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ABSTRACT
Clio is an existing schema-mapping tool that provides user-friendly
means to manage and facilitate the complex task of transformation
and integration of heterogeneous data such as XML over the Web
or in XML databases. By means of mappings from source to tar-
get schemas, Clio can help users conveniently establish the precise
semantics of data transformation and integration. In this paper we
study the problem of how to efficiently implement such data trans-
formation (i.e., generating target data from the source data based on
schema mappings). We present a three-phase framework for high-
performance XML-to-XML transformation based on schema map-
pings, and discuss methodologies and algorithms for implementing
these phases. In particular, we elaborate on novel techniques such
as streamed extraction of mapped source values and scalable disk-
based merging of overlapping data (including duplicate elimina-
tion). We compare our transformation framework with alternative
methods such as using XQuery or SQL/XML provided by current
commercial databases. The results demonstrate that the three-phase
framework (although as simple as it is) is highly scalable and out-
performs the alternative methods by orders of magnitude.

Categories and Subject Descriptors
H.2.m [Information Systems]: Database Management—XML Data
Management

General Terms
Algorithms, Performance

Keywords
Schema Mapping, XML Transformation

1. INTRODUCTION
Transforming data from one format to another is frequently re-

quired in modern information systems and Web applications that
need to exchange or integrate data. As XML becomes the de facto
standard for data exchange among applications (over the Web),
transformation of XML data also becomes increasingly important.
XML-to-RDB (known as XML shredding) and RDB-to-XML (known
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as XML publishing) are special cases of XML-to-XML transforma-
tion.

Writing data transformation programs manually (even in high-
level languages such as XQuery, XSLT or SQL/XML [8], which
is a SQL extension for publishing tables as XML) is often time-
consuming and error-prone. This is because a typical data trans-
formation task may involve restructuring, cleansing and grouping
of data, and implementing such operations can easily lead to large
programs (queries) that are hard to comprehend and often hide the
semantics of the transformation. Maintaining the transformations
correctly, for example as database schemas evolve [22], can also
be a potential problem. As a result, it is desirable to have tools to
assist such data transformation tasks.

We have recently seen research aiming to provide high-level map-
ping languages and more intuitive graphical user interfaces (GUI)
for users to specify transformation semantics in convenient ways.
One of the earliest examples in this direction is our own1 Clio sys-
tem [18, 19, 14] that can be used to create mappings from a source
schema to a target schema for data migration purposes. The tool
includes a schema matching component whose role is to estab-
lish, semi-automatically, matchings between source XML-schema
elements and target XML-schema elements. In a second phase,
the schema mapping phase, the Clio system generates, also semi-
automatically, a set of logical constraints (or logical mappings) that
capture the precise relationship between an instance (or document)
conforming to the source schema (the input to the transformation)
and an instance (or document) that conforms to the target schema
(the output of the transformation). Another example of a system
that is focused on the high-level specification and generation of
data transformation and data integration applications is Rondo [17],
a generic platform for managing and manipulating models. As in
Clio, mappings are specified by using logical constraints. Other ex-
amples include Piazza [15] and HePToX [3], which are also based
on mappings but focus on query rewriting for data integration, in-
stead of data transformation. In addition to the research prototypes,
many industry tools such as IBM Rational Data Architect (with
Clio technology inside), Microsoft ADO.NET (ER-to-SQL map-
ping system) and Stylus Studio’s XML Mapper support the devel-
opment of mappings.

The aforementioned research on schema mappings solves the
problem of specifying the transformation semantics. However, the
problem of correctly and efficiently executing such mapping-driven
data transformations still remains. In this paper, we propose a
three-phase framework for modelling the physical data transforma-
tion implied by schema mappings and describe efficient algorithms
for implementing such data transformation.

The mapping-driven transformations that we address are focused

1IBM Almaden and University of Toronto.

WWW 2007 / Track: XML and Web Data Session: Querying and Transforming XML

1063



on data restructuring and are schema based. As such, many of the
more advanced querying (selection) features of XQuery/XSLT (the
variety of XPath axes, complex predicates such as universal quan-
tification and negation, etc.) are not always needed. In fact, there is
a greater emphasis on a set of operations that include shredding (of
XML data into relations), reformatting and scalar transformation
functions (i.e., those with a single return value), duplicate elimina-
tion, nesting and hierarchical merge. Such operations are essential
in applications that integrate data from multiple sources and are
more reminiscent of ETL (Extract, Transform and Load) than of
typical querying.

We show that with a very simple framework that essentially groups
these basic operations into three stages (extract-transform-merge,
or ETM) one can achieve relative simplicity in the transformation
code along with good performance. We show that one of the key
challenges in XML-to-XML transformation arises when the target
data must be generated as a hierarchy with multiple levels of group-
ing. This task is further complicated if data is coming from multiple
data sources and must be merged. We give two novel and relatively
simple algorithms, one based on hashing (using internal memory)
and one based on sorting (in external memory), that can deal with
such complex restructuring of data even with increased number of
levels of grouping and with large amounts of data.

We also compare the transformation engine with the alternative
of generating queries (XQuery, XSLT or SQL/XML) that imple-
ment the schema mappings. In fact, the Clio system itself includes
query generation components for these query languages. Our ex-
perience shows that escaping to these languages is fine for data
that is not very large or when the transformation does not require
significant restructuring. However, the current XQuery, XSLT and
SQL/XML systems are not (yet) tailored for the task of complex
and large scale data transformations. These languages lack the sup-
port for a flexible deep-union operation, which can hierarchically
merge XML trees. Even for the simpler operation of removal of du-
plicate trees, in XQuery, one has to use the distinct-values
scalar-function in a carefully crafted way so that the structure of
the data is not lost (see, as an example, query Q4 in the XQuery
Use Cases [23]). If the data to be merged is coming from multiple
sources, the resulting query is further complicated. The size of an
XQuery query that correctly implements a schema mapping can, in
fact, be prohibitive (from both the performance and usability point
of view). The situation is not much better for XSLT or SQL/XML.

