XPath Filename Expansion in a Unix Shell

Kaspar Giger
ETH Zirich

ABSTRACT

Locating files based on file system structure, file properties,
and maybe even file contents is a core task of the user in-
terface of operating systems. By adapting XPath’s power
to the environment of a Unix shell, it is possible to greatly
increase the expressive power of the command line language.
We present a concept for integrating an XPath view of the
file system into a shell, the XPath Shell (XPsh), which can
be used to find files based on file attributes and contents in a
very flexible way. The syntax of the command line language
is backwards compatible with traditional shells, and the new
XPath-based expressions can be easily mastered with a little
bit of XPath knowledge.

Categories and Subject Descriptors: D.4.9 [Operating Sys-
tems]: Systems Programs and Utilities — Command and Control
Languages; E.5 [Files|: Organization/Structure

General Terms: Design, Languages

1. INTRODUCTION

By mapping file system information onto an XML struc-
ture and giving users an interface to select nodes in this
tree, it is possible to provide an interface for file selection
which is much more powerful than traditional Unix shells.
The XPath Shell (XPsh) presented here is based on the File
System XML (FSX) approach [6], which not only represents
file system information, but optionally also includes XML
views of file contents.

The main function of a shell is to parse the command
line, expand parts of it, and then execute the command. By
augmenting the filename expansion process with a syntax
inspired by XPath [2], followed by an evaluation of the file-
name expression based on an XPath selection in the FSX
tree, complex filename selections can be easily specified.

While the FSX is useful as a conceptual foundation, it is
not ideally suited as the document to which a shell filename
expression is applied directly. For example, each file is rep-
resented as a file element with its filename as the name
attribute. However, to select a file named test in a shell,
you want to simply type test. In an FSX-based XPath, one
would have to write fsx:file[@name="test"]. Because of
this and similar effects, and because an important goal of
the syntax is to be backwards compatible with traditional
shells, the shell’s syntax is XPath-inspired and is mapped to
a proper XPath for filename expansion.

Another important problem arises with the inclusion of
file contents as suggested by FSX. While this is conceptu-

Copyright is held by the author/owner.
WWW 2006, May 22-26, 2006, Edinburgh, Scotland.
ACM 1-59593-332-9/06/0005.

Erik Wilde
ETH Zurich

ally useful and technically possible, it becomes prohibitively
expensive for any file system with a considerable number of
files. Thus, while we assume that only file contents required
for XPath evaluation will be actually included, while unused
content remains unexpanded. Even then the evaluation can
be rather expensive.

Section 2 describes the syntax and semantics of the ex-
pressions allowed in our shell. The semantics are described
through a mapping onto the FSX tree, which is a represen-
tation of the file system structure and file contents. Imple-
mentation issues are discussed in Section 3, which especially
describes the challenge of “integrating” file contents when
evaluating an XPath.

2. SYNTAX AND SEMANTICS

To keep the syntax of the XPath shell commands short
and straightforward, we do not allow pure XPath expres-
sions. Our syntaz is derived from the XPath syntax, but
includes some restrictions and extensions which allow a bet-
ter integration of expressions into a Unix shell. The goal was
to design a syntax of which the simple parts can be used by
anybody having worked with Unix shells, whereas the more
complex parts can be easily understood by people knowing
XPath, and can be easily explained to all others.

Our syntax, described by a yacc grammar, is defined based
on the original XPath grammar. The semantics are defined
by mapping the syntax to XPath expressions that are ap-
plied to an FSX tree representing the file system structure
and file contents.

We first have to introduce an additional XPath function
Named match to allow Unix filename pattern matching within
XPath. With that improvement one can still write filenames
such as *.txt. For usability and compatibility reasons, we
map the filenames to any FSX-node and do not allow the
syntax AxisSpecifier::NodeTest:

’name — fsx:*[match(@name,dirname)]

Additionally, we introduce two new and powerful concepts
to the shell world: The descendant-or-self and the ancestor-
or-self axes. They are accessible through the double-slash
(//) and triple-dot (...) abbreviations:

// — /descendant-or-self:node()/
. — ancestor-or-self:node()

Another powerful extension new to Unix shells is the inte-
gration of file contents into the file system tree. As proposed
by FSX, all files matching a given pattern (based on the file’s
MIME type) are expanded to a content and a metadata tree

and then appended to the file node. However, we do not
allow to cd into the files within our shell (like zsh [4] does),
because many commands would then have to be prohibited.
For supporting content integration we introduce three new
operators: The content operator (??) which leads to the
root element of the file content, the metadata operator (@@)
which leads to the root element of the file metadata and
the containing-file operator (!!) which leads to the file that
contains the context node. The mapping is defined as fol-
lows:

7?7 — self::fsx:file/fsx:content
@@ — self::fsx:file/fsx:metadata
!l — ancestor::fsx:content/parent::fsx:*

All other XPath concepts are adopted. For example, pred-
icates allow to select files depending on their attributes (like
*.txt[@size < 100]) or other more complex constraints.

