
Online Mining of Frequent Query Trees over XML Data
Streams

Hua-Fu Li
Department of Computer Science,

National Chiao-Tung University
Hsinchu, Taiwan 300, R.O.C.

hfli@csie.nctu.edu.tw

Man-Kwan Shan

Department of Computer Science,
National Chengchi University
Taipei, Taiwan 116, R.O.C.

mkshan@cs.nccu.edu.tw

Suh-Yin Lee

Department of Computer Science,
National Chiao-Tung University
Hsinchu, Taiwan 300, R.O.C.

sylee@csie.nctu.edu.tw

ABSTRACT

In this paper, we proposed an online algorithm, called FQT-Stream

(Frequent Query Trees of Streams), to mine the set of all frequent tree

patterns over a continuous XML data stream. A new numbering

method is proposed to represent the tree structure of a XML query tree.

An effective sub-tree numeration approach is developed to extract the

essential information from the XML data stream. The extracted

information is stored in an effective summary data structure. Frequent

query trees are mined from the current summary data structure by a

depth-first-search manner.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications – data

mining.

General Terms: Algorithms.

Keywords: Web mining, data streams, XML, frequent query

trees, online mining.

1. INTRODUCTION
In recent years, many applications generate data streams in real time,

such as sensor data streams generated from sensor networks, online

transaction flows in retail chains, Web record and click streams in

Web applications, performance measurement in network monitoring,

and traffic management, and call records in telecommunications.

A data stream is massive unbounded sequence of data elements

continuously generated at a rapid rate. Mining of such data streams

differs from the mining of traditional datasets in the following aspects

[2]: First, each data element in the stream should be examined at most

once, i.e., the proposed algorithm must be a single-pass algorithm.

Second, the memory requirement of the proposed algorithm should be

bounded even though new data elements are continuously generated

from the data streams. Third, each data element in the stream should

be processed as fast as possible. Fourth, the mined results should be

instantly available when the user requested. Finally, the output errors

should be constricted to be as small as possible.

Recently, several techniques have been developed to mine the set of

all frequent itemsets [3, 4, 5, 6, 7, 8, 10] in data streams. However,

less work on the field of mining complex data streams, such as XML

data streams. In such a XML data stream, each incoming data element

is a (XML) query tree structure. Asai et al. [1] proposed an online

algorithm StreamT to analyze the frequent ordered trees from a

continuous semi-structured data stream. Yang et al. [9] proposed

online algorithms XQPMiner and XQPMinerTID to find the set of all

frequent rooted ordered trees over a continuous XQuery stream.

In this paper, we proposed a novel one-pass algorithm, called FQT-

Stream (Frequent Query Trees of Streams), to mine the set of all

frequent query trees over a continuous XML data stream. An effective

query sub-tree enumeration method is developed to extract the

essential information from the stream. The extracted information is

stored in an effective summary data structure, called FQT-forest (a

forest of Frequent Query Trees). Frequent query trees are mined

efficiently from the current FQT-forest by a depth-first-search manner.

 The remainder of the paper is organized as follows. The problem

definition is described in Section 2. In Section 3, we describe the

design of our algorithm FQT-Stream. Finally, we conclude the work in

Section 4.

2. PROBLEM DEFINITION
A (XML) query tree stream QTS = QT1, QT2, …, QTN is a

continuous sequence of query trees (QT), where N is the query

identifier of latest query tree generated so far. The support of a query

tree QT, denoted as sup(QT), is the number of query trees in S

containing QT as a sub-tree. A query tree QT is called a frequent

query tree (FQT) if and only if sup(QT) ≥ s⋅N, where s is a user-

defined minimum support threshold in the range of [0, 1].

Problem Statement Given a continuous query tree stream QTS, and a

minimum support threshold s in the range of [0, 1], the problem of

frequent tree pattern mining over an online XML stream is to mine the

set of frequent query trees by one scan of the query tree stream QTS.

Figure 1. Transform a query tree (QT) into a normalized query

tree sequence (NQTS).

3. THE PROPOSED ALGORITHM
The proposed algorithm FQT-Stream consists of five phases: read a

query tree from the buffer in the main memory (phase 1), transform

the query tree into a new Normalized Query Tree Sequence (NQTS)

representation (phase 2), construct an in-memory summary data

structure FQT-forest by projecting the NQTSs (phase 3), prune the

infrequent information from the FQT-forest (phase 4), and find the set

of all frequent query trees from the FQT-forest (phase 5). Since the

phase 1 is straightforward, we shall focus on phases 2-5.

3.1 NQTS Transformation
For each incoming query tree QT, we transform it into a normalized

query tree sequence (NQTS) using a depth-first-search (DFS) manner

Copyright is held by the International World Wide Web Conference

Committee (IW3C2). Distribution of these papers is limited to

classroom use, and personal use by others.

