were previously in the cover
constructed from full recrawls of the data.

In what follows, we define S? be the optimal solution to
the k-budgeted cover problem on Ht (Section 2). Let S
be the solution returned by an algorithm Alg. We define
ρ(Alg) as the ratio of the number of new nodes covered by
S to that covered by S?, i.e., ρ(Alg) = N(S)/N(S?). We
use N to denote the total number of new nodes.

WWW 2007 / Track: Search Session: Crawlers

426

5.1 Algorithm based on outdegree
We consider a very basic algorithm first. Suppose that

for every old node i, we have an estimate of pi = |N(i)|/N ,
the fraction of new nodes covered by i. A natural algorithm
is the following: pick k old nodes with the largest pi’s and
crawl these nodes. We refer to this algorithm as Od. Be-
low, we state a bound on its performance, if the pi’s are
correct estimates. Subsequently, we will define variants of
this algorithm that are amenable to experimentation, based
on different approaches to estimating the pi values.

Lemma 1. Let p[j] denote the j-th largest of the pi’s. Then,

ρ(Od) ≥ p[1]

p[1]+
P2k−1

i=k+1 p[i]
.

Proof. Suppose there are N1 new nodes obtained from
nodes with degrees p[2], ..., p[k] that are distinct from the
new nodes obtained from p[1]. The number of new nodes
found by the greedy algorithm is Np[1] + N1. The number
of new nodes found by the optimum cannot be greater than
Np[1] + N1 + N

P2k
i=k+1 p[i] (recall that p[i] are decreasing).

So

ρ(Od) ≥
Np[1] + N1

Np[1] + N1 + N
P2k−1

i=k+1 p[i]

≥
p[1]

p[1] +
P2k−1

i=k+1 p[i]

.

The above bound is tight. If the degree distribution of nodes
in Xt is a power law, the bound shows that this naive al-
gorithm will perform very well. However the presence of
mirrors can cause this fraction to be as small as 1/k. This,
together with the observations in Section 4.2 lead to the
next algorithm.

5.2 Algorithms based on overlap
Here we describe an algorithm for choosing a small cover

that exploits estimated overlap information. Let pi be as
above, and for a pair of old nodes i, j, let pij be the fraction
of new nodes that i and j both cover: pij = |N(i)∩N(j)|/N .
Figure 5 empirically demonstrated that most nodes overlap
in either a very large or a very small set of links. We state
a lemma showing that under an idealized form of the obser-
vation, it is possible to uniquely partition nodes into groups
that all link to almost the same set of new nodes. Then,

Lemma 2. Let εb, εs ≤ 1/3. If for all nodes i, j, we have
either Jij ≥ 1 − εb or Jij ≤ εs, then the set of old nodes
Xt can be partitioned into equivalence classes, where every
pair of old nodes i, j in an equivalence class has Jaccard
coefficient Jij ≥ (1− εb).

Proof. We will show that for such ε, if Jij ≥ 1 − εb,
Jjk ≥ 1 − εb, then Jik cannot be less than εs. From the
assumptions, |N(i) \N(j)| ≤ εb|N(i) ∪N(j)|, and similarly
|N(k) \ N(j)| ≤ εb|N(k) ∪ N(j)|. So the most number of
elements not in common between i and k is εb(|N(i)∪N(j)|+
|N(j) ∪N(k)|), i.e.,

|N(i) ∩N(k)| ≥ |N(i) ∪N(k)| −
εb(|N(i) ∪N(j)|+ |N(j) ∪N(k)|)

⇒ Jik ≥ 1− εb
(|N(i) ∪N(j)|+ |N(j) ∪N(k)|

|N(i) ∪N(k)|

≥ 1− εb

„
|N(i) ∪N(j)|

|N(i)| +
|N(k) ∪N(j)|

|N(k)|

«
≥ 1− εb

„
1

1− εb
+

1

1− εb

«
,

that is strictly greater than εs for εb, εs ≤ 1/3. The last
line follows from |N(i)| ≥ |N(i) ∩ N(j)| ≥ (1 − εb)|N(i) ∪
N(j)|, and similarly for k. In summary, we showed that
Jij ≥ (1 − εb), Jjk ≥ (1 − εb) ⇒ Jik > εs for εb, εs ≤ 1/3.
Recall that J·,· is a metric. By our assumption, Jik is either
greater equal (1 − εb) or less equal εs, so we have shown
that Jik ≥ (1 − εb), i.e., old nodes can be partitioned into
equivalence classes.

