
Rapid Prototyping of Web Applications combining
Domain Specific Languages and Model Driven Design

Demetrius Arraes Nunes
Departamento de Informática, PUC-Rio

Rua M. de S. Vicente, 222
Rio de Janeiro, RJ 22453-900, Brazil

+55 21 2521 2848

dema@tecgraf. puc-rio.br

Daniel Schwabe
Departamento de Informática, PUC-Rio

Rua M. de S. Vicente, 222
Rio de Janeiro, RJ 22453-900, Brazil

+55 21 3114 1500 x4356

dschwabe@inf. puc-rio.br
ABSTRACT
There have been several authoring methods proposed in the
literature that are model based, essentially following the Model
Driven Design philosophy. While useful, such methods need an
effective way to allow the application designer to somehow
synthesize the actual running application from the specification.
In this paper, we describe HyperDE, an environment that
combines Model Driven Design and Domain Specific Languages
to enable rapid prototyping of Web applications.

Categories and Subject Descriptors
H.5.4 [Hyperext/Hypermedia]: Architecture; Navigation. D.2.1
[Software Engineering]: Requirements/Specification. D.2.2
[Software Engineering]: Design Tools and Techniques.

General Terms
Design, Languages.

Keywords
Model-based Designs, Hypermedia Authoring.

1. INTRODUCTION
There have been several methods for Web application design
proposed in the literature, such as OOHDM [4], SHDM [3], and
others. Remarkably, they all follow the principles of Model
Driven Design (MDD) [5]. Simply stated, this approach uses the
notion of models to help the designer perform the design activity.
Here, we show how the HyperDE environment (freely available at
http://server2.tecweb.inf.puc-rio.br:8000/hyperde) supports the
rapid prototyping of Web applications through a combination the
Model Driven Development approach with the use of Domain
Specific Languages (DSL’s) [6]. This combination allows the
designer/developer to write code by directly manipulating the
models that specify the application. In addition, since the model is
specified following the meta-model for a method, it also possible
to dynamically manipulate the model itself during execution,
enabling very concise and general applications. Consequently,
scripts in the generated DSL work as very high level procedural
specifications of the application. Our goal is to show how MDD
can be combined with DSLs to provide principled, sistematic
rapid prototyping of Web (and hypermedia) applications.

2. SHDM Meta Model
Figure 1 shows the SHDM meta model, with the main classes
highlighted. The class NavClass models the navigation nodes, and
the class Link models the links between them. Each NavClass has
NavAttributes, NavOperations and Links, and can be a
specialization of a BaseClass. Contexts are sets of objects of
NavClass, defined through a query specified in one of its
attributes; this query may have a parameter. Indexes are made out
of IndexEntries, which contain either anchors to other indexes or
anchors to elements within a context. Landmarks are anchors to
either Indexes or to Context elements. Views allow exhibiting the
contents of NavClass instances within some context, or exhibiting
Indexes. Designing a Web application using SHDM corresponds
to instantiating this metamodel. The HyperDE environment
supports this.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

Figure 1. SHDM Meta Model

3. THE ARCHITECTURE OF HYPERDE
The HyperDE environment is based on the MNVC

framework [2], which extends the MVC framework with
navigation primitives. It allows the designer to input SHDM
navigational models (the “model” in the MVC framework), and
interface definitions (the “view” in the MVC framework), and
generates complete applications adherent to the specification. It
also provides an interface to create and edit instance data,
although, strictly speaking, this should actually be part of the
generated application. Figure 2 shows the architecture of
HyperDE.

 Adheres to

HyperDE

HTML pages

SHDM Navigation
Vocabulary

(RDFS)
Navigational

Model

Interface Definition
(extended HTML

templates)

Uses

Creates/Edits
and Uses

Creates/Edits
and Uses Instance Data

Is Instance Of

Modified Ruby
on Rails

Framework

Sesame RDF
Database

Creates/Edits
and Uses generates

Figure 2. The architecture of the HyperDE environment.

