
Symmetrically Exploiting XML
Shuohao Zhang and Curtis Dyreson

Washington State University
PO Box 642752

Pullman, WA 99164, U.S.A.

{szhang2, cdyreson}@eecs.wsu.edu

ABSTRACT
Path expressions are the principal means of locating data in a
hierarchical model. But path expressions are brittle because they
often depend on the structure of data and break if the data is
structured differently. The structure of data could be unfamiliar to
a user, may differ within a data collection, or may change over
time as the schema evolves. This paper proposes a novel construct
that locates related nodes in an instance of an XML data model,
independent of a specific structure. It can augment many XPath
expressions and can be seamlessly incorporated in XQuery or
XSLT.

Categor ies and Subject Descr iptors
H.2.1 [Database Logical Design] Subjects: Data models.
H.2.3 [Database Languages] Subjects: Query Languages.

General Terms
Algorithms, Languages.

Keywords
XML, Path Expressions, XPath, XQuery.

1. INTRODUCTION
In 1970, E. F. Codd proposed a relational model of data to replace
the popular (at that time) hierarchical model [3]. Codd critiqued
the hierarchical model because it did not support the symmetric
exploitation of data. 1 The hierarchical model used asymmetric
path expressions to locate data. A path expression is a
specification of a path (or a set of paths) in a hierarchy. Path
expressions are asymmetric because they depend on how the data
in the hierarchy is structured and the same data can be organized
in different hierarchies. Codd presented five reasonable
hierarchies for a simple part/supplier data collection and
demonstrated that, in general, a path expression formulated with
respect to one hierarchy would fail on some other hierarchy.
It is generally accepted that Codd won the debate with the
hierarchical model as evidenced by the current industrial
dominance of relational database management systems. But thirty-
five years later a hierarchical data model has resurfaced with the

1 Codd’s critique included other arguments such as the critical

concept of (physical) data independence that are not germane to
this paper.

advent of XML [14]. XML data models are tree-like, hierarchical
models. As a consequence, asymmetric path expressions have
reappeared in XML query languages. The core of most XML
query languages is a path language to navigate to various places in
a hierarchy. For XQuery the path language is (a subset of) XPath.
Asymmetric path expressions make queries brittle in the sense
that a query might fail to produce the desired result if the structure
changes or if it is executed on the same data organized in a
different hierarchy.
There are four scenarios where symmetric exploitation of
hierarchical data is particularly attractive: lack of schema
knowledge, heterogeneous data, irregular data, and schema
evolution. First, detailed knowledge of the data’s structure or
schema is often needed in order to correctly formulate a path
expression. Many data collections lack a schema, and even when a
schema is present, it may be complex and difficult to decipher for
some users. The ability to query data without knowing its specific
structure would be useful for both expert and casual users. Second,
there is the increasing need for data integration. It is becoming
common to pull data from different sources into a single data
collection. Each source could organize similar data in a different
hierarchy. If queries are not symmetrically exploitable, then a
single logical query over the heterogeneous hierarchies would
potentially require different path expressions for each structure.
Third, the decentralized nature of the web has facilitated a growth
in the generation and exchange of data authored by casual users.
More often than not, data provided by these users does not
conform to a strict schema; rather the data in a single collection is
irregularly structured. Last, even in a centralized database with a
single, simple, well-defined schema, shifts in business strategy
and corporate environments sometimes engender evolution in how
data is organized. Legacy path expressions that depend on a
particular hierarchy may no longer work when a schema evolves.
A common theme underlying the various scenarios above is that
the asymmetric nature of path expressions makes them brittle.
This paper proposes a novel extension to XPath to support the
symmetric exploitation of XML data. We extend XPath with a
symmetric locator. This extension allows a user to query XML
data without knowing its exact structure in many situations. That
is, a user simply needs to know the names of relevant elements
and attributes and their possible relationships to properly
formulate a query. The extension is simple in syntax and
semantics. Specifically, we introduce a new axis: the closest axis,
which locates nodes that are closest to a context node. In
abbreviated syntax the closest axis is represented by a “->”
operator, so the expression $n->t locates all nodes of type t
“closest to” the node bound by $n. Remarkably, this simple
operator can replace asymmetric steps in path expressions in many
XQuery queries written for daily tasks.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to
classroom use, and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

