
WebKhoj: Indian language IR from Multiple Character
Encodings

Prasad Pingali
Language Technologies

Research Centre
IIIT, Hyderabad

India

pvvpr@iiit.ac.in

Jagadeesh Jagarlamudi
Language Technologies

Research Centre
IIIT, Hyderabad

India

j jagdeesh@research.iiit.ac.in

Vasudeva Varma
Language Technologies

Research Centre
IIIT, Hyderabad

India

vv@iiit.ac.in

ABSTRACT
Today web search engines provide the easiest way to reach
information on the web. In this scenario, more than 95%
of Indian language content on the web is not searchable
due to multiple encodings of web pages. Most of these en-
codings are proprietary and hence need some kind of stan-
dardization for making the content accessible via a search
engine. In this paper we present a search engine called We-
bKhoj which is capable of searching multi-script and multi-
encoded Indian language content on the web. We describe
a language focused crawler and the transcoding processes
involved to achieve accessibility of Indian langauge content.
In the end we report some of the experiments that were con-
ducted along with results on Indian language web content.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering, Selection process; H.3.1 [Content Analysis and
Indexing]: Linguistic processing

General Terms
Standardization, Languages

Keywords
Indian languages, web search, non-standard encodings

1. INTRODUCTION
India is a multi-language, multi-script country with 22 of-

ficial languages and 11 written script forms. About a billion
people in India use these languages as their first language.
English, the most common technical language, is the lingua
franca of commerce, government, and the court system, but
is not widely understood beyond the middle class and those
who can afford formal, foreign-language education. Not only

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.

WWW2006, May 23–26, 2006, Edinburgh, Scotland.

ACM 1-59593-323-9/06/0005
.

is there a large societal gap between the rich and poor, but
that gap appears to be widening due the dominance of En-
glish in the society. About 5% of the population (usually the
educated class) can understand English as their second lan-
guage. Hindi is spoken by about 30% [5] of the population,
but it is concentrated in urban areas and north-central In-
dia, and is still not only foreign but often unpopular in many
other regions. Computability of Indian languages could help
bridge the societal gaps in education, economy and health-
care. However the research and development, availability
of standards, support from operating systems and applica-
tions in these directions moved very slow due to language
heterogeneity.

Today this phenomenon can also be observed on the world
wide web. The percentage of Indian language content is
very less compared to the official languages of United Na-
tions [7]. Even within the available content, majority is not
searchable and hence not reachable due to multiple encod-
ings used while authoring such websites. Web publishers of
such content were hesitant to use any available standards
such as Unicode due to very delayed support from operat-
ing systems and browsers in rendering Indic scripts. Even
today Hindi is rendered properly only on Windows XP and
beyond. Linux has very little support for these languages.
Indian languages had barely any support till Windows 2000
operating system. This creates a major bottleneck for web
publishers in these languages to get viewership.

Despite all these issues, we found considerable amount of
content being published on the web. However such content
gets unnoticed or gets very less viewership since most of such
content is not accessible through search engines due to non-
standard encodings being rendered using proprietary fonts.

This paper is organized into seven sections. In the next
sub-section we give an introduction to characters, glyphs
and fonts in order to appreciate the complexity involved in
rendering complex scripts. We then introduce to the com-
plexity of Indic scripts in the sub-section 1.2. In Section 2 we
make the problem statement and explain an implementation
to solve this problem in Section 3. We report some experi-
ments and results in Section 4, followed by a conclusion in
Section 5.

1.1 Fonts, characters and glyphs
In the history of mankind the act of writing has always

been considered as an activity producing visual results, namely
text. The computer has brought a more abstract layer to

it, by storing and transmitting textual data. The atomic
unit of this abstract representation of text, as defined in
the Unicode standard [8], is called a character. And indeed,
characters prove to be useful for obtaining alternative (non-
visual) representations of text such as Braille, speech syn-
thesis, etc. The visual representation of a character is called
a glyph [8]. Displaying textual contents, whether on screen
or on paper, involves translating characters into glyphs, a
non-trivial operation for many writing systems. Going in
the opposite direction (from glyphs to characters) is known
as OCR when done by a machine, or as reading when done
by a human [8]. The technology trend over the last few years
has been to use characters for most of the text processing
and to limit glyph issues to the last stage, namely rendering.
At that level, character to glyph translation is handled by
increasingly “intelligent” (cf. OpenType and AAT technolo-
gies) fonts and font encodings. Unicode is an effort in this
direction. At the same time, restoring the original charac-
ter stream from a rendered electronic document output for
operations such as searching, indexing, or copy-pasting, no
general solution exists in today’s popular document formats
yet. Despite the problems involved, web authors tend to use
proprietary encodings due to the complex characteristics of
Indic scripts as described in the following section.

