A framework for XML Data Streams
History Checking and Monitoring

Alessandro Campi

Paola Spoletini

Politecnico di Milano, Dipartimento di Elettronica e Informazione
P.zza Leonardo da Vinci 32, Milano, Italy
campi|spoleti@elet.polimi.it

ABSTRACT

The need of formal verification is a problem that involves all
the fields in which sensible data are managed. In this con-
text the verification of data streams became a fundamental
task. The purpose of this paper is to present a framework,
based on the model checker SPIN, for the verification of data
streams.

The proposed method uses a linear temporal logic, called
TRIO, to describe data constraints and properties. Con-
straints are automatically translated into Promela, the in-
put language of the model checker SPIN in order to verify
them.

Categoriesand Subject Descriptors

D.2.2 [Design Tools and Techniques]: User interfaces;
D.2.4 [Software/Program Verification]: Model checking

General Terms
Verification
Keywords

XML, semi-structured data, verification

1. INTRODUCTION

In many applications, data may take the form of data
streams. Several aspects of data management need to be
reconsidered in the presence of data streams, offering new
research directions. In this paper we focus primarily on the
problem of defining a framework that implements methods
to verify properties on data streams.

Typically data streams are XML data flowing throughout
the net (streams of stock quotes, of medical data,...). In
particular XML dialects for financial data spread out in the
last years: FinXML [2], ebXML [1], and FpML [3] are some
examples of these standards. Especially in this context we
need to specify very complex business rules regarding XML
streams. Such rules predicate on historical trends of chosen
values. At the state of the art those rules are checked only
by ad-hoc applications, which correctness and reliability are
related only to the test cases run. The need to cover the gap
between the state of art and the importance of having tech-
niques to guarantee the correctness of streams has caused
an increasing interest on formal methods.

However the application of verification techniques in such
a context it is not an easy task. The temporal description

Copyright is held by the author/owner(s).
WWW 2006, May 23-26, 2006, Edinburgh, Scotland.
ACM 1-59593-332-9/06/0005.

<stock date="2005_08_24">
<share name="Google" price="12.678"
minPrice="12.478" maxPrice="12.900"
quantity="4000"/>
<share name="IBM" price="12.279"
minPrice="12.125" maxPrice="12.698"
quantity="8000"/>
</stock>

<exchanges>

<exchange seller="E4566" buyer="E5667" name="HP"
timestamp="2005_08_26_10_01_34"
price="25900" quantity="499"/>

<exchange seller="E3333" buyer="E4535" name="IBM"
timestamp="2005_08_26_10_03_34"
price="12.675" quantity="199"/>

</exchanges>

Figure 1: Running example

need not only to be able to describe the ordering among
events, but also to describe specific and detailed temporal
constraints among data. For these reasons we consider as
specification language a first order linear time temporal logic
called TRIO [5].

Hence the basic idea is that the specification of the system
in TRIO and generated the translation in Promela, the input
language of SPIN, the framework states if the data already
present satisfy the specification; if not the model checker
shows where the specification is violated.

2. VERIFICATION WITH SPIN

Our approach to model history checking data, whose spec-
ifications is given in TRIO, is based on the translation of the
TRIO formulae into Promela explained in details in [6, 4].

In figure 1 we show stock performance data. Informa-
tion contained in the stocks element describe the perfor-
mance data at the beginning of the day. Instead, data in
the exchanges element represent the stream of stock sales
during the day. Given this scenario, we want to monitor
these business rules: (a) between the buying and the sell-
ing of stocks of the same society should be at least a fixed
temporal distance, (b) during the day the gap between the
minimum price and the maximum price cannot be greater
than a fixed limit. The translation in TRIO of the proper-
ties is the following:

(a) Alw(Vp¥a(buy(p, a) + ¥ye pay Past(buy(p, a), £) < k)

(b) Alw(¥t1, t2, a(|past(price(a), t1)—past(price(a), t2)| < k))
The formulae are defined on the following domains: p is on
the domain of persons, a takes value in the possible stocks
and t; on the timestamps.