…
 <author>
 <name>E. F. Codd</name>
 <book>
 <title>The Relational Model for Database Management</title>
 <publisher>Addison Wesley</publisher>
 <price>$46.95</price>
 </book>
 <book>
 <title>Cellular Automata</title>
 <publisher>Academic Press</publisher>
 <price>$9.95</price>
 </book>
 </author>
…

Figure 1. A fragment of author.xml

…
 <book>
 <title>The Relational Model for Database Management</title>
 <author><name>E. F. Codd</name></author>
 <price>$46.95</price>
 <publisher>Addison Wesley</publisher>
 </book>
 <book>
 <title>Cellular Automata</title>
 <author><name>E. F. Codd</name></author>
 <price>$9.95</price>
 <publisher>Academic Press</publisher>
 </book>
…

Figure 2. A fragment of book.xml

This paper is organized as follows. A motivating example is
presented in Section 2. Section 0 defines the syntax of the closest
axis, while Section 4 describes its semantics. We consider both in-
memory and persistent implementations in Section 5. Section 6
illustrates the use of the closest axis by rewriting some of the
queries in the XML Query Use Cases [16]. Section 7 discusses
related work and Section 8 concludes the paper.

2. MOTIVATION
Consider how a collection of bibliographic information such as
authors, books and publishers may be represented in a hierarchy.
One of (but not limited to) the following two hierarchies may be
used: 1) the hierarchy contains a list of authors, each of which
contains a list of books by that author, or 2) the hierarchy contains
a list of books, each of which contains a list of authors of that
book. As an example, consider some bibliographic data about the
author E. F. Codd that involves two books and two publishers.
The two different representations are captured by two XML
documents, author.xml and book.xml, shown respectively
in Figure 1 and Figure 2. Both documents contain the same data
but they have different structures.
For some queries, different path expressions are needed to query
each hierarchy. For example, consider a query to retrieve books
by E. F. Codd. The XQuery query for author.xml is given
below.

return doc("author.xml")//author[name= 'E. F. Codd']/book
This query uses a path expression that navigates from the root to
the proper author elements and then finds the desired book. But
this query does not work for book.xml since it has a different
structure. To query book.xml a different query has to be
formulated.

return doc("book.xml")//book[author/name='E. F. Codd']
The path expression in each query differs. Moreover, no single
path expression suffices to locate the desired data in both
hierarchies.
While asymmetric path expressions are wedded to a particular
hierarchy, the key to developing a symmetric locator is to identify
what is invariant across the same data organized in different
hierarchies. Observe that in both Figure 1 and Figure 2, book
titles by an author are closest to that author. Here “closeness” is

the distance on the path between nodes in the hierarchical model
of an XML document. In both hierarchies the author E. F. Codd is
the closest author to each of the titles. This is not something
specific to <author>s and <title>s only. In fact, whenever two nodes
are closest in Figure 1, so are their counterparts in Figure 2.
This invariant property of different hierarchies can be exploited
with a symmetric locator that locates related information based on
closeness rather than a specific path. The symmetric locator is a
closest axis. In abbreviated syntax the axis is denoted by an
operator “->”. Semantically, the axis locates all nodes that are
closest to the context node. So “$n->t” returns a sequence of all t
nodes closest to the node bound by $n. With this operator, the
query posed at the beginning of this section can be expressed as
follows:

return doc("any.xml")->author[->name='E. F. Codd']->book
where any.xml could be either author.xml or book.xml. It can also be
applied to a hierarchy that, for example, contains a list of
publishers, each of which contains a list of books. Furthermore,
the query works for data with a heterogeneous structure. Suppose
we mix bibliographic data from multiple sources (say, from the
hierarchy of Figure 1 and that of Figure 2), the same query would
work without any change. In contrast, it would be cumbersome to
formulate a query using asymmetric path expression to query
heterogeneous data. The user first has to know which structures
are present in the data, and then write a different path expression
for each distinct structure. Complicated as it is, such a query
could only handle those hierarchies taken into account, and may
need to change whenever data from another source (with a
different structure) is added to the collection. In summary, the
closest axis is more convenient to formulate and more robust
against structural changes than asymmetric path expressions.
Although the closest axis is intended to replace asymmetric XPath
axes in many practical uses, it cannot replace all of them. Without
the sophisticated navigational functionalities provided by
asymmetric path expressions, a query language may be less than
Turing-complete [7]. When path expressions are inevitable for a
task, one still needs to resort to XPath. (See Section 6 for more
discussion on this.) So it is important to remember that the closest
axis extends but does not replace path expressions.