1.2 Characteristics of Indic Scripts
Indic scripts are phonetic in nature. There are vowels and

consonant symbols. The consonants become a syllable after
the addition of a vowel sound to it. Further to compound
the problem there are ‘compound syllables’ also referred as
ligatures. For instance, if we consider ‘tri’ in ‘triangle’, there
are three letters corresponding to three sounds ‘ta’, ‘ra’, ‘yi’.
But in the case of Indic Scripts the three are built together
to make a single compound consonant having a non-linear
structure unlike Latin based languages.

The main problem with display of Indic scripts is deal-
ing with their non-linear structures. Glyphs have variable
widths and have positional attributes. Vowel signs can be
attached to the top, bottom, left and right sides of the base
consonant. Vowel signs may also combine with consonants
to form independent glyphs. Consonants frequently combine
with each other to form complex conjunct glyphs. Although
the encoding encapsulates only the basic alphabetic charac-
ters, the number of glyphs and their combinations required
for the exhaustive rendering of these scripts can be quite
large [11].

Since the character to glyph mappings have to be achieved
using a 256 character address space, web authors come up
with an intelligent way of representing all the characters in
the language using some 256 glyphs. Most of these glyphs
do not have any semantic significance in the language by
themselves. However when displayed together using some
positional parameters, they achieve human readable charac-
ters. This situation makes the Indian language web content
inaccessible for machine processing.

2. PROBLEM STATEMENT
Many information seekers use a search engine to begin

their Web activity. In this case, users submit a query, typi-
cally a list of keywords, and receive a list of Web pages that
may be relevant, typically pages that contain the keywords.

Today though considerable amount of content is avail-
able in Indian languages, users are unable to search such

content. Because Indian language websites rely on unique
encodings or proprietary extensions of existing standard en-
codings [11]. This plurality of encodings creates a prob-
lem for information retrieval to function as desired. Also
many research groups in information retrieval and natural
language processing feel the need to collect corpora in these
languages from the web in the same way they obtain corpora
for other languages [14], [7], [1], [10]. Therefore in order to
search or process Indian language websites, we should be
able to transliterate all the encodings into one standard en-
coding and accept the user’s queries in the same encoding
and build the search index.

This task involves many steps. First step is to be able
to identify the various encodings in Indian languages on the
web. Since these encodings are non-standard, there is no one
comprehensive list of such possible encodings. Therefore
we need to somehow identify all such encodings and also
be able to classify these encodings into the existing types.
Second step is to build a transliteration mapping for the
given encoding into a standard encoding which is UTF-8
and hence convert any page into a standard and index it.
Third step is to be able to accept user’s queries in the same
standard as that of the transliterated documents which is
UTF-8.

3. WEBKHOJ ARCHITECTURE
In this paper we report a search engine called WebKhoj

which can search web pages in the top 10 Indian languages
according to the number of native speakers. WebKhoj cur-
rently supports Hindi, Telugu, Tamil, Malayalam, Marathi,
Kannada, Bengali, Punjabi, Gujarati and Oriya. Before we
describe the architecture of WebKhoj, it is useful to under-
stand how a Web search engine is typically put together and
then see its extensions for our task.

