
Evaluating Structural Summaries
as Access Methods for XML

Mirella M. Moro
UC Riverside

mirella@cs.ucr.edu

Zografoula Vagena
IBM Almaden Research

Center
zovagena@us.ibm.com

Vassilis J. Tsotras
UC Riverside

tsotras@cs.ucr.edu

ABSTRACT
Structural summaries are data structures that preserve all
structural features of XML documents in a compact form.
We investigate the applicability of the most popular sum-
maries as access methods within XML query processing. In
this context, issues like space and false positives introduced
by the summaries need to be examined. Our evaluation re-
veals that the additional space required by the more precise
structures is usually small and justified by the considerable
performance gains that they achieve.

Categories and Subject Descriptors: H.2.3 [Database
Management]: Languages

General Terms: Query Processing, Performance

Keywords: Structural Summaries, Precision

1. INTRODUCTION
The lack of schema on XML documents has originally mo-

tivated the research for Structural Summaries [2, 5]. Such
summaries are compact, dynamically maintained graph struc-
tures that preserve all structural characteristics of XML doc-
uments. Their effectiveness as path indexes has already been
widely accepted. Moreover, these structures are also finding
their way in the web environment, as enhancements to tra-
ditional full-text indexes, enabling querying and retrieval of
XML documents at different granularities [8].

The versatility of structural summaries has led to the
proposal of many variations. Current work has mainly ex-
plored such structures as secondary indexes that can identify
document nodes reachable from specific path patterns. Re-
cently, summaries have also been explored in a different way,
namely as access methods (i.e. on-disk data organizations,
coupled with specialized retrieval operations) [6]. Neverthe-
less, their relative behavior within this context has not yet
been fully understood.

In this work, we attempt to fill this gap and provide the
first empirical study for the applicability of those summaries
as alternative access methods within XML query processing.
We experimentally compare their behavior while processing
path expression queries. Answers to such queries are doc-
ument path instances which satisfy all the constraints im-
posed by the associated path expressions. Our main contri-
butions are summarized as follows: (1) We explore the be-
havior of the summaries as access methods for XML query
processing. (2) Within this context, we identify the cases

Copyright is held by the author/owner(s).
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-332-9/06/0005.

where the summaries provide false positives and show how
such results impact the size of intermediate results as well
as the additional processing time required to retrieve exact
answers. (3) We complete our study by exploring the be-
havior of the summaries for heterogeneous XML document
collections. To the best of our knowledge, this is the first
study that considers this situation, which is very common,
especially in an environment such as the world wide web.

We proceed with section 2 that describes the structural
summaries under comparison and the processing of the con-
sidered queries. Section 3 summarizes the most important
results of our study, and section 4 concludes the paper.

2. STRUCTURAL SUMMARIES
A structural summary groups document nodes into classes

based on their structural characteristics. Each node in the
summary represents a group of document nodes that belong
to the same equivalence class. This group of nodes associ-
ated with a summary (index) node is called its extent. Next,
we provide a brief description of the summaries we compare.

DataGuides. Starting from a database D, a DataGuide

keeps a unique copy of all and only the paths that exist
within D [2]. Among the different DataGuides that can
be generated from a database D, in our experiments, we
employed the Strong DataGuide, in which nodes with the
same path from the root are grouped together.

A(k)-indexes. The A(k)-indexes [3] correspond to a fam-
ily of approximate structural summaries that use bisimilar-
ity to identify the groups of equivalent data nodes. Each
index node represents only bisimilar elements from the doc-
ument and the index extents do not overlap. In our experi-
ments, we considered A(k) for k = 1, 2 and 3.

Suffix Trees. A Suffix Tree [7, 4] is a trie-based data
structure that stores all set of strings S, and all suffixes
of each string s in S. The structure has already been em-
ployed in several works for XML query processing. Another
trie-based data structure, namely the prefix tree, has also
been employed. We omit the prefix tree from our discus-
sion since its performance as access method is similar to that
of the suffix tree.

Query Processing. With any of the previous summaries,
processing of path expression queries is performed in two
phases. In the first phase, the structural summary is probed
to identify the index nodes (and respective extents) that sat-
isfy the query. Since all query nodes (as opposed to only
those nodes reachable by a path) are involved in the results,
a post-processing matching step is needed over the extents
identified in the first phase. Thus, a second phase filters out
any false positives and produces the actual results.



False Positives. While computing the query result, all
extents that satisfy the query are considered. In this con-
text, there are three main situations where summaries may
give false positives. First, the summary may not cover the
query. This may happen when the summary is compacted
to fit in memory. Second, when a query includes an ances-
tor (parent) whose descendant (child) is an optional subele-
ment. The summary then returns a superset of the result,
where many ancestor (parent) elements do not have match-
ing descendants (children). Third, the original dataset may
present recursive paths, aggravating the previous situation.

3. EXPERIMENTAL EVALUATION
In our evaluation of the summaries as access methods,

we considered the following aspects that characterize the
structures: space requirements, precision (impact of false
positives), and time to evaluate a query.