We analyze the performance of the following algorithm,
Cliq. Let C1, . . . , C` be the equivalence classes as above
and let k′ = min(k, `). Let qi = maxj∈Ci pj be the degree
of the highest-degree node in i-th equivalence class and let
ni be the node with this degree. We first sort C1, . . . , C` in
order of descending pi’s. The output S of the algorithm is
the set of ni’s corresponding to the k′ largest qi’s.

Theorem 1. ρ(Cliq) ≥ 1−k′εs
1+kεb

.

Proof. First we lower bound the number of new nodes
obtained by Cliq. Denote by Tj the number of new nodes
obtained by adding j to S. From n1 we get T1 = Nq1 new
nodes. Define qij = pninj = |N(ni) ∩ N(nj)|/N . From the
j-th node added by Cliq, the number of new nodes obtained
is Tj ≥ Nqj−

Pj−1
i=1 Nqij . Since ni and nj belong in different

classes, Jninj ≤ εs, so

qij ≤
Jninj |N(ni) ∪N(nj)|

N

≤ εs(|N(ni)|+ |N(nj)|)
N

= εs(qi + qj).

Substituting above, Tj ≥ Nqj − Nεs

Pj−1
i=1 (qi + qj). Sum-

ming over all j,

k′X
i=1

Ti ≥
k′X

i=1

Nqi −

X
j<i

Nεs(qi + qj)

!

≥
k′X

i=1

Nqi(1− k′εs).

Now we upper bound the number of new nodes covered
by the optimum. The optimum cannot choose more than
k nodes from a class Ci, and so it cannot get more than
(1 + kεb)qi new nodes from Ci: every new node added after
ni contributes no more than εNqi new nodes to N(Ci). Since
the cliques are ranked in order of decreasing degree, the qi’s
of the k′ cliques chosen by the optimum are upper bounded
by the k′ highest qis (chosen by Cliq), and so optimum is

upper bounded by (1 + kε)N
Pk′

i=1 qi. So ρ(Cliq) ≥ (1 −
k′εs)/(1 + kεb).

WWW 2007 / Track: Search Session: Crawlers

427

In reality, not all pairs of old nodes may satisfy the con-
dition in Lemma 2 with sufficiently small values of εb, εs,
in which case we do not obtain the equivalence classes in
Lemma 2. We use a modified version of the algorithm,
in which we first group the old nodes into clusters recur-
sively as follows. We choose a value for the parameter εb,
and initialize with every node in its own cluster. We merge
the clusters so that an old node i belongs to a cluster C if
maxj∈C Jij ≥ 1− εb, i.e., it has high overlap with any other
node in the cluster. (Note that this partitioning into clus-
ters is well-defined.) We then run Cliq using these clusters
instead of equivalence classes.

5.3 Algorithm based on greedy cover
Finally, we describe an algorithm Cov that exploits pre-

viously observed cover information. Let S be the set of old
nodes returned by the Greedy algorithm for the k-budgeted
cover on Ht′ where t′ is the index of the most recent com-
plete recrawl. The algorithm Cov uses this set S of size k as
the cover till the next recrawl. Note that this algorithm has
the following disadvantages over Cliq : a cover cannot be
defined unless the site is completely crawled, whereas pair-
wise overlap information can still be gathered from partial
recrawls. Also, it is not easy to ‘average’ cover informa-
tion from multiple recrawls but overlap information can be
averaged across recrawls.

5.4 Aggregating past observations
We now define several variants of Od and Cliq in which

information from multiple historical recrawls is aggregated
to determine future behavior of discovery crawls. For con-
creteness, we assume the site is fully crawled every ∆ weeks,
and our goal is to discover new content in between these pe-
riodic full recrawls.

For fixed ∆, we may estimate the degree statistics pi using
exponential weighting with parameter α:

pt
i =

 X
t′

αt−t′pt′
i

!
/

 X
t′

αt−t′
!

,

where t′ ranges over the time indices when a full recrawl was
performed. We refer to Od with this method of estimating pi

as Od-Win. We define Od-All as the particular instance
of Od-Win with recrawl frequency ∆ = 1; this algorithm
must discover new content using complete information about
all prior weeks. Similarly, for any ∆ we define Od-1 as
the algorithm that estimates pt

i based on the most recent
recrawl, consulting no further historical information.