3.1 General web search engine
Figure 1 shows a general web search engine schematically

[2]. The major modules of a web search engine are a Crawler,
an Indexer, a Query Engine and a Ranking Engine. Every
engine relies on a crawler module to provide the grist for
its operation (shown on the left in Figure 1). Crawlers are
small programs that browse the Web on the search engine’s
behalf, similar to how a human user follows links to reach
different pages. The programs are given a starting set of
URLs whose pages they retrieve from the Web. The crawler
extracts URLs appearing in the retrieved pages and give this
information to the crawler control module. This module de-
termines what links to visit next and feeds these links back
to the crawler. (Some of the functionality of the crawler
control module may be implemented by the crawlers them-
selves.) The crawlers also pass the retrieved pages into a
page repository. Crawlers continue visiting the Web until
local resources, such as storage, are exhausted. The indexer
module extracts all the words from each page and records
the URL where each word occurred. The result is a gener-
ally very large “lookup table” that can provide all the URLs
that point to pages where a given word occurs (the text in-
dex in Figure 1). The table is of course limited to the pages
that were covered in the crawling process. As mentioned
earlier, text indexing of the Web poses special difficulties,
due to its size and its rapid rate of change. In addition to
these quantitative challenges, the Web calls for some special,
less common, kinds of indexes. For example, the indexing

Figure 1: General web search engine architecture

module may also create a structure index, which reflects the
links between pages. Such indexes would not be appropri-
ate for traditional text collections that do not contain links.
The collection analysis module is responsible for creating a
variety of other indexes. During a crawling and indexing
run, search engines must store the pages they retrieve from
the Web. The page repository in Figure 1 represents this
possibly temporary collection. Search engines sometimes
maintain a cache of the pages they have visited beyond the
time required to build the index. This cache allows them
to serve out result pages very quickly, in addition to pro-
viding basic search facilities. Some systems, such as the
Internet Archive, have aimed to maintain a very large num-
ber of pages for permanent archival purposes. Storage at
such a scale again requires special consideration. The query
engine module is responsible for receiving and filling search
requests from users. The engine relies heavily on the in-
dexes, and sometimes on the page repository. Due to the
Web’s size and the fact that users typically only enter one
or two keywords, result sets are usually very large. Hence
the ranking module has the task of sorting the results such
that results near the top are the most likely to be what the
user is looking for. In the rest of this section we describe the
additional modules that were used in a general web search
engine to make it work for Indian languages.

3.2 Language focused crawling
Since our goal is to be able to search web sites of specific

languages, we are looking for a relatively narrow segment of
the web. Crawlers that fetch pages related to a particular
topic of interest are called topic focused crawlers [6]. While
our crawler is very similar to the one mentioned in [6], we
use a language identification module instead of a classifier
and hence call it as language focused crawling. The language
identification module returns the name of the language for a
given web page. This module is aware of all the proprietary
encodings and also uses a bag of words to recognize unknown
encodings from meta-tag information that might be found
in an HTML page. In many cases web pages contain more
than one language, especially one of the languages being

English. This happens since many of the website organzi-
ation information such as menu items, or disclaimers and
other such formatting information. In some websites such
as blogs or forums majority of the content might be En-
glish, with Indian language content being a minority. The
language identifier module returns a language only if the
number of words in a web page are above a given threshold
value.

3.3 Transcoding
Since Indian language content is being published in mul-

tiple encodings on the web, transliteration of encodings to
a popular standard such as Unicode [15] is needed. In order
to transliterate a non-UTF-8 encoding into UTF-8 which is
a Unicode based encoding one has to come up with byte
sequence mappings between source and target encodings.
Such mappings are rarely one to one mappings, and involve
many to one, one to many and many to many mappings of
byte sequences. As it was explained in the beginning of this
paper, a sequence of bytes represent a sequence of glyphs
of a font, which in turn could render a single character or
a ligature in the Indic script. Ideally mappings are to be
created to all the unique characters in the language, which
could be a large number in the order of tens of thousands.
Since it would be tedious to list out all the characters and
ligatures, we make use of the large number of documents
collected by the crawler to come up with a semi-automatic
process of generating mappings.

We use a simple heuristic to identify the potential charac-
ter boundaries from byte sequences. First the text from the
collected web pages is divided into words using a suitable
word tokenizer. Then the algorithm lists all the possible
word beginning bytes in both the source and target font en-
codings. Now each word is scanned from left to right until
one such byte occurs in the word. Whenever a valid word
beginner occurs in the word, we tokenize at that point, and
the byte sequence till that point is treated as a potential
character. For example in a given encoding if all the pos-
sible word beginning bytes are ‘a’, ‘b’ and ‘c’, a new word
‘cars’ is tokenized as ‘c’, ‘ars’, since neither ‘r’ nor ‘s’ are

Figure 2: Transcoding from Jagran encoding to UTF-8

valid word beginners. The byte sequences thus obtained by
segmentation are potential characters or ligatures in that
language.