HyperDE is implemented as a modification of the Ruby on Rails
framework (http://www.rubyonrails.com), where the persistence
layer (ActiveRecord) has been replaced by another one based on
the Sesame RDF database. The SHDM meta-models, the user
defined navigation models, as well as the application instance
data, are all stored as RDF data.
All HyperDE functions can be accessed via Web interfaces. In
addition, HyperDE also generates a Domain Specific Language
(DSL) as an extension of Ruby, allowing direct manipulation
within Ruby scripts of both the model and SHDM’s meta-model.
extend the DSL to other query boiler plate templates (e.g., X by Y
by Z).

4. THE USE OF DSL’s IN HYPERDE
We have argued that, regardless of the abstraction level of the
specification language used to specify an application, there are
portions which typically will require the designer/implementer to
write some kind of code, such as for the business logic or for
retrieving or storing values that flow in the interface.
In most environments, the language of choice for implementation
is a programming language that is directly executable in the
desired target environment. In such cases, these programs must
manipulate the model’s representation in terms of the
programming language primitives, adding a layer of detail that is
cumbersome at best. An alternative for this is to generate a DSL
that makes the datatypes of the model also be the datatypes of
some programming language. The advantages of this approach
have already been argued in [1].
Following this approach, we have defined a DSL on top of Ruby,
based on the SHDM model and metamodel, in the following way

1. Each instance of NavClass becomes a Ruby class;
2. Each NavAttribute of NavClass becomes an attribute of the

corresponding Ruby class. In addition, a method
“find_by_xxx” is also defined, allowing to search objects of
this class according to values of this attribute; (Actually, a
whole family of “find_by_xxx” and “find_all_by_xxx”
methods are created dynamically allowing one to write such
expressions as Professor.find_by_name_and_research_area
or Student.find_all_by_year_and_department)

3. Each NavOperation of NavClass becomes a method of the
corresponding Ruby class;

4. Each link having NavClass as the source type becomes an
attribute of special type “Array”, whose elements are
objects of the target type of the link.

The built-in Ruby operators are redefined to handle the expected
semantics. For instance, if a new element is inserted in the array
that corresponds to a link, this is interpreted as creating a new link
instance. Consider for instance the following code
schwabe = Professor.find_by_name “Daniel Schwabe”

area = ResearchArea.find_by_name “Hypermedia”

for student in schwabe.advises

 unless student.works_in.include?(area)

 student.works_in << area

 end

end

This code ensures that for all students advised by professor
“Daniel Schwabe” have a student.works_in relation to the
“Hypermedia” researchArea. This illustrates the conciseness of
the code using the generated DSL.
Acknowledgement. Daniel Schwabe was partially supported by a
grant from CNPq, Brazil.

5. REFERENCES
[1] Goldman, N. M. Ontology-Oriented Programming: Static

Typing for the Inconsistent Programmer, Lecture Notes on
Computer Science - The Semantic Web - ISWC 2003,
Springer-Verlag Heidelberg, Volume 2870 / 2003 - Outubro,
2003, pp. 850-865

[2] Jacyntho, M. D., Schwabe, D. , Rossi, G. A software
architecture for structuring complex web applications.
Journal of Web Engineering, Vol 1, No 1, (2002).

[3] Lima, F.; Schwabe, D.: Application Modeling for the
Semantic Web. Proceedings of LA-Web 2003, Santiago,
Chile, Nov. 2003. IEEE Press, pp. 93-102, ISBN (available
at http://www.la-web.org).

[4] Schwabe, D.; Rossi, G.: An object-oriented approach to
Web-based application design. Theory and Practice of
Object Systems (TAPOS), October 1998, 207-225.

[5] Thomas, D., Barry, B.M.; “Model Driven Development: The
Case for Domain Oriented Programming”, Companion of the
18th OOPSLA, ACM Press, 2003, pp. 2-7.

[6] Van Deursen, A.; Klint, P.; Visser, J.; “Domain Specific
Languages: An Annotated Bibliography”,
http://homepages.cwi.nl/~arie/papers/dslbib

	INTRODUCTION
	SHDM Meta Model
	THE ARCHITECTURE OF HYPERDE
	THE USE OF DSL’s IN HYPERDE
	REFERENCES