Our experiments show that using our transformation engine has
significant performance benefits over the use of queries (even on
commercial databases). One interesting research direction is in-
vestigating the applicability to XQuery, XSLT or SQL/XML of the
transformation techniques (e.g., for merging) that we have imple-
mented. One key challenge is identifying what constitutes a merge
“pattern” inside generic queries.

Our approach actually has analogies from the relational-database
field. They are the commercial ETL tools including IBM Infor-
mation Server, Informatica and Oracle Warehouse Builder. These
tools often provide in-house transformation engines rather than trans-
late whole ETL workflows into SQL queries.

1.1 Main Contributions
We model mapping-based XML transformation as a three-phase

process: extract, transform and merge (ETM). For each phase, we
use tailored algorithms to implement it:
• Extract. The extraction phase extracts mapped values from data

sources. For XML data, we present a simple yet efficient stream-
lined algorithm for matching set-path expressions that extract
atomic values in XML data into flattened tuples. When the source

resides in relational tables, we try to leverage the relational data-
bases and generate SQL queries for value extraction.

• Transform. This phase takes one flat tuple at a time and gen-
erates an XML fragment based on the mapping semantics. The
transformation can be very flexible in that multiple fields can be
merged into a single target field (e.g., merging of first name and
last name with a space or comma in-between), and a single field
can be split into multiple target fields (e.g., splitting of names
into first name and last name). In addition, the transformation
can be applied with any data reformatting or data cleansing func-
tion. For example, one can easily reformat a date “1/2/06” to
“January 2, 2006” or “February 1, 2006”, depending on the value
of another input parameter, say a “country” field.

• Merge. The merging phase groups the resulting XML fragments
(from the second phase) based on schema hierarchy, by default,
and, more generally, based on application-specific grouping con-
ditions. This phase requires aggregating and merging of large
amount of data. We discuss both hash-based and scalable, sort-
based, algorithms.
The transformation framework has been implemented with Java

and is fully functional. It can readily be plugged into existing
schema mapping tools. We shall use Clio as the reference schema-
mapping system throughout the paper. However our work can be
applied for all schema mapping tools that use a similar language to
describe mappings as Clio.

As already mentioned, the experimental results confirm that our
approach is sound and has significant performance benefits over
the generated queries running on commercial databases or freely
available XQuery processors.

1.2 Paper Organization
The rest of the paper proceeds as follows. In Section 2, we

give an overview of Clio mappings and the three-phrase transfor-
mation framework. We then sketch the algorithms for implement-
ing the three-phrase process in Section 3 and Section 4. In Sec-
tion 5, we show how one can use XQuery queries (or SQL/XML
queries, when the source is relational) as an alternative to running
the mapping-based transformation engine. Section 6 presents our
experience on the performance of the transformation engine and
compares with the alternative of executing queries. We discuss re-
lated work in Section 7 and we conclude in Section 8.

2. TRANSFORMATION FRAMEWORK
Tools such as Clio help a user create schema mappings from

source to target schemas. The transformation framework that we
are going to present takes source data (that conforms to source
schemas) and the mappings as input, and executes the mappings
to generate target data (that conforms to target schemas).

We describe Clio mappings in Section 2.1 and sketch the three-
phase framework with running examples in Section 2.2.

2.1 Mappings in Clio
Clio [14] is a schema-mapping system for discovering data trans-

formation queries among different data sources. It provides a GUI
for users to specify matchings (or correspondences) between source
and target schemas and to establish accurate mapping semantics
in an interactive way. Clio was initially designed to work for re-
lational schemas [18]. Popa et al. extended it in [19] so that the
source, the target, or both, can be XML.

In a nutshell, the schema mappings in Clio can be represented as
a set of tgds (tuple-generating dependencies) [9]. We explain tgds
with two examples.
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EXAMPLE 1. Consider the scenario described graphically in
Figure 1(a), where we map from the DBLP schema to an AuthorDB
schema. DBLP is a collection of computer science bibliography
entries published in XML format2. (We use a simplified version
here.) The structure of DBLP data is relatively flat. In contrast,
AuthorDB presents a more hierarchical view of the data, where en-
tries can be grouped based on author names and conferences. In
Clio and in this paper, we use a simple nested representation of
XML (and relational) schemas that abstracts away the details that
are not essential. Repeatable elements are marked with ’*’. We do
not require sibling elements in a source document to exactly match
the ordering given in the schema (e.g., we could have title ap-
pear before author). The leaf nodes are atomic elements that can
be mapped. In particular, correspondences between such atomic
elements in the source and in the target can be entered by a user
in Clio’s GUI (or, alternatively, can be inferred by an automated
schema matcher). Based on such correspondences, Clio can gen-
erate a more precise mapping semantics. For our example, this
semantics can be expressed as the following tgd:

l1 : for i in dblp.inproceedings, a in i.author
exists a′ in AuthorDB.author, c in a′.conf jnl, p in c.pub
where a′.name = a and p.title = i.title and c.cname = i.booktitle

dblp
    inproceedings(*)
        author(*)
        booktitle
        title

AuthorDB
     author(*)
          name
          conf_jnl(*)
              cname
              pub(*)
                   title

(a) From DBLP to AuthorDB

Dept
    employee(*)
         eid
         name
    emp_prj(*)
          eid
          pid
    project(*)
          pid
          title

Emps
    employee(*)
        eid
        name
        projects
             project(*)
                  pid
                  title

(b) From relations to XML

Figure 1: Two example mappings

A tgd is nothing but a constraint between the source and the tar-
get schemas that expresses what kind of target data should exist (see
the exists clause and its associated where clause) given a specific
pattern of source data (satisfying the for clause and its associated
where clause, if any). In a tgd, variables are used to range over re-
peatable elements, while a simple projection operator (‘.’) is used
to navigate through non-repeatable elements.

We also use the term “logical mapping” to refer to one tgd. In
the previous example, one logical mapping was enough. However,
in general, a schema mapping may consist of multiple logical map-
pings. For example, if a source schema contains two repeatable
elements on the same level and there is no referential constraint
to relate them, Clio would generate two separate logical mappings
(simulating a union) to cover the two elements, respectively. The
next example illustrates a different case where we map repeatable
elements that are connected by referential constraints, but we still
need multiple logical mappings (simulating an outer-join). The ex-
act mechanism of how Clio generates tgds from user inputs is out-
side the scope of this paper. We refer the interested reader to [9] for
detail.