To approximate the statistics for Cliq, we do the follow-
ing. To the set of all clusters from the most recent recrawl,
we add one cluster for every old node in Xt that ever linked
to a new node in any past recrawl. The qi for these sin-
gleton clusters is the estimate pt

i as computed above. We
apply Cliq to this set of clusters with the corresponding
parameters. We will refer to this algorithm as Cliq-Win.
As above, we refer to the version of the algorithm with pt

i

measured from the most recent recrawl as Cliq-1.

5.5 Upper bounds on performance of
historical algorithms

We begin by constructing an upper bound as follows. We
implement the policy of crawling at time t every page that
historically yielded any link to a new page at time t − 1 or

before. Any new page that cannot be discovered by this
technique will be very difficult to find; in fact, it is hard
to imagine finding such pages without simply exploring the
entire site. The result of this experiment is that we discover
only 74% of new content, suggesting that roughly a quarter
of new content is simply not amenable to efficient discovery.

We then perform an experiment to explore the decay in
discovery as we use increasingly remote information, as fol-
lows. We imagine a periodic full recrawl of a site every w
timesteps, and at each week we make use only of pages that
linked to a new page during some past periodic recrawl; thus,
if w = 4 we make use of information that is one, two or three
timesteps old. The following table shows the results.
Recrawl policy Full Periodic, w = 2 Periodic, w = 4
New pages 74% 64% 59%

Thus, it is theoretically possible to discover 74% of new
pages with an amount of overhead lower than crawling the
entire web, but as the freshness of our information decays,
the fraction of new content we can realistically expect to
discover also drops. In the following section we will study
how close to these upper bounds our algorithms come, as a
function of the amount of effort expended.

5.6 Analysis of historical algorithms

Some care is required in our evaluation methodology for
this section. We compare a number of algorithms that may
have access to differing amounts of historical information,
and hence differing numbers of candidate pages to recrawl.
Thus, we may see an algorithm that performs very well when
asked to produce a cover of 80%, but that is unable to pro-
duce a cover of 90%. We adopt the following methodology
to allow a meaningful comparison of such policies.

We fix a budget k, which is the maximum number of re-
crawls that may be performed at a particular site. We eval-
uate each algorithm at each time, and ask it to cover as
large a set of new pages as possible, using no more than k
old pages. We then measure for each algorithm the average
cover size produced (which may be less than k), the average
overhead, and the average coverage (measured as total num-
ber of covered pages on all sites at all timesteps divided by
total number of new pages on all sites and all time steps).
We repeat these measurements for all values of k, so that
we can for instance compare covers of a particular average
depth, or a particular level of coverage.

We performed an experiment to compare all our historical
algorithms against an approximation to optimal, in the form
of Algorithm Greedy. For all versions of Cliq, we used
εb = 0.8. We evaluated various values for the exponential
decay parameter α, and found that α = 0.8 and α = 1
perform well. We adopt α = 1 henceforth.

The results are shown in Table 2. Here are some conclu-
sions that might be drawn from the data.

(1) Upper bound on historical algorithms. Algo-
rithm Od-All with infinite budget will eventually crawl ev-
ery page that has historically produced an outlink to new
content. Disturbingly, even this aggressive approach is suf-
ficient to cover only 74% of the new content. This suggests
that much new content during any given week is extremely
difficult to discover.

(2) Extent of historical information. Algorithms Od-Win
and Cliq-Win, averaged over recrawl frequencies ranging
from 2 to 6, capture 69% of the new content. Algorithm

WWW 2007 / Track: Search Session: Crawlers

428

Od-1, which has access only to the information from the
most recent recrawl, is able to capture only 44% of the new
content — the set of old pages considered for any time step
is the smallest for Od-1. Thus, the entire collection of pages
that referenced new content during the previous week is not
adequate to discover new content during the current week,
and in fact captures only 55% of the content that can be
discovered using pages that have historically linked to new
content. Purely recent statistics are not sufficient to discover
new content effectively.

(3) Comparison between different statistics. The al-
gorithms Cliq-Win and Od-Win perform similarly to each
other in both overhead and coverage, while the Cov algo-
rithm has lesser overhead, but with less coverage. We ob-
serve that incorporating aggregated past information sig-
nificantly reduces the overhead of Od, but has smaller im-
pact on Cliq-1. Recall that the primary advantage of the
Cliq-1/Cliq-Win family is that they make more efficient
use of collections of pages, all of which reference the same
new content. The impact of aggregated historical statistics
is sufficient to make this overlap almost irrelevant in terms
of both overhead and coverage, and therefore it is enough to
track degree statistics over time.