3. SYNTAX
The closest axis has a very simple syntax that can be seamlessly
integrated into XPath. Figure 3 shows the EBNF grammar for the
axis, where the newly-introduced symbols are underlined.

[29'] AxisStep ::= (ForwardStep | ReverseStep | ClosestStep) PredicateList
[n1] ClosestStep ::= ClosestAxis NodeTest | AbbrevClosestStep
[n2] ClosestAxis ::= <"closest" "::">
[n3] AbbrevClosestStep ::= "->" NodeTest

Figure 3. EBNF grammar for the extended XPath

This grammar extends the current XPath grammar defined in the
W3C candidate recommendation “XML Path Language (XPath)
2.0” [15]. There are 73 rules in the current XPath grammar,
among which only rule [29] has to be modified. The modified rule,
annotated [29'], introduces a new step, ClosestStep. ClosestStep is
further defined by the new rule [n1]. A ClosestStep may or may not
be abbreviated. New rules [n2] and [n3] define the unabbreviated
and abbreviated syntax, respectively. An unabbreviated step is in
the form closest::NodeTest, and an abbreviated step is ->NodeTest.
The new XPath grammar has a total of 76 rules, with one of the
original rules modified and three added.

4. SEMANTICS
This section presents the formal semantics of the closest axis. We
first present a data model for XML documents, and then define
the closest axis. The specific semantics of the axis depends on the
important concept of node “type”. We also discuss a technique
that computes node type in the absence of data schema.

4.1 Tree Data Model
XML documents are commonly modeled as ordered, labeled trees.
We first define such an XML data model.
Definition [tree] A tree is a tuple (V, E, � , L, C, T), where

• V is the node set. r∈V is a special node called the root of T,
• E� ⊆� V×V is the edge set such that there is a path between every

pair of nodes, there is no cycle among the edges, and edges
that share a common node – called the parent of the other
node (the child) in each such edge – are ordered,

•
� is an alphabet of labels and text values,

• L:V� � is a label function that maps each node to its label,
• C:V� � � ∪{ε} � is a value function that maps a node to its value,

in which C(v)=ε if node v has an empty value, and

• T:V� S is a type function that maps each node to a type, which
is a value in the type set S. �

This tree data model is a stripped-down version of the Document
Object Model (DOM) [13]. Though the model is simple it is
sufficient for our purposes in this paper. Elements are represented
by nodes in our tree data model. Other kinds of nodes in the DOM
such as attributes and comments are ignored.2
The label function maps each node to its label, that is, its element
tag. So a <book> node would map to the label book.
The type function refines the label function by possibly
partitioning the nodes associated with the same label into different

2 Due to this simplification, the closest axis will locate elements

only. However, the closest axis can be defined for a complete
data model as well; in that situation all kinds of nodes can be
located.

types. The type function specifies the type of each node. There are
several ways that the type could be computed. If a schema is
available, then the type of a node might be given by an element
type definition in the schema. For instance a <name> element type
definition might provide the type for author names, while
publisher names resolve to a different type even though they share
a common label. When a schema is unavailable, the simplest case
is to make the type and label functions the same. That is, nodes
are typed by their labels. Because the type plays an important role
in the definition of the closest axis, Section 4.3 and Section 4.4
give two more refined methods of computing the type in the
absence of a schema.
Ordering of elements is important for XML. We adopt the
common document order which orders nodes in a tree data model
based on the first appearance of the corresponding text in the
document. In author.xml, for example, text fragment <name>
appears earlier than both occurrences of <book>. Hence, the name
node precedes the book nodes in the tree data model.