EXAMPLE 2. Figure 1(b) shows a mapping from a relational
database to an XML schema. (The dashed lines represent foreign-
key constraints.) The mapping implied by the correspondences con-
sists now of two logical mappings (l2 and l3):

l2 : for e in Dept.employee, ep in Dept.emp prj, p in Dept.project
where e.eid = ep.eid and ep.pid = p.pid

exists e′ in Emps.employee, p′ in e′.projects.project
where e′.eid = e.eid and e′.name = e.name

2http://www.informatik.uni-trier.de/ ley/db/

and p′.pid = p.pid and p′.title = p.title
l3 : for e in Dept.employee

exists e′ in Emps.employee
where e′.eid = e.eid and e′.name = e.name

Note that l2 includes a three-way join on the source (expressed
using the two equalities in the source where clause). The second
logical mapping l3 is needed to transform the data for employees
without any project.

Although not shown in the examples, the equalities that express
target fields in terms of the source fields can also include scalar
functions (e.g, for data formatting).

2.2 The Three-Phase Process
A Clio mapping can consist of multiple logical mappings. We

model the transformation dictated by each logical mapping as a
three-phase process shown in Figure 2:

XML/RDB

� �

�

Tuple
extraction

XML-fragment
generation

XML-fragment
merging/grouping XML/RDB

� �
Tuple

extraction
XML-fragment

generationXML/RDB

Logical mapping 1

Logical mapping N

Figure 2: A three-phase execution model for schema mappings

Logical mappings have independent tuple-extraction and fragment-
generation phases, but share the same merging phase. The tuple-
extraction phase emits one tuple at a time and feeds the tuple to the
fragment-generation phase, which in turn feeds the XML fragment
to the merging phase. We now explain these three phases.

2.2.1 Tuple Extraction
The result of tuple extraction is a table of flat tuples, which is

obtained by taking all the possible instantiations (with respect to
the source data) of the variables in the for clause (provided that the
associated where clause is satisfied); then, for each such variable,
we include all its atomic subelements that are exported into the tar-
get (i.e., that appear in the where clause of the exists clause). For
example, given the mapping in Example 1 and the source data in
Figure 3, we will have four extracted tuples, shown in Table 1. The
three columns correspond to the three “exported” atomic expres-
sions: a, i.booktitle and i.title. The column names in the table are
for reference purpose and can be arbitrary in implementation.

authortitle

"T1" "A2"

inproceedings

author

"A1"

title

"T2"

inproceedings

author

"A1"

DBLP

booktitle

"VLDB"

booktitle

"ICDE"

title

"T3"

inproceedings

author

"A1"

booktitle

"VLDB"

Figure 3: DBLP data for Example 1

For the logical mapping l2 and data in Table 2, the extracted
tuples are in Table 3. The extracted tuples for the logical mapping
l3 are the same as Table 2(a).

To implement tuple extraction, we use different algorithms based
on the types of data sources and also the semantics of the extraction.
Details are discussed in Section 3.
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author booktitle title

t1 A1 VLDB T1
t2 A2 VLDB T1
t3 A1 ICDE T2
t4 A1 VLDB T3

Table 1: Extracted tuples for l1

eid name

e1 Jack
e2 Mary
e3 Linda

(a) employee

eid pid

e1 p1
e1 p2
e2 p2

(b) emp prj

pid title

p1 Schema mapping
p2 DB2

(c) project

Table 2: Relational data for Example 2

2.2.2 Generating XML Fragments
This phase takes one flat tuple at a time and transforms it into an

XML fragment based on each logical mapping. The transformation
is represented with an XML-fragment template as shown on the left
side of Figure 4. This template corresponds to the exists clause and
its associated where clause in a tgd. The leaf nodes are atomic
elements and their text values are instantiated with extracted source
fields. The right side of Figure 4 shows the resulting XML fragment
for the source tuple t1. Functions can be used in the field mappings.

It is possible that the same source field appears multiple times
in the XML-fragment template. Conversely, multiple source fields
can be mapped to the same template field—a function is mandatory
in order to “combine” the multiple fields into the template field.

2.2.3 Merging XML Fragments
The last phase merges the resulting XML fragments into one

XML document. The main purpose is to assemble a coherent and
non-redundant target instance, by eliminating duplicate XML frag-
ments and, furthermore, by merging XML fragments that share the
same “key”. As an example of the kind of merging we do, the
four XML fragments resulting from the four tuples in Table 1 and
the template in Figure 4 are merged into the final XML document
shown in Figure 5. There, each author name appears only once, the
relevant conferences are grouped under each author (again, with-
out duplication, for a given author), and for each conference all the
relevant publications are listed underneath (without duplication).

To achieve this merging, name is considered to be a key for the
top-level author elements, cname is a key for the conf jnl
elements under each author, and title is a key for each pub
element under a conf jnl element. In Clio, the default key value
of a repeatable element is the combination of all the atomic val-
ues that can be reached from that element without passing through
another repeatable element. Moreover, the key of the parent re-
peatable element must also be included (so that, we know, for ex-
ample that we are referring to the set of conf jnl elements that
are nested under a certain author element and not under a differ-
ent author element). This key definition is similar to the relative
key concept defined in [4]. More generally, the keys that will be

eid name pid title

t1 e1 Jack p1 Schema mapping
t2 e1 Jack p2 DB2
t3 e2 Mary p2 DB2

Table 3: Extracted tuples for l2

AuthorDB

author

name
(author#)

conf_jnl

cname
(booktitle#)

pub

title
(title#)

AuthorDB

author

name
"A1"

conf_jnl

cname
"VLDB"

pub

title
"T1"

1t

Figure 4: The XML-fragment template (left) for Example 1 and
the corresponding XML fragment for t1 from Table 1

used for merging can be individually defined based on application
semantics via parameterized grouping functions [13]. Our merging
techniques (described in the next section) can be extended to deal
with such scenarios as well.