Based on these observations, we move to an evaluation of
realistic candidates for discovery algorithms. Figure 8 plots
coverage as a function of average depth (which is equiva-
lent to average cover size) based on statistical information
created during the previous timestep (and earlier for algo-
rithms that aggregate historical information). There are two
conclusions. First, Cov performs very well up to 32% cover-
age, then is unable to cover any more new content. Second,
Algorithm Cliq and algorithm Od perform very similarly,
and have the best coverage in the limit.

Figure 9 shows the same information when historical data
is available based only on monthly recrawls. The scaling
of the x-axis allows the overhead of the algorithms to be
compared, but does not show that total coverage asymptotes
at 59% rather than 69% when more recent information is
available.

Our conclusion is the following. For highly efficient dis-
covery of a smaller fraction of new content, Cov performs
exceptionally well. But for discovery of as much new con-
tent as is realistically possible, algorithm Od-Win performs
nearly as well as alternatives and is particularly simple to
implement.

6. FUTURE WORK
All the previous algorithms assume periodic complete re-

crawls to aid discovery of new content but do not account
for the associated cost. Ideally we would like to allocate the
crawler budget more efficiently to simultaneously exploit al-
ready known high yield pages as well as explore other pos-
sible pages with unknown yield.

Given a limited crawler budget, we model the tradeoff be-
tween crawling pages with known high yield (exploitation),
and pages with unknown yield to discover other high yield
pages (exploration) as an instance of the multi-armed ban-
dit problem [15, 1], which is the following: the bandit has n
arms, and each arm is associated with a fixed payoff proba-
bility that is unknown to the policy. At every timestep each
of the n arms generates unit reward with the corresponding
payoff probability. The bandit policy can activate k arms
at each timestep. On activating an arm, the policy collects

Figure 8: Coverage as a function of average cover
size, recrawl frequency 1.

Figure 9: Coverage as a function of average cover
size, recrawl frequency 4.

the reward generated by that arm in that timestep (which is
either 0 or 1), and can simultaneously update its estimate of
the payoff probability of that arm. The aim is to maximize
the total expected payoff of the policy over time.

Note that designing a reward function for a bandit pol-
icy is nontrivial in this setting, since the total reward of
a set of k arms can be less than the sum of the rewards
from each arm, unlike the usual setting. However, based on
the performance of Od-Win, we design the bandit policy to
converge to the set of k arms with the highest (aggregated)
outdegrees. In our case the arrival of each new page de-
fines a timestep. Each existing page is an arm of the bandit
with payoff probability pi, the mean fraction of new pages it
covers. Unlike the conventional bandit formulation, k arms
are not activated for each new page arrival, but rather in
batches corresponding to snapshots.

Various bandit policies [1, 15] can be used with the above
formulation. Early experiments indicate that the bandit
policies can lead up to discovery of 64% coverage of new
content, with overhead comparable to Od-Win. We hope
to include detailed experiments in a full version.

Acknowledgments. We are very grateful to our colleagues
who have provided us with valuable data to perform this

WWW 2007 / Track: Search Session: Crawlers

429

Budget Depth Overhead Coverage Budget Depth Overhead Coverage Budget Depth Overhead Coverage
Cliq-Win Cov Od-Win

1 0.00 14.77 8% 1 0.00 13.40 9% 1 0.00 14.73 8%
10 4.34 49.75 19% 10 2.91 37.04 23% 10 4.35 51.81 18%
100 37.09 100.2 37% 100 9.36 13.89 37% 100 37.30 120.5 35%
1000 218.34 153.8 52% 1000 11.80 13.89 37% 1000 218.07 151.5 53%
10000 647.63 156.3 69% 10000 13.40 13.89 37% 10000 649.17 153.8 69%

Od− 1 Optimal Od-All-1
1 0.00 13.48 9% 1 0.00 2.22 56% 1 0.00 7.79 16%
10 3.65 45.25 21% 10 3.03 12.79 81% 10 4.49 42.37 24%
100 21.82 106.4 28% 100 9.65 26.39 95% 100 40.09 121.9 36%
1000 67.49 109.9 43% 1000 11.96 26.74 98% 1000 249.05 161.3 55%
10000 181.77 109.9 44% 10000 13.56 26.74 100% 10000 870.83 163.9 74%

Table 2: Analysis of covers produced by historical algorithms.

study. Thanks in particular to Junghoo Cho of UCLA for
providing the site recrawl data and to Ricardo Baeza-Yates,
Carlos Castillo, and Rodrigo Scheihing of Yahoo! Research
Barcelona for providing the Chilean web data.