4.2 The Closest Axis
As introduced in the motivating example in Section 2, the closest
axis is used to locate “the closest nodes” to the context node.
Whether a node is close or far depends on a distance metric as
defined below.
Definition [distance] Suppose (V, E, � , L, C, T) is a tree and u,
v∈V. The distance between u and v, denoted dist(u,v), is the
number of edges on the shortest path between u and v. �

In a tree, the shortest path between two nodes is unique. The
distance between the nodes is measured by the length of this
path.3
The closest axis evaluates to the sequence of nodes that are closest
to the context node.
Definition [the closest axis] Suppose (V, E, � , L, C, T) is a tree
and c∈V is the context node. Then the closest axis is defined as
follows.

closest(c) = [d1 , … , dn], where
• d1 , … , dn∈V,
• � i, 1 � i � n, � x, y∈V,

L(x) = L(di) ∧ T(y) = T(c) � dist(c, di) � dist(y, x); (i)
• � i, j, 1 � i < j � n, di precedes dj in document order. (ii) �

The closest axis is defined as a function that takes a context node
c and returns a node sequence. The function has two primary
conditions. First, the node ordering condition (ii) states that the
result preserves the original document order. Second, the node
selection condition (i) constrains the nodes that appear in the
result. The condition stipulates that a node is in the result if it is
the closest node of a particular label to the context node, but that
the distance to the closest node is within the minimal distance of a
node of the same type as the context node to a node of the same
label as a node in the result. The intuition is that the closest axis
seeks out all the nodes of each different label that are closest to

3 As an aside, the term path used with precision refers to “the

shortest walk” where a walk can contain multiple occurrences of
nodes. However, “paths” as used in XPath are in fact “walks”,
and hence not necessarily the shortest between the source and
target nodes. We follow this convention and use “the shortest
path” specifically.

the context node, but restricts the search based on the minimal
possible distance between a given type and a given label.
To better understand the meaning of the node selection condition,
let’s consider an example. Figure 4 shows the hierarchy for the
XML given in Figure 1. Assume that the type of each node is its
label. Let the context node be the leftmost title node. The nodes
closest to the title node are pointed to by dashed arrows. The five
closest nodes are ordered in the closest axis in document order. In
this example there is only one node of each label that is closest,
but in general there could be several nodes with the same label
that are closest. Note that none of the nodes in the other book
subtree is closest to this title.

name

author

book book

titletitle publisherpublisher price price

Figure 4. Nodes closest to the first title

In the above example, the node selection condition in the axis
definition could in fact be simplified to the following

� i, 1 � i � n, � x∈V, L(x) = L(di) � dist(c, di) � dist(c, x) (i')

in which the types are absent.
This simplification is possible because the tree is of a regular
structure. We say that the tree’s structure is regular if the
following holds

� c∈V, � l∈
� , � v∈V such that

L(v) = l ∧ dist(c, v) = min{ dist(y, x) | L(x) = l ∧ T(y) = T(c)}.
That is, for any node c and any label l in a regular tree, we can
always find a node v labeled l such that c and v are of the minimal
distance of nodes typed T(c) and nodes labeled l. The fact that
every node is guaranteed to have a minimal distance node of any
given label reduces (i) to (i').
For hierarchies that are not regular, the node selection condition
(i) is more appropriate than the simplified version (i '). For
example, suppose that the first book does not have a price child, as
shown in Figure 5. Here the label and type are still the same; but
the tree is irregular in the sense that the context title node could
not find a label price node within the minimal distance of all
possible pairings of type title node and label price node, which is
two. The closest axis using condition (i') (just the labels) would
locate the price child of the second book since it is the closest price.
But this price should not belong to the closest axis of the first book
because it is closer to the second book than the first.