WWW 2006, May 23–26, 2006, Edinburgh, Scotland.

ACM 1-59593-323-9/06/0005.

A

B
C

D
E

<(A,0,1), (B,1,2), (D,2,3), (E,2,4), (C,1,5)>

Normalized Query Tree Sequence (NQTS)

on the QT. For example, a QT in Figure 1 is transformed into a NQTS:

<(A,0,1), (B,1,2), (D,2,3), (E,2,4), (C,1,5)>, where the first field is the

node-id in the QT, the second field is the level of the QT, and the third

field is the (sequence) order of the NQTS. Note that the example

NQTS is also called a 5-NQTS, i.e., a NQTS with five nodes.

3.2 FQT-forest Construction
For each NQTS, two steps are performed to construct the summary

data structure called FQT-forest (a forest of Frequent Query Trees).

Step 1: The NQTS is enumerated into several sub-sequences using

order-break (OB) technique which is a level-wise method. We use an

example NQTS, <(A,0,1), (B,1,2), (D,2,3), (E,2,4), (C,1,5)>, to

describe the order-break technique.

First, the sequence <(A,0,1), (B,1,2), (D,2,3), (E,2,4), (C,1,5)> is

broken into three 4-NQTSs, i.e., <(A,0,1), (D,2,3), (E,2,4), (C,1,5)>,

<(A,0,1), (B,1,2), (E,2,4), (C,1,5)>, and <(A,0,1), (B,1,2), (D,2,3),

(C,1,5)>. These sequences are belonged to 1-OB (1 Order Break). The

term 1-OB means that the sequence has one order break in the

sequence order. For example, <(A,0,1), (D,2,3), (E,2,4), (C,1,5)> has

an order break between (A,0,1) and (D,2,3), and <(A,0,1), (B,1,2),

(E,2,4), (C,1,5)> has an order break between (B,1,2) and (E,2,4).

Second, these 4-NQTSs are enumerated into four 3-NQTSs with

one order-break, i.e., <(A,0,1), (D,2,3), (E,2,4), (C,1,5)>�<(A,0,1),

(E,2,4), (C,1,5)>, <(A,0,1), (B,1,2), (E,2,4), (C,1,5)>�<(A,0,1),

(B,1,2), (C,1,5)> and <(A,0,1), (E,2,4), (C,1,5)>, and <(A,0,1),

(B,1,2), (D,2,3), (C,1,5)>�<(A,0,1), (B,1,2), (C,1,5)>. Since

<(A,0,1), (E,2,4), (C,1,5)> and <(A,0,1), (B,1,2), (C,1,5)> appeared

twice, we delete these duplicates. Hence, only two 3-NQTSs, i.e.,

<(A,0,1), (E,2,4), (C,1,5)> and <(A,0,1), (B,1,2), (C,1,5)>, are

maintained.

Finally, these 3-NQTSs, <(A,0,1), (E,2,4), (C,1,5)>, and <(A,0,1),

(B,1,2), (C,1,5)>, are enumerated into one 2-NQTS, <(A,0,1),

(C,1,5)>, after removing the duplicates. Hence, the set of 1-OB

contains 8 NQTSs, i.e., <(A,0,1), (D,2,3), (E,2,4), (C,1,5)>, <(A,0,1),

(B,1,2), (E,2,4), (C,1,5)>, <(A,0,1), (B,1,2), (D,2,3), (C,1,5)>,

<(A,0,1), (E,2,4), (C,1,5)>, <(A,0,1), (B,1,2), (C,1,5)> and <(A,0,1),

(C,1,5)>. Note that <(A,0,1), (B,1,2), (D,2,3), (E,2,4), (C,1,5)> is

called a 0-OB.

The set of 2-OB is generated from the set of 1-OB. For example,

the NQTS with two order breaks, <(A,0,1), (D,2,3), (C,1,5)>, is

generated from <(A,0,1), (D,2,3), (E,2,4), (C,1,5)>. Hence, the set of

2-OB contains only one NQTS: <(A,0,1), (D,2,3), (C,1,5)>.

Property 1 The maximum size of order break is k−3, i.e., (k−3)-OB, if

the query tree has k nodes.

 Step 2: These OBs (0-OB, 1-OB and 2-OB) are projected and

inserted into the FQT-forest using the incremental projection

technique proposed by Li et al. [5, 6]. The incremental projection

method is described briefly as follows. A NQTS, <x1x2…xi>, with i

nodes is converted into i sub-NQTSs; that is, <xi>, <xi-1xi>, …,

<x2x3…xi>, and <x1x2…xi>. Note that we use one field node-id to

represent the fields (node-id, level, sequence order) for simplification.