Namespaces can be used in three ways: By using Clark
Notation [3], by exporting the namespace name URI to a
shell variable (incidentally named xmlns_prefix) or by using
the built-in namespaces that are defined by the adaptors.

3. IMPLEMENTATION

The ideal (and naive) implementation of the XPath shell
would be to build a filename expression mapper, for map-
ping all shell filename expressions to XPaths. Then the file
system (including the contents of the files) could be trans-
formed into a DOM tree to which the XPath is then applied.
This ideal implementation has to fail, because on the one
hand it would be very slow, on the other hand its memory
consumption would be very large.

One easy solution to this could be to limit the depth level
as PARASCHENKO proposes for his zfind utility, an XPath
extension of the UNIX find command [5]. However, this
severely limits the applicability of the XPath shell for se-
lecting files in a complete file system, and thus this solution
is not satisfying.

Another possible approach would be to write a dedicated
XPath parser interpreting the XPath stepwise. In each step,
one location step is interpreted and all matching nodes are
then used as the context nodes for the next location step.
The memory consumption will be limited. It will also be
quite fast, because it evaluates only required nodes and does
not necessarily create the whole DOM tree of the file system.

But for our first approach, we use the existing XPath
processor of the Sablotron Library [1] and underlay an XML
pull parser that generates the nodes dynamically when the
XPath processor needs them. Using this approach, nodes
(and in particular content nodes) would only be accessed
as required by the XPath implementation, and thus only
nodes required for the XPath evaluation would have to be
expanded by accessing the file system.

The unsatisfying effect of using an existing XPath proces-
sor is that it would be very difficult to make it work more
efficiently for our special purpose. And unlike the Unix find
program we have to initialize the library, then parse the in-
put completely and verify it with the given grammar.

3.1 Content Integration

As explained in Section 2, we want to integrate the con-
tents into our file system tree. We use dynamic adaptors as

proposed in FSX. These adaptors are implemented in inde-
pendent shared libraries with a well-defined interface. This
allows other programmers to build their own adaptors.

The adaptors have to implement at least the following six
functions:

char **implemented_mime_types()

int n_implemented_mime_types()

char *get_ns_prefix()

char *get_ns_uri()

void expand_metadata(context_node)
void expand_content(context_node)

The user defines which adaptor library should be used for
which file types (MIME types) in a separate configuration
file. When the content of a file is required for evaluating a
content operator expression, the shell dynamically loads the
library and expands the file to a DOM tree.

This expansion is obvious for XML-like files but not for
files with binary content. For JPEG files as an example, we
map the EXIF header to an XML document representing
the EXIF information. Generally, adaptors do not have to
map the full file contents to XML, they may very well only
map a subset, such as a file’s metadata.

4. PERFORMANCE RESULTS

First experiments show that that our simple implementa-
tion is much slower than the Unix find utility. Especially
the initializing of the program needs a lot of computing. As
an example we created a filesystem environment with direc-
tories that contain each ten text-files and ten such folders.
At the end, there were 2320 files and directories in this en-
vironment. We wanted to select files with a given user id
recursively. £ind needed 30ms, our (naive and unoptimized)
library 13s. This is a big difference. It means that our ex-
tension should be used mainly combined with file-contents,
where find fails.

S. CONCLUSIONS

An XPath shell could be a very useful tool for develop-
ers because it allows them to select many files in different
sub-directories with one path expression. The files can be
selected depending on their attributes and their content with
an easily understandable syntax.

A sensitive point of the concept is that finding the files
by traveling through many directories could need a lot of
computing. But like the Unix find command or other pow-
erful utilities, it is the user’s choice to specify reasonable
boundaries for the search.

6. REFERENCES

[1] GINGER ALLIANCE. Sablotron — XSLT, DOM and XPath
processor. http://www.gingerall.org/charlie/ga/xml/p_sab.xml.

[2] JamEs CLARK and STEVEN J. DEROSE. XML Path Language
(XPath) Version 1.0. World Wide Web Consortium,
Recommendation REC-xpath-19991116, November 1999.

[3] JaMEs CLARK. XML Namespaces.
http://www.jclark.com/xml/xmlns.htm.

[4] PETR Pajas. XSH — XML Editing Shell. http://xsh.sf.net/.

[5] OLEG A. PARASCHENKO. find with XPath over File System.
http://uucode.com/texts/xfind.

[6] ERIK WILDE. Merging Trees: File System and Content
Integration. In Poster Proceedings of the 15th International
World Wide Web Conference, Edinburgh, UK, May 2006. ACM
Press.

	Introduction
	Syntax and Semantics
	Implementation
	Content Integration

	Performance Results
	Conclusions
	References