AuthorDB

author

name
"A1"

conf_jnl

cname
"VLDB"

pub

title
"T1"

title
"T3"

author

name
"A2"

conf_jnl

cname
"VLDB"

pub

title
"T1"

conf_jnl

cname
"ICDE"

pub

title
"T2"

Figure 5: Target XML document for Example 1

There are two steps involved during the merging:
1. Obtain a single document by merging XML fragments on their

common root node. Intuitively, all the resulting XML fragments
are stitched together by their root element.

2. Merge sibling repeatable elements that have the same tag and
moreover have the same key. To merge such elements we keep
the common structure (the key) and union their corresponding
sets of repeatable subelements (tag-wise). Moreover, the same
merging is then applied recursively for each of these sets (if any).
We shall sometimes use the alternative terms deep-union and

grouping (of the target data) for the merging process described
above. Note that the elimination of duplicate XML fragments (at
any level) occurs naturally as a special case of merging XML frag-
ments with the same key.

Data merging is an essential part of data transformation tasks.
There are three main reasons why data merging is necessary: we
may need to group data in certain ways (like in our DBLP exam-
ple), we may have multiple mappings and we need to merge their
results, or we may have multiple data sources with overlapping data
(a common situation in data integration scenarios). As we shall see,
data merging can also be computationally intensive.

In the next two sections, we detail some of the algorithmic im-
plementation of the two phases: the tuple-extraction phase and the
merging phase. Although technically less challenging, the transfor-
mation phase is useful from the system point of view because oper-
ations such as data cleansing and data reformatting can be plugged
in here as user defined functions.

3. TUPLE EXTRACTION

3.1 Streamlined Tuple Extraction from XML
In XML data, repeatable elements (or concepts) nest among each

other according to their application semantics. For example, in the
source schema in Example 1, we have a set of inproceedings
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elements under the root element dblp. In turn, each inproceedings
element can have a number of author elements. The non-repeatable
elements can be seen as the attributes of their parent/ancestor re-
peatable elements. The goal to tuple extraction from XML data is
to unnest the nested concepts and form flattened tuples for transfor-
mation.

3.1.1 Set-Path Expressions
The extraction of flat tuples from XML data can be seen as match-

ing of a set-path expression. A set-path expression is similar to an
XPath expression except that each location step ends with a repeat-
able element and each repeatable element can have multiple atomic
subelements or attributes for extraction.

Each repeatable element in a set-path expression corresponds to
a bound variable in the for statement of a tgd. In addition, as in log-
ical mappings, we use projection (’.’) to express navigation through
multiple levels of non-repeatable elements. For Example 1, the set-
path expression for tuple extraction is:

Q1 = /DBLP.inproceedings{title,booktitle}/author{.}

Here, the two repeatable elements inproceedings and author
are the end points of the two location steps. Their attributes (within
braces) are the element values to be extracted.

3.1.2 Matching Set-Path Expressions
To match a set-path expression against an XML document, we

use a publicly available SAX parser to assemble records corre-
sponding to the set-elements in the set-path expression and then
match these records based on their parent-child relationship speci-
fied in the expression. The record assembler, the record buffers and
the matching algorithm are what we implemented.

EXAMPLE 3. For the set-path expression Q1 and the first two
inproceedings elements in Figure 3, the record sequence (gen-
erated from the record assembler) is: a1=[(A1), p1], /a1, a2=[(A2),
p1], /a2, p1=[(T1, VLDB), -], /p1, p2=[(T2, ICDE), -], a3=[(A1),
p2], /a3, /p2. A record prefixed with a slash (such as /a1) is
an end-record. An end-record must have a preceding start-record,
such as a1. Each start-record has two components: the tuple with
extracted values and the id of its parent record. When there is no
ambiguity, we also call a start-record record. For the record a1,
its tuple is (A1) and the id of its parent record is p1. (The rea-
son why p1 arrives after a1 and a2 is explained after the example.)
The record p1 has the extracted tuple (T1, VLDB). Since it does
not have a parent record, we put a dash symbol (“-”) in its second
component.

There are three points worth noticing about the record-creation
process. First, a parent start-record may come after its child start-
records. In Example 3, p1 comes after its children a1 and a2 be-
cause we need to wait for the booktitle element. Second, if
all the extraction elements of a set-element have arrived, we can
send the start-record (to the matching algorithm) before the set-
element closes (i.e., its end-element SAX event arrives). For ex-
ample, the start-record p2 is sent before its child record a3. Third,
if a set-element has a missing subelement that is specified for ex-
traction, we fill the corresponding field with a null value when the
set-element closes. A missing extraction subelement is possible if
the corresponding schema subelement is optional.

The actual matching of the set-path expression can take place as
new records arrive from the record assembler. If we see each record
as a start-element SAX event, what needs to be done is essen-
tially the streamlined matching of simple path expression queries.
Streamlined matching of path expressions is not a new problem and

has been studied in different contexts. What is interesting in this
scenario is that the parent record may come after child elements—
analogously, the parent start-element event comes after the child
start-element event. This phenomenon violates the assumption of
most streamlined matching algorithms, which assume SAX events
of elements come in document order.

Our solution to the disordered SAX events is to use blocking. If
the parent record has not arrived, we need to block all its descen-
dant records and keep them in buffer. Figure 6 shows the matching
process of the query Q1 given the sequence of records in Exam-
ple 3.

a1 a1

p1

a1
a2

p1

p2 p2

a3

p2

a1 /a1 p1

/p1 p2 a3 /p2

output tuples:

(A1, VLDB, T1)
(A2, VLDB, T1)

output tuple:

(A1, ICDE, T2)

a1
a2

a1
a2

a2 /a2

p2

/a3

Figure 6: An example of streamlined matching of set-paths

In Figure 6, before the start-record p1 comes, we need to block
its child records a1 and a2 in the buffer. On the other hand, since
p2 comes before its child a3, we can do the matching and output
the result as soon as a3 arrives.

In the worst-case scenario, if a blocked parent record has a large
number of child records, we may need to buffer all these child
records. We implemented a hybrid record buffer, which automat-
ically swaps records to a temporary file when it runs out of pre-
scribed physical memory. The swapped records can be read back
from disk sequentially.

3.1.3 Computation Sharing Among Set-Paths
When there are multiple set-path expressions (from multiple log-

ical mappings) on the same input XML document, it is possible to
coordinate the matching of set-path expressions to achieve better
performance.

