
Merging Trees: File System and Content Integration

Erik Wilde
ETH Zürich

ABSTRACT
XML is the predominant format for representing structured
information inside documents, but it stops at the level of
files. This makes it hard to use XML-oriented tools to
process information which is scattered over multiple doc-
uments within a file system. File System XML (FSX) and
its content integration provides a unified view of file system
structure and content. FSX’s adaptors map file contents to
XML, which means that any file format can be integrated
with an XML view in the integrated view of the file system.
Categories and Subject Descriptors: E.5 [Files]: Organiza-
tion/Structure

General Terms: Design, Languages

1. INTRODUCTION
File systems are hierarchically structured, and mapping

this hierarchy to an XML structure therefore can easily be
done. We present a schema and a framework for representing
file system information in an XML document. It uses a mod-
ular structure for representing generic file system concepts
as well as concepts specific for particular types of file sys-
tems (Section 2). Additionally, we describe a framework for
integrating file contents with the file system information, so
that the resulting document provides an integrated view of
the file system structure as well as file contents (Section 3).
File content integration can be done directly (for XML and
text files) or through adaptors, which provide translators for
mapping arbitrary file formats onto XML structures.

The framework presented here is mainly intended for small
scale environments where developers work with a variety
of files and would like to have a unified view of all these
resources. It is not designed for large scale scenarios such as
data mining over a large set of resources or large resources.

The approach presented here shares some common ideas
with IBM’s Virtual XML Garden, which is a Java frame-
work for implementing XML processing over diverse struc-
tured data sources. The framework presented here is open
and extensible (Section 4 describes a näıve implementation),
while IBM’s approach is tightly bound to the implementa-
tion.

2. FILE SYSTEM XML
File system structures are based on some concepts which

are shared among a large number of file system types, and
other concepts which are specific to a certain type of file sys-
tem. File System XML (FSX) supports these relationships

Copyright is held by the author/owner.
WWW 2006, May 22–26, 2006, Edinburgh, Scotland.
ACM 1-59593-332-9/06/0005.

Figure 1: FSX Core Schema

of file system types by providing three simple core concepts
of file system contents, and the ability to extend this basic
structure with additional node types and/or attributes.

FSX defines the generic node, which is an abstract con-
cept and represents any node within a file system structure.
A node may be named or unnamed and contains metadata
and/or other nodes or contents. The two most common con-
cepts derived from this abstract concept are dir and file

nodes for representing directories and files. Directories con-
tain metadata and other nodes, while files contain metadata
and/or content. This structure is shown in Figure 1 (dashed
arrows depict XML Schema substitution groups).

The core schema is used by extensions which add node
types and/or attributes, for example the fsx-unix schema,
which adds the symlink node type for symbolic links (which
are treated neither as directories nor as files), and extends
the dir and file node types with Unix-specific attributes
(such as owner and permission information). Other file sys-
tem types can be represented by creating other schemas,
resulting in a file system hierarchy as shown in Figure 2.
The figure only shows the additional node types that FSX
schemas add, it does not show the addition of attributes.

<dir name="test" xmlns=".....">

<dir name="subdir">

<file name="README"/>

</dir>

<file name="test.txt" mime="text/plain"/>

<file name="text.xml" mime="application/xml"/>

</dir>

This short FSX document omits most of the attributes
available for node description, but demonstrates the overall
structure of an FSX document. The MIME types may have
been part of the file system’s internal information, or they

Figure 2: Import Structure of FSX Schemas

may have been derived from the file names or something
similar to the Unix file command.

1. //dir[*[@uid != ../@uid]]

2. //dir[sum(file[starts-with(@mime,"image/")]

/@size) > 1048576]

Using XPaths on an FSX document, example 1 selects all
directories containing nodes owned by somebody else than
the directory owner. Example 2 selects all directories which
contain image files with a total size of more than 1MB.