name

author

book book

titletitle publisherpublisher price

Figure 5. The search is restr icted by the type information

In the trees in Figure 4 and Figure 5, the label and type functions
are the same. But there are scenarios where nodes of the same
label should be differentiated for the results to be intuitively
appropriate. For example, the price of a book and the price of a car
need to have different types. Suppose the closest node labeled
name to car price is four while the closest node labeled name to
book price is three. If all price nodes were of the same type, then
no car price would have any name node in its closest axis. By
distinguishing the two types of price nodes, a car price node can
include in its closest axis all name nodes at a distance of four.
Note that the book price’s axis contains author name, while the car
price’s axis probably contains owner or dealer name, a different
type of name. But the node selection condition (i) is concerned
with type of the context node only, but not the type of the nodes
in the axis.
Our use of the term “closest” to describe the new axis is evocative
but imprecise. For some data collections, the results may be
counterintuitive. For example if an author name node is equi-
distant from both a book price type and a car price type (an
unlikely scenario, but possible) then the closest axis of this node
includes nodes of both type book price type and car price. So while
the closest axis can be used to symmetrically exploit data, the
meaning of the axis depends on the data.
The closest axis is similar to the current XPath axes insofar as it
returns a node sequence relative to a context node. A node test
and predicates can be further applied to filter the sequence. Unlike
all other axes, the closest axis is a non-directional axis. That is, it
does not locate nodes in a particular direction (up, down, left,
right) in the hierarchy. Instead it utilizes node and type
information to find nodes that are close to the context node in any
direction. Only non-directional axes can symmetrically exploit
data.
An interesting consideration is whether nodes connected by
ID/IDREF relationships can be considered as closest nodes. In a
tree, there would be no edge between two such nodes, so the two
nodes would not be closest. But we could easily add a “virtual”
edge to connect such nodes and compute distances in the resulting
graph. However, in the interest of simplicity we do not consider
such virtual edges in this paper.

4.3 Root-to-Node Path Type
Node type is important in determining which nodes are in the
closest axis. The use of types takes into account the fact that
different kinds of real-world entities may be represented by nodes
of identical labels in a tree. So a proper type function T should for
example distinguish a book price from a car price.

The type function can sometimes be easily inferred when the data
is accompanied by schema information in the form of DTD or
XML Schema. But a common situation is that we do not know the
schema. We now introduce a technique to compute the types in
the absence of a schema. The node types produced by these are
potentially helpful in refining the possible results of a closest axis.
Definition [root-to-node path type] A tree (V, E, � , L, C, T) uses
root-to-node path type, or path type in short, if for any v∈V, T(v)
is a list of the labels of the nodes on the inclusive path from the
root r to v. �

The path type is essentially a concatenation of the labels of the
nodes from the root to the node. With path type, nodes of the
same type always have the same label, but not vice versa. The
rationale behind path type is the following claim:

If two nodes are of the same type, then their respective child
nodes with the same label should be of the same type too.

It is rather common for two nodes in a tree to have the same label
but represent different kinds of entities. However, it is rarely the
case that such two nodes’ respective parents have the same type.
In our previous example of book price and car price, suppose their
respective parents are book and car. The paths from the root node
to a book price node and a car price node are different; therefore
book price and car price have different path types.
Path type can be efficiently computed when the tree is parsed. The
type of a node is obtained by appending its own label to the end
of the path type of its parent. The complexity of the computation
is O(n) where n is the number of nodes in the tree.

4.4 Signature Type
The signature type is also useful in specifying queries with the
closest axis. Furthermore, it is crucial to the efficient
implementation of the closest axis.

4.4.1 Signature
We first introduce the concept of signature. A signature is a
succinct description of the structure of a data forest, similar to a
Data Guide.
Definition [signature] Denoted sig(F), the signature of a forest F
is a forest such that

• C(v) = � for every node v in sig(F);
• if F is a tree that consists of a root r and forest S (the root of

each tree in S is connected to r by an edge), then sig(F) is a
tree that consists of a root node labeled L(r) and the forest
sig(S) (if F consists of a single node r, then sig(F) contains a
single node as well);

• if F is a forest that consists of n trees H1,…, Hn (n>0), then
sig(F) consists of a set of trees: sig(H1),…, sig(Hk),
where H i∈{H1,…,Hn} (1� i � k) and
{sig(Hi)|1� i � k}={sig(H i)|1� i � n}; tree equivalence is
defined in terms of isomorphism between labeled trees. �

A signature summarizes the structure of a forest. A signature tree
never contains two sibling subtrees that are isomorphic.
For example, the tree in Figure 4 (the tree data model of
author.xml in Figure 1) has the signature shown in Figure 6.
This signature is smaller in size than the data. The data tree
contains two book subtrees of identical structure – each book
node has title, publisher and price children, all of which are leaf

nodes. Keeping one copy of this book structure in the signature
tree is sufficient to capture the structure of the data tree.

name

author

book

title publisher price
Figure 6. Signature of author.xml

A signature is unlike a schema specification such as a DTD. Any
forest has exactly one signature, but could potentially conform to
many schemas. Also, a schema usually precedes the data. Data is
created in a structure that conforms to the given schema. Users
normally have to know about the schema to query the data. In
contrast, a signature is computed from the given data to assist the
evaluation of the closest axis. Hence a signature is preceded by
the data.
A signature can be computed efficiently. The definition of
signature gives a recursive algorithm that computes it.
Usually the signature will be much smaller than the data,
especially for large data collections since many data items will
share a common structure. But in the worst case, they are the same
size.
Finally, we extend the concept of signature from trees to nodes.
Definition [node signature] The signature of a node v in a data
tree is the signature of the tree rooted at v. �

Node signature is compatible with tree signature. The signature of
a tree is just the node signature of the root node.

4.4.2 Signature Type
Observe that there is a correspondence between nodes in a data
tree and nodes in the signature tree. We can define the type of a
node in a data tree as its corresponding node in the signature.
Definition [signature type] Suppose sig(F) = S. The signature
type of a node in F is its corresponding node in S. �

Because a tree signature is recursively computed in a bottom-up
fashion, node signature is simultaneously determined while
computing the signature of the whole tree. As the pre-condition
for the node classification algorithm, we assume that node
signature of each node is already available, represented by a the
function sig(). The algorithm is listed in Figure 7.
The algorithm computes signature type for all nodes by invoking
the recursive function visit() on the root of the data tree. It starts
with the obvious base condition: the root of a tree is mapped to
the root of its signature tree. It then recursively computes the type
of each node in a top-down fashion. At a node n in the data tree,
the function returns if n has no child; otherwise, it decides the
type of each of its child by comparing the signature of this child to
the each of the child subtree of T(n), the node in the signature tree
that n corresponds to. (Note that in the algorithm, the tree rooted
at s is equivalent to sig(s), because a signature tree does not
contain isomorphic sibling trees.) Once the type of a child c is
determined, visit(n) calls visit(c) recursively. Here the most costly
part is to determine isomorphism between trees. As mentioned
before, comparing unordered trees can be efficiently computed
with the help of a sort.

 pre-condition:
• data tree (V, E, � , L, C, T) and its signature S,
• T is only defined on the root node r,
• T(r)=r', r' is root of S,
• sig: V-> set of trees rooted at v, v∈V'.

computing the types:
visit(r)

post-condition:
T: V-> V' is defined on all nodes in V

function definition visit(n):

if n has no child
return

else
for each child c of n

for each child s of T(n) in S
if sig(c) is isomorphic to the tree rooted at s
then T(c) = s

visit(c)

Figure 7. An algor ithm for computing node type

5. IMPLEMENTATION
This section investigates how the closest axis can be efficiently
computed. At first sight, it seems quite probable that the
evaluation of the closest axis would be completely different from
that of a usual XPath axes. Axes like descendent are directional,
while the closest axis is non-directional; its semantics just
describes the property of the closest nodes without giving a
specific direction to where it is located.
XPath/XQuery implementations can be broadly classified as
either in-memory or persistent. We present both in-memory and
persistent implementations in this section. An in-memory
implementation loads the entire data tree into memory and
evaluates the axis directly on the tree. However, some data
collections are too large for memory. In a persistent
implementation, the data resides predominately on disk. Indexes
are commonly used in persistent implementations to optimize
performance by reducing the number of blocks read from disk
during query evaluation.