Once such segmentation is done, the frequency of such
byte sequences (or potential characters) is calculated. It was
found from our experiments that the ranks based on the nor-
malized frequency of such potential characters is highly cor-
related (we present more details in our experiments section).
Therefore we use this algorithm to come up initial suggested
mappings for transcoding, and then the user would manu-
ally correct any errors by going through the font mappings
as shown in the Figure 2. The transcoding tool sorts the
potential characters according to their ranks, so that the
user would find the equivalent match in the target encoding
among the top few possibilities. Also since the mappings
are ordered based on the normalized frequency found in the
corpus, mapping source and target bytes in this order en-
sures optimal precision that can be obtained from a set of
mappings.

Once such transcoder mappings are generated for all pos-
sible encodings in Indian languages, a transcoding module
is called during indexing of the web documents. If a web
document is encoded in an encoding other than UTF-8,
the transcoder module is called to transliterate the encod-
ing of the given web page into UTF-8 standard. In order
to do this, the HTML page is parsed to obtain its docu-
ment object model (DOM) using the JTidy utility1. All the
nodes of type “font” are extracted from the DOM and the
font encoding is checked against a known set of encodings
on the web. Based on the font encoding, the appropriate
transcoder mappings are used to transliterate the relevant
text into UTF-8. One word is transcoded at a time. In order
to transcode, the maximum byte sequence available in the
mapping table is used to transliterate the encodings and the
process is repeated to the remaining substring of the word.
This transliterated document is then sent to the indexer to
build the inverted index.

3.4 Retrieval Algorithm
The score of query q for document d is defined in terms

of TFIDF [13] metric as shown below:

score(q, d) = c(q, d).qn(q).(
X

t in q

tf(t in d).idf(t))

1JTidy is a Java implementation of Dave Raggett’s HTML
tidy. JTidy can be found at http://jtidy.sourceforge.net

3.4.1 tf (term frequency)
‘tf’ (also known as term frequency) is a score factor based

on a term or phrase’s frequency in a document. Terms and
phrases repeated in a document indicate the topic of the
document, so implementations of this score usually return
larger values when frequency is large, and smaller values
when frequency is small.

3.4.2 idf (inverse document frequency)
‘idf’ is a score factor based on a term’s document fre-

quency (the number of documents which contain the term).
Terms that occur in fewer documents are better discrimi-
nators of topic, so implemenations of this method usually
return larger values for rare terms, and smaller values for
common terms.

3.4.3 c (coverage of query terms)
‘c’ is a score factor based on the fraction of all query

terms that a document contains. This value is multiplied
into scores. The presence of a large portion of the query
terms indicates a better match with the query, so impleme-
nations of this function usually return larger values when the
ratio between these parameters is large and smaller values
when the ratio between them is small.

3.4.4 qn (query normalization)
This is the normalization value for a query given the sum

of the squared weights of each of the query terms. This value
is then multiplied into the weight of each query term.

This does not affect ranking, but rather just attempts to
make scores from different queries comparable.

3.5 User Interface
Currently there is no easy means to key-in UTF-8 queries

to the search engine using the normal keyboard. So We-
bKhoj is provided with a soft keyboard which displays the
UTF-8 character set of the language on the screen. The
layout of the keys is very similar to the Keylekh layout [9].
We also tried providing a roman to local language transliter-
ation keyboard which dynamically renders Indian language
text when its phonetic equivalent is typed using roman char-
acters. We had student volunteers from a near by village to
try out the keyboards. However, we found that the stu-
dents who are taught in the local language in schools are
not comfortable with English symbols. Also within the lo-
cal language, the way symbols are taught in schools is much

Figure 3: Hindi soft keyboard user interface for WebKhoj search engine

Figure 4: Search results being displayed for a Hindi query in UTF-8

different from the way UTF-8 characters need to be typed
in. However, with some training these students were able to
adapt to the soft keyboard.