These sub-NQTSs are called node-suffix NQTSs, since the first node

of each NQTS is a node-suffix of original NQTS. The operation is

called Incremental Projection (IP) in this paper, and is denoted as

IP(NQTS) = |{xi|NQTS, xi-1|NQTS, …, x1|NQTS}, where xj|NQTS =

<xjxj+1…xi>, ∀j =1, 2, …, i, and NQTS = <x1x2…xi>|. For example, the

1-OB, <(A,0,1), (D,2,3), (E,2,4), (C,1,5)>, is projected into four node-

suffix NQTSs: <(C,1,5)>, <(E,2,4), (C,1,5)>, <(D,2,3), (E,2,4),

(C,1,5)>, and <(A,0,1), (D,2,3), (E,2,4), (C,1,5)>. After projecting

these OBs, a tree structure checking is performed as follows. If the

level of the first node in a node-suffix NQTS is not the smallest level,

the node-suffix NQTS is deleted. After the tree structure checking,

these node-suffix NQTSs are inserted into a summary data structure

FQT-forest, and the supports of corresponding nodes of FQT-forest

are updated. FQT-forest consists of two parts: FN-list (a list of

Frequent Nodes) and a set of NQTS-trees (a tree of Normalized Query

Tree Sequences). Each unique node x in the query tree stream is stored

in the FN-list and has a prefix tree with root-id x, denoted by x.NQTS-

tree. In such a prefix tree-based summary data structure (NQTS-tree),

a sequence is represented by a path and its appearance frequency, i.e.,

support, is maintained in the last node of the path.

3.3 Infrequent Information Pruning
In order to guarantee the limited space requirement, the infrequent

information of FQT-forest is pruned after processing each incoming

query tree. The prune operation consists of two steps. First, we check

the support of each node x in the FN-list of FQT-forest. If its support,

sup(x), is less than the s⋅N, the prefix tree with root x is deleted.

Second, we traverse the other prefix trees y.NQTS-tree (y ≠ x) to find

the infrequent NQTSs with the prefix x, and then prune them.

3.4 Frequent Query Trees Mining
Assume that there are k frequent nodes, namely x1, x2, . . . , xk, in the

current FN-list. Let the minimum support threshold be s in the range

of [0, 1], and the current length of XML data stream be N. For each

entry xi, ∀i = 1, 2,. . . , k, in the FN-list, FQT-Stream traverses the

xi.NQTS-tree to find the sequences with prefix xi whose estimated

support is greater than or equal to s⋅N in a depth-first-search manner.

Then, FQT-Stream stores these frequent query trees in a temporal list,

called FQT-list (a list of Frequent Query Trees). Finally, FQT-Stream

outputs the set of frequent query trees stored in the FQT-list. The

operation is called FQT-mining (Frequent Query Trees mining).

4. CONCLUSIONS
In this paper, we proposed an efficient one-pass algorithm FQT-

Stream (Frequent Query Trees of Streams) to discover the set of

frequent query trees over the entire history of online XML data

streams.

ACKNOWLEDGMENTS
The research is supported by National Science Council of R.O.C.

under grant no. NSC94-2213-E-009-012.

REFERENCES
[1] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, et al., Online

algorithms for mining semi-structured data stream. In Proc. ICDM, 2002.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, Models and

issues in data stream systems. In Proc. PODS, 2002, pp. 1–16.

[3] J. H. Chang and W. S. Lee. Finding recent frequent itemsets adaptively

over online data streams. In Proc. ACM SIGKDD, 2003, pp. 487-492.

[4] C. Giannella, J. Han, J. Pei, X. Yan, and P.S. Yu. Mining frequent

patterns in data streams at multiple time granularities. In Data Mining:

Next Generation Challenges and Future Directions, AAAI/MIT, H.

Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha (eds.), 2003.

[5] H.-F. Li, S.-Y. Lee, and M.-K. Shan, An efficient algorithm for mining

frequent itemsets over the entire history of data streams. In Proc.

IWKDDS, 2004

[6] H.-F. Li, S.-Y. Lee, and M.-K. Shan, Online mining (recently) maximal

frequent itemsets over data streams. In Proc. RIDE, 2005.

[7] G. S. Manku and R. Motwani. Approximate frequency counts over data

streams. In Proc. VLDB, 2002, pp. 346-357.

[8] W.G. Teng, M.-S. Chen, and P. S. Yu. A regression-based temporal

pattern mining scheme for data streams. In Proc. VLDB, 2003, pp. 93-

104.

[9] L.H. Yang, M.L. Lee, and W. Hsu, Finding hot query patterns over an

XQuery stream. VLDB Journal Special Issue on Data Stream Processing,

2004.

[10] J.-X. Yu, Z. Chong, H. Lu, and A. Zhou. False Positive or False Negative:

Mining frequent itemsets from high speed transactional data streams. In

Proc. VLDB, 2004, pp. 204-215.