5.1 In-memory Evaluation
The closest axis can be naïvely implemented by exploring from
the context node in all directions until each kind of label is
reached that is within the minimal distance between the type of
the label and the type of the context node. Such an evaluation
simply has to enumerate all the possible paths starting from the
context node to look for the closest node(s). The algorithm that
computes all the closest nodes to a context node, v, is shown in
Figure 8.
Though the naïve algorithm computes the closest axis it has high
cost. The algorithm explores maxDistance edges from the context
node, potentially covering the entire tree.

 pre-condition:
• data tree (V, E, � , L, C, T)
• typeDistance(�) is a hash table that maps each label to a

distance, initially the distance for every label is the
distance between the context node type and the closest
type for this label

• maxDistance is the maximal type distance over all the
labels

• closest(�) is a hash table that maps each label to a list of
closest nodes, initially each list is empty

• v is the context node

computing the closest axis:
closest(v, 0, maxDistance)

post-condition:
closest(�) is a hash table that maps each label to a list of
closest nodes

function definition closest(c, d, maxDistance):

// Return if distance exceeds maximum possible
return if d > maxDistance
// Try each edge from c
for (c,x)∈ E
 // Check if this is the right distance
 if d = typeDistance(label(x))
 // x is at the right distance

 insert(x, closest(label(x)))

 // Continue exploring from this edge
 closest(x, d+1)

Figure 8. A naïve, in-memory algor ithm for evaluating the

closest axis

Further, the naïve algorithm assumes the existence of a
typeDistance hash table that has already computed the minimal
distances between pairs of types. This table can be constructed
when a DOM is built or just prior to evaluating the axis using the
signature described in Section 4.4.1. Essentially, the strategy is to
evaluate the closest axis in the signature forest to find all of the
types closest to the type of the context node. For example, in the
evaluation of the closest axis from the first title node in Figure 4,
the signature shown in Figure 6 could be explored to determine
the distance from the title type to the closest types corresponding
to each label.

5.2 Node Test Optimization
We anticipate that the closest axis will almost always be used with
a node test for a specific label, e.g., “closest::price.” (See Section 6
for closest axis use cases). The evaluation cost can be significantly
reduced in such cases. One way to reduce the cost in the naïve
algorithm is to set the maxDistance to the distance of the type
corresponding to the label in the node test, e.g., price in the
example given above. On average this will cut the cost in half.
However, a significantly better strategy is possible.
The better strategy is to convert the non-directional search to a
directional search. Observe that a signature provides both a
distance and a path to the desired type. To continue with the
example, assuming that the context node is a title type, a single
path connects the price type to the title type in the signature. The
path climbs to the book parent and then drops to the price child. In

general, the path between any two types traverses through the
least common ancestor (LCA) of the two types in the signature.
So the optimization is to replace the closest axis with a different
expression that follows the path to the nodes specified by the node
test. In the example, the non-directional expression “closest::price”
would be replaced with the following directional path expression:
“parent::*/child::price.” The conversion can be performed by a pre-
processor prior to evaluating an expression, or the directional path
expression can be substituted during evaluation of a closest axis.
Note that in general, there might be several closest types, so a
union path expression that follows all of the paths might be
needed.

5.3 Persistent Implementation
For the closest axis to be of practical value for database
applications, it needs to be computed efficiently in persistent
implementations. Since the axis will almost always be used in
combination with a non-wildcard node test, we focus on the
implementation of the node test optimization and introduce an
LCA-join operation that efficiently evaluates the closest axis.
Many XPath/XQuery implementations use a node numbering
scheme and indexes to quickly evaluate queries. (Related work is
discussed in Section 7.) As an example, consider the following
scheme. Given a tree, assign each node a number according to its
ordinal in document order. The numbers range from 1 to n, the
total number of the nodes. This can be achieved by a preorder
traversal of the tree. Each node is also assigned the number of its
maximum descendent. This allows ancestor/descendent
relationships to be determined by reasoning about the node
numbers. All nodes with a number larger than the number of a
node v and no larger than its maximum descendent’s are
descendents of v. Figure 9 shows the numbering for the data tree
of author.xml in Figure 1. The first book node has the number
3 and its maximum descendent is 6. So its descendents are all the
nodes numbered between 3 and 6.

name
[2-2]

author
[1-10]

book
[3-6]

book
[7-10]

title
[8-8]

title
[4-4]

publisher
[9-9]

publisher
[5-5]

price
[6-6]

price
[10-10]