Currently soft keyboards for 10 Indian languages are pro-
vided in the searching interface. One language is shown to
the user at any given instance. The user can change the
keyboard to a different language by clicking on the desired
language hyperlink displayed on the interface as shown in
Figure 3. After thus framing the query, the user can search
for the web documents, and the results are ranked and dis-
played much like Google as shown in Figure 4.

3.6 Word spelling normalization
Indian language words face standardization issues in spelling,

thereby resulting in multiple spelling variants for the same
word. For example we found widely used spelling variations
for the hindi word ‘angrezi’ as shown below

The major reasons for this phenomenon can be attributed
to unavailability of proper website authoring tools equipped
with spell checkers for Indian languages and multiple di-
alects of spoken language, transliteration of proper names
and words borrowed from foreign languages whose spellings
are not standardized. While we have to handle Indian lan-
guage words with spelling variations and errors, we also
showed that a considerable percentage of foreign language
words mainly English have entered into Indian language us-
age which cannot be ignored. While such words are being
frequently used by people, there is no standardization in
spelling for such words thereby resulting in huge variations
due to transliteration. Given such variations in spelling it
becomes difficult for web Information Retrieval applications
built for Indian languages, since finding relevant documents
would require more than performing an exact string match.
It was shown that normalization rules for specific languages
work best with spelling normalization problems. We make
use of a set of rules [12] to normalize the words before index-
ing them or looking them up from the index. These rules
are language specific and we describe the rules for Hindi in
the next sub-sections. We achieve normalization of word
spellings by mapping the alphabet of the given language L

into another alphabet L′ where L′
∈ L. We use the following

rules to achieve such a normalized mapping.

3.6.1 Mapping chandrabindu to bindu

Often people tend to use chandrabindu (a half-moon with
a dot) and bindu (a dot on top of alphabet) interchangeably.
Lots of confusion exists in common language usage on which
to use when. In order to equate all such words we convert all
occurrences of chandrabindu to bindu, which would equate
all the words shown below.

3.6.2 nukta deletion
Unicode contains 10 consonant characters with nukta (a

dot under consonant) and one nukta character itself. We

delete all occurences of nukta character and replace all con-
sonants with nuktas with their corresponding consonant char-
acter. This would equate words like the ones shown below.

3.6.3 halanth deletion
Hindi and many other Indian languages face the prob-

lems of ’schwa’ (the default vowel ’a’ that occurs with every
consonant) deletion. Lots of spelling variations occur due to
’schwa’ deletion. In order to normalize such words we delete
all the halanth characters in the given word before making
a string match. This operation would normalize words as
shown in the example below.

3.6.4 vowel shortening
Many times in written script people use shorter vowels in-

stead of longer ones or vice versa. Therefore in our applica-
tion we convert all the longer vowels to their corresponding
shorter ones. Using this feature we can normalize words as
shown in this example.

3.6.5 chandra deletion
’chandra’ (half-moon) is used for vowel rounding. Usually

words borrowed from English at times require vowel round-
ing operation. For example the word ”documentary”. But
this character is used inconsistently many times. Therefore
deleting such a character would normalize the words where
vowel rounding has been used.

These rules were compared with many approximate string
matching algorithms are were found to result in a better f-
measure [12].

4. EXPERIMENTS AND DISCUSSION
We report here some experiments that were conducted

in transcoding the proprietary encodings and present some
statistics from our language focused crawl about the Indian
language web.

The transcoding tool was designed to generate mappings
between two encodings in a semi-automatic fashion. In or-
der to achieve this the tool automatically gives some map-
ping suggestions based on the rank correlation of the two
encodings in question. We found that the byte sequences
from two encodings of same language correlate very well, by
looking at the Spearman’s rank correlation coefficient. In-
tuitively this phenomenon can be understood as the conver-
gence of unique lexicon from two encodings from sufficiently
large corpus, since they both belong to the same language.
To find the amount of correlation, we experimented with
two different encodings from Hindi. We ran the charac-
ter segmentation algorithm and computed the normalized
frequencies as mentioned above and ranked the character
sequences in both the encodings from a corpus of 2,000 doc-
uments from each of these encodings. We manually marked

the corresponding frequency based rank positions of a given
character or a ligature from these encodings and calculated
the Spearman’s rank correlation coefficient. We then plot-
ted a graph with the Spearman’s correlation coefficient on
y-axis and the number of mappings on x-axis as shown in
Figure 5. We observed that the rank correlation is 100% for
the first 25 mappings that were automatically generated,
and are close to 90% for the first 200 mappings which can
achieve a transcoding precision of above 90%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