3. CONTENT INTEGRATION
The basic FSX tree contains only file system structure

and other data available from the file system, it does not
contain any file contents. In a second step, the FSX tree is
traversed and file metadata and/or contents are appended
to file nodes. For XML files, for example, this can be done
by directly including the XML found in the file in the FSX
tree. For text files, it is possible to simply include the file’s
content as one text node in the FSX tree. Generally, FSX
adopts an approach which enables the easy integration of
any content type into the FSX tree.

FSX defines adaptors, which are selectively applied to file
nodes in the FSX tree. If an adaptor matches a file during
the traversal process, the associated translator is executed,
translating the file’s contents into XML which is then inte-
grated into the FSX tree as metadata and/or content.

Matching a file can be done by applying different criteria,
based on the file system information available on the file

node, such as the file name, the MIME type, or the size. If
a file node matches the criteria specified by the adaptor,
the adaptor is executed and generates XML with is used as
contributions to the file’s metadata or content children.

It is important to point out that nothing in this approach
requires an adaptor to provide a complete mapping of a file.
For example, media files such as images or audio proba-
bly should not be completely translated into XML, but the
metadata in these files could be very valuable information
to be available through an XML view. Whether such infor-
mation is considered metadata or content and where it thus
is added is decided by the adaptor’s designer.

1. //id3v2:TIT2[contains(text(),"XML")]

/ancestor::dir[1]/@name

2. //file[@mime="application/zip"]

[not(.//zip:file[@name="README"])]

Example 1 returns the names of all directories which con-
tain MP3 files containing some track with “XML” in its title
(using a hypothetical id3v2 namespace for ID3 metadata).

Example 2 selects all files which are ZIP archives but do not
contain a README file somewhere inside the archive (using a
hypothetical zip namespace for ZIP metadata).

4. IMPLEMENTATIONS
There are currently two implementations of FSX. The pro-

totype implementation uses Java’s java.io.File class to
produce the initial FSX document, and an XSLT 2.0 style-
sheet for subsequent content integration. Only XSLT 2.0
adaptors are supported, which means that the adaptors can
only work on XML and text-based files. For large file sys-
tem structures and/or large files, this implementation re-
sults in poor performance and the danger of memory over-
flows. Because the prototype implementation uses XSLT,
content integration of XML documents is Infoset-based and
not purely XML-based. In practice, this means that entities
are resolved, which may not be appropriate in all cases.

The second implementation is XPath Shell (XPsh) [1],
which is a command line utility based on FSX. XPsh not
only supports FSX, but also provides a special syntax for
querying FSX, inspired by XPath, but also designed to be as
intuitive and compatible with Unix shell file selection mech-
anisms as possible. XPsh is only available under Unix and
has a flexible plug-in concept for adding new adaptors.

5. CONCLUSIONS AND FUTURE PLANS
The prototype implementation is based on a processing

model separating the construction of the FSX tree, the con-
tent integration, and the XPath evaluation. For large file
structures or documents, this implies significant performance
problems. The XPsh implementation partly avoids these
problems, because it executes the adaptors on demand, only
if the XPath evaluation accesses the children of a file.

FSX is useful for providing integrated views over files sys-
tems and file contents. If this data is used as input for sub-
sequent processing steps, both the prototype and the XPsh
implementation can be used. If FSX is used more in the
spirit of the Unix find and egrep commands, then XPsh
should be used because of its better optimization of FSX
construction and evaluation of XPaths.

Using FSX as an integrated view over file systems provides
a useful tool for making file system access less operation-
system dependent, and the adaptor concept adds the utility
of accessing file metadata and content. Thus, FSX turns a
file system into a (rather slow) XML database.

6. REFERENCES
[1] Kaspar Giger and Erik Wilde. XPath Filename

Expansion in a Unix Shell. In Poster Proceedings of the
15th International World Wide Web Conference,
Edinburgh, UK, May 2006. ACM Press.

	Introduction
	File System XML
	Content Integration
	Implementations
	Conclusions and Future Plans
	References