Now if we consider the data shown in Figure 1 and we add
two channels to connect them to the acceptor automaton,
one for the stock information and one for the exchange in-

l—|—1
Figure 2: The output of the SPIN model checker

formation, we can verify if the data stream is conform to the
specification. In this example we obtain the counterexample
shown in a visual representation in Figure 2. The first pro-
cess (the one on the left) represents the history manager and
the second one (on the right) the specification. Each time
instant the history manager sends to the specification data
di and dz through the channel message. After evaluating
the data, the specification sends to the history manager the
value of the alarm signaling anomalies with respect to the
received data. In this example at the second time instant
the sent data violates the specification.

3. ARCHITECTURE

Our framework is fully implemented in a tool environment
consisting of about 30 Java classes. Figure 3 shows the ar-
chitecture of our framework.

The XML data block represents the data stream to be
monitored. These data are processed by the Data transla-
tor, a component formed by an ad-hoc XML parser and a
generator of Promela finite history (the generated code
contains the channels simulating the data stream). The
TRIO formulae represent the constraints to be checked
by the framework. These formulae are the input of the
Promela translator [4]. The tranlation generates the Lan-
guage recognizer: a piece of Promela code devoted to
verify properties. This piece of Promela is coupled with the
Promela representation of data by the Model generator
in order to obtain the Finite operational model. The
analysis conducted by the SPIN model checker allows to
identify the instant in which a violation is performed. The
output of the SPIN model checker is parsed by a tool tailored
to show the results in a way comprehensible for not skilled

40000) 2,

30000

1000 2000 100 500 1000 2000

(@ (b)

Figure 4: Depth reached (a) and memory usage (b)

users. The visualization of the result is strictly coupled by
the semantics of the data stream. In order to facilitate the
rapid creation of new interfaces, the visualization of the re-
sult is parametric and is described in a configuration file
very easily to manage.

We now present some experiments conducted on a series
of XML data streams (in the form presented in Figure 1),
varying in size from 100 to 2000 data (generated re-mapping
data from a real stock quotation Web site) in order to eval-
uate the performance of our approach. We refer to the
constraints of example (a) previously presented. Figure 4a
shows the time needed to verify a constraint after each ar-
rival of a new message from the stream, Figure 4b shows the
required memory. Indexes are indicated on y-axis (depth in
milliseconds, memory in MB) and represent the average of
the measured times of 100 attempts for each experiment.
These results show that our approach is feasible also for a
considerable size of data streams. We observe that, in our
analysis, we do not have to take into account the time spent
to produce the Promela version of the constraint, because
it is generated only once at schema design time and thus do
not interfere with run time performance. On the contrary
the time needed to translate data from XML to Promela is
considered.

4. CONCLUSIONSAND FUTURE WORKS

In this work, we proposed a framework for the history
checking of the data based on TRIO, a linear temporal logic,
that can be used to describe data constraints and proper-
ties. We showed how the constraints can be verified over
data streams. The constraints are automatically translated
in Promela, the input language of SPIN, to verify the prop-
erties.

5. REFERENCES

[1] ebXML. http://www.ebxml.org.

[2] Finxml home page. http://www.finxml.org.

[3] Fpml. http://xml.coverpages.org/fpml.html.

[4] Verification of temporal logic via SPIN automata, PhD
thesis. www.elet.polimi.it/upload/spoleti/
PhDThesis_PaolaSpoletini.pdf.

C. Ghezzi, D. Mandrioli, and A. Morzenti. Trio: A logic
language for executable specifications of real-time
systems. The Journal of Systems and Software,
12(2):107-123, May 1990.

A. Morzenti, M. Pradella, P. San Pietro, and

P. Spoletini. Model checking of trio specifications in
spin. In LNCS, editor, Proc. of 12th International FME
Symposium, volume 2805, Sep 2003.

5]

| I
| |
- Data | g Finite '
Translator ' History 1\‘\ D !
! Finite |
L ! Model !

777777 i L
7777777 Generator | ™ Operational -

SPIN

YES: no anomalies
NO: dangerous sequences

; | | Model |
) ‘Language/ [

| recognizer:
I

Promela
Translator

TRIO
formulae

-

Figure 3: Architecture of the entire system