R
an

k
C

or
re

la
tio

n
co

ef
fic

ie
nt

Number of byte sequences

Rank Correlation of byte sequence frequencies

"Spearman Correlation"

Figure 5: Spearman’s rank correlation for number of
byte sequences between Jagran and Webdunia font
encodings

Since these byte sequences are an ordered set, ordered
by their normalized frequency, the precision of translitera-
tion obtained by providing mappings between encodings in
the order provided in the ordered set is optimal. We have
observed that with about 2,000 encoding mappings for each
encoding on average once can achieve around 99% precision.
However this number also depends on the language com-
plexity. For instance, the number of encodings required in
Telugu transliteration is more than the number of encodings
required in Hindi to obtain the same amount of precision.

We now report some of our experiments on the Indian lan-
guage focused crawling. We ran a daily crawl for 6 months
period. Our crawler was focused to fetch content in the
top 10 spoken languages in India, namely Hindi, Telugu,
Tamil, Bengali, Marathi, Gujarati, Kannada, Malayalam,
Oriya and Punjabi. In another experiment, in order to find
the effectiveness of language focused crawling, we executed
the crawler in two modes with a set of 100 seed URLs which
constitute popular Indian based web portals, news sites and
home pages of people of Indian origin. In the first mode
it was executed without language focus restriction using a
pure FIFO crawl queue while the second mode was with lan-
guage focus restriction using a priority queue from which the
crawler fetched the next crawl URL. We plotted the number
of relevant pages fetched in the first 50,000 URLs in both the
runs as shown in the Figure 6. The relevance of the fetched
pages was calculated by checking the encoding on that page.
It can be clearly seen that language focus restriction on the
crawler helps in downloading more relevant pages.

From the 6 month crawl, about half a million unique doc-
uments were collected from all the languages. Unique web
pages were picked after eliminating approximate duplicate
pages using shingling technique [4]. These half a million
pages were distributed across the 10 languages as shown

in the Figure 7. Figure 8 shows the population of people
speaking the various Indian languages [3]. It can be ob-
served that even within India there is a divide in the web
publishing activity in various languages. For instance it can
be observed that the content is actively getting published in
south Indian languages like Telugu, Tamil and Malayalam
when compared to the northern languages such as Marathi,
Gujarati, Oriya, Bengali and Punjabi. Hindi has the ma-
jority of content published on the web but Hindi is also the
language spoken by majority of Indian population.

It can be seen from Figure 10 that a very few websites
publish content using a global standard such as Unicode.
This explains the reason for most of the Indian language
not being indexed or searchable by the present day popular
web search engines. On the other hand it can be seen from
Figure 9 and Figure 11 that the number of unique encodings
found on the web for these languages is almost equivalent
to the number of websites. This observation suggests that
every web publisher is coming up with their own proprietary
encodings to publish web content. We did not consider the
websites that publish using images in this study, but our
preliminary study suggests that there are a large number of
websites that publish content as images as well.

Figure 6: Crawl with and without language focus

Figure 7: Languages on x-axis and number of unique
web pages on y-axis

Figure 8: Languages on x-axis and number of native
speakers on y-axis

Figure 9: Languages on x-axis and number of en-
codings found on web including UTF-8 on y-axis

Figure 10: Languages on x-axis and number of UTF-
8 websites on y-axis

5. CONCLUSIONS
In this paper we discussed the importance of being able

to search the Indian language web content and presented a
web search engine which takes the UTF-8 queries from a
soft keyboard and capable of searching 10 most spoken In-
dian languages’ web pages encoded in multiple encodings.
We presented a language focussed crawler which can fetch
web pages of specific languages and also the distribution of

Figure 11: Languages on x-axis and number of web-
sites (web servers) on y-axis

the Indian language content on web based on the pages that
were crawled. This distribution clearly shows the need for
processes and algorithms to transcode non-Unicode encod-
ings to Unicode. Hence we have discussed a semi-automatic
algorithm to generate the mappings between different en-
codings. This shows that transcoding of proprietary encod-
ings into a standard encoding makes Indian language web
content accessible through search engines.