There are two alternatives. With a loose-integration approach, all
the set-path expressions share the same SAX parser for reading the
XML document while each of them has a separate record assembler
and matching module. This approach only requires one scan of the
input document but the computation of matching is not shared.

Alternatively, we can have a tight-integration approach: we can
merge multiple set-path expressions into a complex (possibly tree)
structure and match them together. For example, if we have another
set-path expression on top of Q1,

Q2 = /DBLP.inproceedings{title,booktitle}

then we can combine Q1 and Q2 and match them together. In this
case, the combined structure is the same as Q1. The difference is
that, in addition to the outputs in Figure 6, we should also output
the two tuples, (VLDB, T1) and (ICDE, T2), for Q2.

3.2 SQL Queries for Relational Data Sources
We can generate SQL queries to extract tuples from relational

data sources so that the mature relational technology is leveraged.
We can follow three rules to translate the tuple extraction of a

logical mapping into a SQL query: (1) the referenced tables in
the for statement of the logical mapping should appear in the from
clause of the SQL query; (2) the conditions in the where statement
appear in the SQL where clause and (3) the referred fields appear
in the select clause of the SQL query.
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For example, the two corresponding SQL queries for the two
logical mappings in Example 2 are as follows:

q2 : select eid, name, pid, title
from employee e, emp prj ep, project p
where e.eid = ep.eid and p.pid = ep.pid

q3 : select eid, name
from employee

In particular, the result of q2 is listed in Table 3.
The results of the two SQL queries q2 and q3 overlap on the

employees that have projects. Sometimes it might be better off to
combine these two SQL queries into one outer-join query:

q23 : select eid, name, pid, title
from employee e left outer join

(emp prj ep inner join project p on p.pid = ep.pid)
on e.eid = ep.eid

Whether to combine multiple SQL queries (from logical map-
pings) and how to combine them is a non-trivial problem. It de-
pends on not only the original SQL queries but also how the result-
ing tuples are used in each logical mapping.

An appealing extension is to use the new nested mapping frame-
work of Clio described in [13], which can combine multiple logi-
cal mappings into one, whenever appropriate. This has the advan-
tage that the decision of when and how to combine multiple logical
mappings into one is taken by the mapping generation component
of Clio, driven by considerations of mapping semantics rather than
query optimization. Outer joins could then be generated directly
from the combined logical mappings.

4. HYBRID NESTED MERGING
The problem of merging XML fragments (as described in Sec-

tion 2.2.3) is a nested variation of the union operation with du-
plicate removal in relational databases (RDBMS). Although rela-
tional databases nowadays are highly scalable and efficient, they
are not well suited for processing such a nested merge operation.
For example, to apply RDBMS for merging XML fragments, we
may need to sort the keys at higher levels of XML fragments first,
merge the XML fragments based on the higher-level keys, and then
sort the lower-level keys for each common higher-level key. Ob-
viously there is a lot of overhead in carrying around intermediate
XML fragments.

We describe hybrid merge algorithms that perform the nested
merge of XML fragments in main memory with linked hash tables
and then dynamically switch to sort-based algorithms if hash tables
use up available memory. In particular, the worst-case I/O cost of
the sort-based algorithm is O(N log N), where N is the size of
XML fragments being merged.

4.1 Hash-Based Merging
An efficient way to do the nested merge of XML fragments is

to use main-memory hash tables. Our idea is to create a chain of
hash tables to do the grouping in a top-down fashion defined by the
grouping semantics. Since the merging takes place for repeatable
elements based on the key values of their parents, we need to cre-
ate one hash table for each repeatable element under each distinct
parent key entry (see the next example).

EXAMPLE 4. Figure 7 shows the process of creating hash ta-
bles when merging the four XML fragments in Example 1. There
is only one hash table for the top-level author set-element. For
each entry (with key name) of the author element, we create a
conf jnl hash table. Similarly, for each distinct entry (with key

cname) in such a hash table, there is a pub hash table (whose
entries are the distinct values of title). In the figure we show
the evolution of the hash tables with the incoming XML fragments.
Recall that these fragments were obtained, in phase two, from the
tuples t1, t2, t3, and t4, by applying the transformation described
in Figure 4. We can now generate the XML document in Figure 5
by flushing the final hash tables.
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A1 A2
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VLDB

T1

A1 A2

VLDB ICDE

T1

VLDB

T1T2

A1 A2

VLDB ICDE

T1 T3

VLDB

T1T2

1t 2t 3t 4t

author
hash table

conf_jnl
hash tables

pub
hash tables

Figure 7: Changes of hash tables with new XML fragments

The proposed hash-based merging can gracefully handle target
schemas with multiple sibling set-elements. Suppose, in Exam-
ple 1, the conf jnl set-element has a sibling set-element book
that has the same subtree structure as conf jnl. The content of
the book subtree is mapped from other data sources on books.
With such a mapping, each key in the author hash table of Fig-
ure 7 may have two child hash tables, one for conf jnl and the
other for book—in other words, these two hash tables share the
same key entry.

4.2 Hybrid Sort-Based Merging
Although efficient, the hash-based merging is limited by the amount

of available main memory because all the hash tables must reside
in memory for them to work effectively. We address the scalabil-
ity problem with a sort-based algorithm that builds on top of the
hash-based merging.

When the hash tables take up all the allocated physical mem-
ory, we write them to a disk file as a file-run (described next) and
then free up all the hash tables for subsequent incoming XML frag-
ments. When all the XML fragments are processed into file-runs,
we merge the disk-resident file-runs.

When outputting a file-run from the linked hash tables, to achieve
linear I/O cost when merging file-runs, we enforce an appropriate
ordering among the keys of the same hash table. Specifically, we
start the serialization from the root hash table (the author hash
table in Figure 7), sort the key values in a predetermined order (in
our implementation, the ascending order) and then output the keys
in that order. After each key is output, we recursively serialize
its child hash tables (the number of hash tables is the same as the
number of corresponding sibling set-elements). For example, the
file-run for the final hash tables in Figure 7 (after t4 is merged) is
as follows:

A1[ICDE[T2], V LDB[T1, T3]], A2[V LDB[T1]]

For clarity, each list of keys is enclosed by a pair of “[” and “]”
(except for the outer-most list), and is separated by a comma. In
this example, the key “ICDE” appears ahead of the key “VLDB”
for “A1” according to the ascending order.