Space Requirements. We considered heterogeneous
datasets and evaluated the impact of diversity on the size of
the summaries. Each dataset comprises of 1000 XML docu-
ments generated from different DTDs. The dataset hetero-
geneity is defined by varying two parameters: the number
of DTDs from which the documents are generated, and the
rate in which one of the DTDs appears in the document.

Figure 1: Experimental results

Figure 1(a) depicts the size of each summary as a per-
centage of the dataset size. In the top half, the number of
DTDs varies from 5 to 20. In the bottom half, the docu-
ments are created from 25 DTDs, and one single DTD is
in all datasets on different rates: 10% means that ten per-
cent of the data was generated from that specific DTD, the
remaining 90% from other DTDs. This number is gradu-
ally increased to 100%, meaning that the whole dataset was
generated from one DTD. A clear observation is that the
summaries save substantial space. Even with heterogeneous
data, the summary sizes are still smaller than 1% of the
document. Likewise, the more homogeneous the dataset,
the smaller the resulting summaries. We also considered
other real and benchmark datasets (DBLP, NASA, Reed
University, Shakespeare’s plays, Swiss-Prot, TreeBank, and
Xmark) and obtained similar results.

Precision of Structural Summaries. Here, we focus
on the first phase of the query processing, where the extents
of all nodes required by the query are evaluated. We consid-
ered path queries with 3 to 10 nodes, and with both parent-
child and ancestor-descendant axes. The performance mea-
sure is the ratio of the total number of document nodes
that are returned by the structural summary (through the
returned extents) and the number of nodes that compose
the actual results. We call this ratio the precision of the
structural summary. Precision ratio equal to 1 means the

summary returns exactly the query answer, whereas higher
values imply larger number of false positives. This measure
is justified because the work necessary in the post-processing
step is proportional to the size of the returned extents.

We performed experiments over heterogeneous, real and
benchmark data. Figure 1(b) shows results for three typi-
cal queries that were performed on real dataset NASA and
benchmark dataset XMark (results for other queries follow
similar patterns). In queries 1 and 2, all summaries had sim-
ilar relative performance because the indexes present simi-
lar features. Query 2 requires nodes that are more selective
than those in query 1 (the second case for false positives)
thus the precision ratio practically doubles. Query 3 shows
how precision deteriorates when the value of k (in A(k) in-
dexes) is still not stabilized. These experiments show that
more precise structures (like Dataguides) consistently give
better results. These three queries illustrate the most com-
mon scenarios in our experiments, but there were also much
higher reported precision ratios (worst cases around 100).

Query Evaluation Performance. The first phase iden-
tifies the query extents by traversing the summaries. Since
the size of the summaries is minimal, the time for processing
it is minimal as well. Here, we evaluate the second phase of
the query processing by employing the summaries as access
method to a state of the art algorithm for pattern query
processing, the TwigStack [1]. We compared the summaries
performance against two benchmarks, (i) when evaluating
the query over the whole document (upper bound) and (ii)
when the actual query results are present (a hypothetical
lower bound, equivalent to precision ratio 1). As a typical
example, in query 3, the results were: 345ms for the whole
document, 279ms for A(1), 108ms for Dataguide, and 80ms
for actual results. As expected, the overall query time of the
summaries is proportional to the size of the extents, in which
the false positives make a considerable influence. Neverthe-
less, summaries with good precision (i.e., Dataguides) gave
query time performance very close to the optimal.

4. CONCLUSION
Current work on structural summaries covers the prob-

lem of identifying nodes reachable from specific path pat-
terns. We focus on a broader perspective, where not only
the reachable final nodes are important, but also intermedi-
ate path nodes are needed to construct the result of a query.
Our results show that, for tree-structured XML data, per-
formance improves when using more precise structures, like
DataGuides (or 1-indexes) instead of approximate versions.

5. REFERENCES
[1] N. Bruno et.al. Holistic Twig Joins: Optimal XML Pattern

Matching. In SIGMOD, 2002.
[2] R. Goldman and J. Widom. DataGuides: Enabling

Formulation and Optimization in Semistructured Databases.
In VLDB, 1997.

[3] R. Kaushik et. al. Exploiting Local Similarity for Indexing
Paths in Graph-Structured Data. In ICDE, 2002.

[4] E. M. McCreight. A Space-Economical Suffix Tree
Construction Algorithm. Journal of ACM, 23(2), April 1976.

[5] T. Milo and D. Suciu. Index Structures for Path
Expressions. In ICDT, 1999.

[6] M. M. Moro, Z. Vagena, and V. Tsotras. Tree-Pattern
Queries on a Lightweight XML Processor. In VLDB, 2005.

[7] P. Weiner. Linear Pattern Matching Algorithms. In Annual
Symp. on Switching and Automata Theory, 1973.

[8] B. Yang et.al. Virtual cursors for XML joins. In CIKM, 2005.