6. ACKNOWLEDGMENTS
We would like to thank the Department of Science and

Technology, Ministry of Communications and IT, Govern-
ment of India for funding this project.

7. REFERENCES
[1] J. Allan, J. Aslam, N. Belkin, C. Buckley, J. Callan,

B. Croft, S. Dumais, N. Fuhr, D. Harman, D. J.
Harper, D. Hiemstra, T. Hofmann, E. Hovy,
W. Kraaij, J. Lafferty, V. Lavrenko, D. Lewis,
L. Liddy, R. Manmatha, A. McCallum, J. Ponte,
J. Prager, D. Radev, P. Resnik, S. Robertson,
R. Rosenfeld, S. Roukos, M. Sanderson, R. Schwartz,
A. Singhal, A. Smeaton, H. Turtle, E. Voorhees,
R. Weischedel, J. Xu, and C. Zhai. Challenges in
Information Retrieval and Language Modeling:
Report of a Workshop held at the Center for
Intelligent Information Retrieval, University of
Massachusetts Amherst, September 2002. SIGIR
Forum, 37(1):31–47, 2003.

[2] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, and
S. Raghavan. Searching the Web. ACM Trans. Inter.
Tech., 1(1):2–43, 2001.

[3] G. B. 14th ed. Ethnologue: Languages of the World.
SIL International, Dallas, TX, 2003.

[4] S. Brin, J. Davis, and H. Garcia-Molina. Copy
Detection Mechanisms for Digital Documents. In
SIGMOD ’95: Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data,
pages 398–409, New York, NY, USA, 1995. ACM
Press.

[5] G. E. Burkhart, S. E. Goodman, A. Mehta, and
L. Press. The Internet in India: Better times ahead?
Commun. ACM, 41(11):21–26, 1998.

[6] S. Chakrabarti, K. Punera, and M. Subramanyam.
Accelerated Focused Crawling through Online
Relevance Feedback. In WWW ’02: Proceedings of the
11th International Conference on World Wide Web,
pages 148–159, New York, NY, USA, 2002. ACM
Press.

[7] F. Gey, N. Kando, and C. Peters. Cross Language
Information Retrieval: A Research Roadmap. SIGIR
Forum, 36(2):72–80, 2002.

[8] Y. Haralambous and G. Bella. Injecting Information
into Atomic Units of Text. In DocEng ’05:
Proceedings of the 2005 ACM Symposium on
Document Engineering, pages 134–142, New York,
NY, USA, 2005. ACM Press.

[9] A. Joshi, A. Ganu, A. Chand, V. Parmar, and
G. Mathur. Keylekh: a Keyboard for Text Entry in
Indic Scripts. In CHI ’04: CHI ’04 Extended Abstracts
on Human Factors in Computing Systems, pages
928–942, New York, NY, USA, 2004. ACM Press.

[10] L. S. Larkey, M. E. Connell, and N. Abduljaleel. Hindi
CLIR in thirty days. ACM Transactions on Asian
Language Information Processing (TALIP),
2(2):130–142, 2003.

[11] D. P. Madalli. Unicode for Multilingual
Representation in Digital Libraries from the Indian
Perspective. In JCDL ’02: Proceedings of the 2nd
ACM/IEEE-CS Joint Conference on Digital Libraries,
pages 398–398, New York, NY, USA, 2002. ACM
Press.

[12] P. Pingali and V. Varma. Word Normalization in
Indian Languages. In ICON05: Proceedings of the
2005 International Conference on Natural Language
Processing, 2005.

[13] G. Salton and C. Buckley. Term-weighting Approaches
in Automatic Text Retrieval. Information Process.
Management, 24(5):513–523, 1988.

[14] S. Strassel, M. Maxwell, and C. Cieri. Linguistic
Resource Creation for Research and Technology
Development: A Recent Experiment. ACM
Transactions on Asian Language Information
Processing (TALIP), 2(2):101–117, 2003.

[15] F. Yergeau. UTF-8, a transformation format of ISO
10646. RFC Editor, United States, 2003.