We can merge multiple file-runs in one sequential scan. Suppose
we have another file-run as follows:

A2[V LDB[T4], WWW [T5]]

To merge the above two file-runs, we first compare the first two
keys (i.e., A1 and A2) from the file-runs. Since A1 is larger than
A2, it means that nothing else in the second file-run can merge
with A1 so we directly output all the content for A1 (including the
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nested content). Now the current point in the first file-run becomes
A2. The two file-runs share the same key. As a result, we output
key A2 and then recursively merge the two smaller file-runs nested
inside these two keys. The result of the merge is as follows:

A1[ICDE[T2], V LDB[T1, T3]], A2[V LDB[T1, T4], WWW [T5]]

We have explained how to create file-runs from hash tables and
how to merge file-runs in one sequence scan. Usually, each file-
run would require a small amount of physical memory (such as the
size of one disk page) during the multi-way merge. If the number of
file-runs is extremely large, we may not have enough main memory
just to allocate one disk page for each file-run. In that case, since
the output of the merge process is also a valid file-run, we can apply
multi-stage merging as commonly used in relational databases.

5. USING EXISTING QUERY LANGUAGES
We have shown the three-phase transformation framework and

briefly described the algorithms for implementing it. An alterna-
tive to this approach that we shall compare with is the generation
of queries that implement, with the same semantics as our trans-
formation engine, the schema mappings. In this section, we dis-
cuss the shape of the queries needed to implement such semantics.
The performance of the generated queries is then compared with
our transformation engine in Section 6. We focus on XQuery and
SQL/XML, but the issues for XSLT are pretty much the same.

The positive side of using existing query languages is that we
can leverage existing query engines. Most commercial database
systems have started to provide support for popular XML query
languages such as XQuery, SQL/XML and even XSLT, and we
can expect that these commercial engines will be continuously im-
proved and become more scalable and efficient. On the negative
side, the queries that are needed to implement the transformation
semantics implied by schema mappings (in particular, the merging
or grouping phase) can be quite complex. This in turn affects the
performance, as we shall see.

5.1 Using XQuery Queries
The XQuery for the mapping in Example 1 is shown below (the

variable $doc stands for the root of the input document):

<authorDB>
{for $x1 in distinct-values ($doc/dblp/inproceedings/author)
return <author>

<name> {$x1} </name>
{for $x2 in distinct-values($doc/dblp/inproceedings

[author=$x1]/booktitle)
return<conf jour>

<name> {$x2} </name>
{for $x3 in distinct-values($doc/dblp/inproceedings

[author=$x1 and booktitle=$x2]/title)
return<pub><title> {$x3} </title></pub>

}
</conf jour>}

</author>}
</authorDB>

The mapping in Example 1 indicates that we need to group by
author value first, then booktitle and then remove duplicate
title values. To implement this semantics, a distinct-values
function must be used at each level:
• The variable $x1 iterates over the sequence of distinct author

values. All the items in the sequence returned by the function
distinct-values are literal strings with the tags stripped
off [2].

• The variable $x2 iterates over the sequence of distinct booktitles
for which the corresponding inproceedings element has at
least one authorwith the value $x1. This correctly implements
the grouping semantics for the second nesting level in the tar-
get schema (i.e., produce booktitle values for the particular
author $x1).

• In the inner-most for loop, we use the variable $x3 to iterate over
a sequence of distinct title values such that the title be-
longs to an inproceedings element with the author $x1
and the booktitle $x2. This correctly implements the group-
ing semantics for the third nesting level in the target schema.
When we generalize the above methodology to arbitrary logical

mappings, we note that the resulting query can quickly increase in
complexity. First, if multiple fields are used as the grouping key, the
above pattern necessarily becomes more complex, since XQuery
does not support duplicate removal at the “tuple” level. Instead we
need to apply the distinct-values function multiple times,
once for each of the fields. Furthermore, the applications must be
correlated so that we do not lose the structural association between
the fields. We illustrate this with an example.

Suppose in the mapping in Example 1, we have an additional
atomic element pages under the inner-most set-element pub. In
that case, the title and pub elements become the key for the
duplicate removal (i.e., if two pub elements have the same title
and pages child elements, we should remove one). The following
query fragment (for the inner-most nesting) is incorrect because
the structural relationship between title and pages elements is
lost, and we end up pairing up all the title and pages elements,
even from different inproceedings elements.

for $x3 in distinct-values($doc/dblp/inproceedings
[author=$x1 and booktitle=$x2]/title),

$x4 in distinct-values($doc/dblp/inproceedings
[author=$x1 and booktitle=$x2]/pages)

return<pub><title>{$x3}</title> <pages>{$x4}</pages></pub>

To keep the association between the bound title and pages
elements, we should restrict the pages iterated by the variable $x4
to belong to the inproceedings elements with the title $x3.
The correct binding for $x4 should have an additional predicate
“title=$x3”, as shown below:

$x4 in distinct-values($doc/dblp/inproceedings
[author=$x1 and booktitle=$x2 and title=$x3]/pages)

Furthermore, when there are multiple logical mappings (and mul-
tiple data sources) in a schema mapping, we must produce the re-
sults from each of the logical mappings before we can merge the
resulting target data based on their keys. Thus, there is a union
phase followed by a merging and duplicate elimination phase. The
needed query will start looking more like the three-phase (ETM)
transformation approach. Finally, we note that expressing the merg-
ing phase in XQuery (as it can be seen from the above query pat-
tern) requires nested loops. This is one of the main causes of inef-
ficiency. Moreover, it is not clear how to make use of any indexes
that may exist on the input data; what we need instead are indexes
on the generated data. Our nested merging algorithm can in fact be
seen as a combination of indexing (by hashing) and sorting.

We conclude with the observation that the XQuery queries that
implement schema mappings can be rather complex, mainly due to
the data merging requirements. For large mappings and input data,
the XQuery queries can also be prohibitively costly to run.