7. REFERENCES
[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time

analysis of the multiarmed bandit problem. Machine
Learning, 47(2/3):235–256, 2002.

[2] A.-L. Barabasi and R. Albert. Emergence of scaling in
random networks. Science, 286:509–512, 1999.

[3] B. E. Brewington and G. Cybenko. How dynamic is
the web? WWW9 / Computer Networks,
33(1-6):257–276, 2000.

[4] A. Broder, R. Kumar, F. Maghoul, P. Raghavan,
S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.
Graph structure in the web. WWW9 / Computer
Networks, 33(1-6):309–320, 2000.

[5] J. Cho and H. Garcia-Molina. The evolution of the
web and implications for an incremental crawler. In
Proc. 26th VLDB, pages 200–209, 2000.

[6] J. Cho and H. Garcia-Molina. Synchronizing a
database to improve freshness. In Proc. SIGMOD,
pages 117–128, 2000.

[7] J. Cho, H. Garcia-Molina, and L. Page. Efficient
crawling through URL ordering. WWW8 / Computer
Networks, 30(1-7):161–172, 1998.

[8] F. Douglis, A. Feldmann, and B. Krishnamurthy. Rate
of change and other metrics: A live study of the world
wide web. In Proc. 1st USENIX Symposium on
Internet Technologies and Systems, 1997.

[9] J. E. Coffman, Z. Liu, and R. R. Weber. Optimal
robot scheduling for web search engines. Journal of
Scheduling, 1(1):15–29, 1998.

[10] J. Edwards, K. McCurley, and J. Tomlin. An adaptive
model for optimizing performance of an incremental
web crawler. In Proc. 10th WWW, pages 106–113,
2001.

[11] N. Eiron, K. S. McCurley, and J. A. Tomlin. Ranking
the web frontier. In Proc. 13th WWW, pages 309–318,
2004.

[12] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the internet topology. In
Proc. SIGCOMM, pages 251–262, 1999.

[13] D. Fetterly, M. Manasse, and M. Najork. the evolution
of clusters of near-duplicate web pages. In Proc. 1st
LA-WEB, pages 37–45, 2003.

[14] D. Fetterly, M. Manasse, M. Najork, and J. L.
Wiener. A large-scale study of the evolution of web
pages. Software Practice and Experience,
34(2):213–237, 2004.

[15] J. Gittins. Bandit Processes and Dynamic Allocation
Indices. John Wiley, 1989.

[16] M. Kearns. The Computational Complexity of
Machine Learning. MIT Press, Cambridge, 1990.

[17] R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. Trawling the web for emerging
cyber-communities. WWW8 / Computer Networks,
31:1481–1493, 1999.

[18] M. Mitzenmacher. A brief history of lognormal and
power law distributions. Internet Mathematics,
1(2):226–251, 2004.

[19] A. Ntoulas, J. Cho, and C. Olston. What’s new on the
web? The evolution of the web from a search engine
perspective. In Proc. 13th WWW, pages 1–12, 2004.

[20] A. Ntoulas, J. Cho, and C. Olston. What’s new on the
web? The evolution of the web from a search engine
perspective. In Proc. 13th WWW, pages 1–12, 2004.

[21] S. Pandey and C. Olston. User-centric web crawling.
In Proc. 14th WWW, pages 401–411, 2005.

[22] J. Pitkow and P. Pirolli. Life, death, and lawfulness on
the electronic frontier. In Proc. CHI, pages 383–390,
1997.

[23] P. Slavik. Approximation Algorithms for Set Cover
and Related Problems. PhD thesis, SUNY at Buffalo,
1998.

[24] V. V. Vazirani. Approximation Algorithms. Springer,
2001.

[25] J. L. Wolf, M. S. Squillante, P. S. Yu, J. Sethuraman,
and L. Ozsen. Optimal crawling strategies for web
search engines. In Proc. 11th WWW, pages 136–147,
2002.

WWW 2007 / Track: Search Session: Crawlers

430