5.2 Leveraging SQL/XML
SQL/XML [8] is an extension of the SQL language for publish-

ing XML data from relational tables. It is widely supported by
commercial databases.
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When source data resides in relational tables, we can translate
schema mappings into SQL/XML queries. In SQL/XML, the group-
ing can be implemented by the distinct keyword together with
the function xmlagg.

Assume that the source DBLP data in Example 1 is shredded and
stored in relational tables with the following schema: paper(pk,
title, booktitle) and author(name, pk). The field
pk is the key for the paper table. Each inproceedings ele-
ment in the source XML data is assigned a unique pk value. The
pk field in the author table is a foreign key pointing to the paper
table. Given the relational schema, the SQL/XML query block that
implements the mapping is shown below:

select xmlelement(name ”authorDB”,
xmlagg

(xmlelement (name “author”,
xmlelement (name “name”, x0.name),
(select xmlagg

(xmlelement (name “conf jour”,
xmlelement (name “name”, x2L1.booktitle),
(select xmlagg

(xmlelement (name “pub”,
xmlelement (name “title”, x3L2.title))
) as XML — end of third xmlagg

from LATERAL(select distinct title
from author x0L2, inproceedings x1L2
where x0L2.pk=x1L2.pk and

x2L1.booktitle = x1L2.booktitle
and x0.name=x0L2.name) as x3L2))

) as XML — end of second xmlagg
from LATERAL(select distinct booktitle

from author x0L1, inproceedings x1L1
where x0L1.pk=x1L1.pk and

x0.name=x0L1.name) as x2L1 ))
) as XML — end of first xmlagg
) — end of top-most xmlelement

from (select distinct name from author) x0

Similar to the distinct-values in XQuery, “select distinct”
is used to guarantee that we generate exactly one tuple for each
unique key in the corresponding grouping level. Keyword LATERAL
is required for outer reference from derived tables.

We note that, when it comes to merging of the target data, SQL/XML
suffers from the same drawbacks that we pointed out for XQuery.

6. PERFORMANCE EXPERIENCE
We evaluate our transformation engine from the performance

point of view. We study the scalability of the system and also com-
pare its performance with that of the corresponding XQuery and
SQL/XML queries. The performance of XSLT queries is qualita-
tively similar to that of XQuery and SQL/XML and is omitted.

6.1 Systems Compared
The transformation engine is implemented with Java (specifi-

cally IBM Java 1.4.2). It takes as input the source data specifica-
tion (such as XML files or relational tables) and a schema mapping
saved from Clio, and executes the mapping to generate target data.

For phase one, relational data sources are stored in relational
tables and accessed through JDBC. The streamlined matching al-
gorithm (for set-path expressions) used the Xalan SAX parser for
processing source XML documents. In phase three, the sort-based
algorithm stored file-runs in temporary files, using buffered I/O
streams (i.e., BufferedOutputStream and BufferedInputStream Java
classes). Roughly 200MB memory is allocated to the hash tables.

We used the latest versions of two leading commercial data-
bases in our comparison. To keep anonymity, we refer to them
as DBx and DBy . Both databases provide full support for XQuery

and SQL/XML. Our transformation engine reads input XML docu-
ments from the file system and writes the output back as a file. For
the two databases, we preloaded tested XML documents into tables
and the output was inserted into a result table. The time for loading
XML documents into tables was not counted.

All the experiments were conducted on a Pentium IV 2.80GHz
PC with 1GB RAM, 160G hard disk and Windows XP.

6.2 Overall Performance
We study the scalability of our framework, using the mapping

in Example 1 and two other mappings derived from it. We denote
the mapping in Example 1 as Mn3 to reflect the fact that there are
three nesting levels in the generated data. We derived a mapping
Mn2 with two nesting levels by removing the correspondence from
booktitle to cname—we group publications by authors only
(and the cname element in the middle will be empty). The third
mapping, Mn4, has four nested levels and three levels of grouping.
We derived it by inserting a new set-element year between the
conf jnl and pub, and mapping from year (which is not shown
in Example 1) of inproceedings to the year in the target. The
mapping means that we want to group conferences by author, then
group by conference, and then group publications by year.

For the scalability study, we prepared a few DBLP data sets with
varying sizes ranging from less than 1MB up to 1.2GB. The con-
ference entries (i.e., inproceedings elements) in the original
DBLP data add up to less than 200MB in size. In order to scale
up, we replicate the DBLP data by changing the values of atomic
elements. We ran the transformation implied by the three mappings
for each data set, using our transformation engine. Figure 8 shows
the timings for the three mappings, for different input data sizes.
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Figure 8: Scalability test of our transformation engine

Figure 8 shows that the three-phrase framework is scalable in
terms of the data size: the running time is almost linear to the input
data size. An interesting finding is that the running time is not
sensitive to the number of nesting levels in a mapping. Given a
DBLP document of a particular size, the running time is almost the
same for the three mappings. The main reason for this is the use of
the in-memory hash tables to perform grouping. When we sort and
output each hash table to a temporary file, the dominant cost factor
is disk I/Os, and this is bound by the input data size.

To investigate the performance of each component in the trans-
formation engine, we break down the times for transforming the
1.2GB DBLP data. Figure 9 shows the results. The time spent on
the sort-and-merge takes up most of the running time (over 70%).
The sort-and-merge includes sorting hash tables, writing them to
temporary run-files and merging the run-files into the final XML
document. According to experiment results, a mapping with one
more nesting level used about 20 more seconds on hashing. How-
ever the impact of hashing on the total time is small because the
sort-merge dominates the total time.
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Figure 9: Time breakdown for the transformation engine

6.3 Comparing with XQuery Queries
We now compare with the two commercial databases using XQuery

queries to implement the schema mappings.
Figure 10 shows the running times of the XQuery queries for the

three mappings on the two databases DBx and DBy . The X-axis
in the figure lists the number of the inproceedings elements in
each data set. For the data set with about 1000 inproceedings
elements, the file size is only about 420KB. We did not test the
queries for larger data sizes because the findings are rather clear
with the shown tests.
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Figure 10: Timings of the three mappings using XQuery
queries on two commercial databases. In contrast, our engine
finishes transforming the data with 1000 inproceedings el-
ements for mapping Mn4 in less than two seconds.

We find a significant difference in the running times for the two
databases. However, they exhibit the same behavior: the running
time is polynomial (rather than linear) in the input data size. The
more the nesting levels, the more quickly the running time increases
with the input size. For mapping Mn4, it took DBx about 35
minutes to transform the data with only 1000 inproceedings
elements. In contrast, our engine can finish the most costly transfor-
mation in less than two seconds, outperforming the tested databases
by three orders of magnitude!

The nested correlated subqueries with the distinct-values
functions (see, Section 5) are the main cause of the degraded per-
formance. We checked the query access plan used by the databases
and found that nested loop joins (NLPJ) are used for each for clause
in the query. As a result, the query execution time is O(|D|Ni),
where |D| is the size of the input document and Ni is the number
of nesting levels in the mapping.

6.4 Comparison with SQL/XML
We ran the three mappings with SQL/XML by shredding each

DBLP data set into two relational tables, a paper table and an
author table (see, Section 5.2). To have a fair comparison, our
engine used SQL queries to extract tuples from the relational tables
through JDBC.

Figure 11 shows the running times for the two databases. We ob-
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Figure 11: Running times for the three mappings using
SQL/XML on two commercial databases. As a comparison, our
engine finishes Mn4 for the largest data set in 2.1 seconds.

served a similar performance advantage of our engine over SQL/XML
queries. For example, DBx took about 1000 seconds for 4.5MB
DBLP data, while our engine can finish Mn4 for this data set in
2.1 seconds.

As in the case of XQuery, both databases demonstrate low per-
formance for SQL/XML queries because they need to use nested
queries to generate the nested target data. Although the running
times differ for the two databases, the basic trend of their per-
formance is the same: the more nesting levels, the more quickly
the running time increases. It is worth noting that the database
DBy does not support the keyword LATERAL in SQL/XML. For
DBy , we used approximate queries (we un-nest the queries that use
LATERAL) to run the tests.

6.5 Summary of Results
We have presented experimental results on the performance as-

pects of our three-phase transformation framework. The conclusion
is that such a framework suits well for mapping-driven transforma-
tion and it is highly efficient and scalable.

We compared our implementation with the approach of using
XQuery and SQL/XML queries executed on two leading commer-
cial databases. The results show that our implementation of schema
mappings can be significantly faster than XQuery and SQL/XML
queries (with the speedup of a few orders of magnitude). The cur-
rent state-of-the-art databases are not as efficient as ours because of
the lack of direct support of a deep-union operation that recursively
groups sibling subtrees based on keys. The deep-union operation
plays a key role in generating meaningful and concise data from
schema mappings.

We also tested a few publicly available XQuery engines, includ-
ing Galax (version 0.5.0)3, Quip (version 2.2.1.1)4, MonetDB/XQuery
(version 0.10.2)5 and Saxon for .NET (version 8.7)6. Their perfor-
mance for the tested transformation queries is no better than the
two commercial databases that we tested. We are also aware of
other XQuery engines such as the BEA/SQRL [12], which we did
not test. However none of the XQuery engines we know provides a
deep-union operation.

We stress that our results by no means imply that the commer-
cial databases provide poor support for all XQuery applications.
Mapping-driven large-scale data transformation may not be among
the typical applications that XQuery is best suited for. If XQuery is
going to be successfully applied for such transformation, we sug-
gest a deep-union operator be introduced.

3http://www.galaxquery.org/
4http://www.softwareag.com
5http://monetdb.cwi.nl/XQuery
6http://saxon.sourceforge.net
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7. RELATED WORK
XML Publishing SilkRoute [11] and XPeranto [6, 20] are pro-

totype systems that publish object-relational data as XML using
views and query composition techniques. One major focus is the
composition of user queries (such as XQuery or XML-QL) with
the XML views to generate SQL queries to pull data out of rela-
tional databases. After that, an XML tagger is used to construct
hierarchical XML data. The uniqueness of our approach is that, we
start from XML, obtain flattened tuples (Extract), transform them
to XML fragments (Transform), and, finally, merge the obtained
results (Merge).

XML Value Extraction TurboXPath [16] can process XML pat-
tern queries with multiple extraction nodes. It supports a wider
class of pattern queries and can only process one pattern at a time.
Our algorithm for set-path expressions is designed for efficient tu-
ple extraction for schema mappings and, more important, can do tu-
ple extraction for multiple set-path expressions together (like outer-
joins in relational databases).

XML Merging and Aggregation XML merging is also stud-
ied in the context of XML archiving [5]. We note that part of the
algorithm in [5] shares similarity with the sort-based algorithm pre-
sented in this paper. However, their focus was on reducing the size
of the resulting XML archive and did not report results on the per-
formance of execution. In fact, our performance improvement ben-
efits from additional techniques. NEXSORT [21] sorts the sibling
elements of an XML data tree based on a given user criterion. It
uses a bottom-up approach so that the I/O cost for sorting is almost
linear to the data size. NEXSORT is different from the nested-
merge operation because it sorts tree nodes locally and never com-
bines tree nodes from different parent tree nodes.

XML OLAP There is research on providing better support for
grouping operations in XQuery either at the algebraic level or the
physical operator level [7, 10]. In general, detecting a “group by
pattern” from a complex XQuery is very difficult and often results
in a poor execution plan [1]. There has been a proposal [1] to extend
the XQuery syntax to include explicit grouping operations such as
“group by”. We note that the target application for these works is
XML OLAP instead of the hierarchical nested merge that arises in
schema mappings.

8. CONCLUSION
We have presented an end-to-end system for mapping-driven XML

transformation. The system takes source XML documents and trans-
forms them into target XML documents based on schema map-
pings. The proposed approach can be highlighted as efficient (trans-
formation speed close to linear in the input data size), scalable
(handling GB-range data sizes under limited memory consumption)
and extensible (supporting user-defined functions through standard
Java interfaces). We achieve the efficiency and scalability in trans-
formation by interpreting schema mappings directly and providing
best suited algorithms to implement them, such as SQL queries,
streamlined tuple extraction and disk-based tree merging. These
high-level semantics might be hard to recover and hence optimize
if buried in generated queries.
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