Figure 9. Number ing the data tree of author.xml

Next, an index of types is created. The index maps each type in
the signature to an ordered list of node numbers for nodes of that
type. Then the closest axis can be computed by simply merging
three lists as depicted in Figure 10. The list merging is an LCA-
join. In the figure, there are three lists of nodes: parents, children,
and least common ancestors (lca in short). The parents list is the
list of context nodes (we assume that these nodes are all of the
same type, if not then each type in the list will be joined in a
separate LCA-join). The children list contains the nodes in the
closest type to the type of the context nodes. The lca list is the list
corresponding to the label that is the least common ancestor of the
child and parent labels in the signature. For instance, for title
children and publisher parents in Figure 6, the lca is book. The

lists are merged in the direction of a lexical ordering of the data
(from left to right in the figure). A parent is closest to a child if
both are descendent of the same lca. If a parent is not a
descendent of the current lca, then either the current lca is before
the current parent (child), in which case the current lca pointer is
advanced, or the current parent (child) is before the current lca, in
which case the current parent (child) pointer is advanced.
Typically only two lists are merged instead of three since the
parent or child is the lca.

… …
current lca

direction of merge

… …
current parent

… …
current child

Figure 10. An LCA-join

As an example consider Figure 11. It illustrates the task of finding
the closest <title> elements to the <publisher> elements for the data
tree of author.xml in Figure 1. The lca is book. The merging
process starts with the pointers at the start of each list. The first
publisher and title are both descendents (within the range) of the
first book, so this publisher is closest to the title. The next publisher
however is not within the range of the current lca hence it is not
closest to the first title. The LCA-join continues by advancing the
lca and child pointers to find the next closest pair.
The LCA-join is of special importance in database management
systems. If an XML DBMS can iterate through elements of a
particular type, then the closest axis with a non-wildcard node test
can be efficiently computed with an LCA-join. The time
complexity of an LCA-join is O(n), where n is the number of
nodes in a type list. Indexes to map an element type to a list of
nodes for that type are commonly available in native XML
DBMSs (e.g., Xindice, eXist, and BerkeleyDB-XML provide
element type indexes.)

book
[3-6]

book
[7-10]

title
[4-4]

title
[8-8]

publisher
[9-9]

publisher
[5-5]

current lca

current childcurrent parent

book
[3-6]

book
[7-10]

title
[4-4]

title
[8-8]

publisher
[9-9]

publisher
[5-5]

current lca

current childcurrent parent

Figure 11. The LCA-join of publisher and title

6. USING THE CLOSEST AXIS IN
PRACTICE
In this section we turn our attention to the use of the closest axis
in practice. To show its wide applicability, we demonstrate how
the closest axis can replace directional axes in queries from the
first use case in the W3C XML Query Use Cases [16].
We first take a look at two queries from the first use case –
“Experiences and Exemplars”. For each query, the problem and
the solution using the closest axis are shown.

Q1. L ist books published by Addison-Wesley after 1991,
including their year and title.

Solution using the closest axis:
<bib>
 {
 for $b in doc("http://bstore1.example.com/bib.xml")->bib->book
 where $b->publisher = "Addison-Wesley" and $b->@year > 1991
 return
 <book year="{ $b->@year }">
 { $b->title }
 </book>
 }
</bib>

Each of the five closest axes in the above query replaces a child
axis in the original query. As we can see, there is no directional
axis in the modified query.

Q9. In the document " books.xml" , find all section or
chapter titles that contain the word " XML" , regardless of the
level of nesting.

Solution using the closest axis:
<results>
 {
 for $t in doc("books.xml")//(chapter | section)->title
 where contains($t->text(), "XML")
 return $t
 }
</results>

The closest axes in the above query replace child axes in the
original query as well. However, we choose not to replace the
descendant-or-self axis with the closest axis. Although it is usually
the case that all chapter nodes are of the same distance to the root
of a document, it may not always be true. When some chapter
nodes are farther away from the root, the closest axis will miss
these nodes even though it is the intension that they be selected.
In this particular case, doc("books.xml")//chapter is still the best way
to properly locate chapter nodes. This example shows that when
the descendant-or-self axis is invoked from the document root it
functions as a symmetric locator. The expression
doc("anyBibDoc.xml")//book is not structure-dependent, and hence is
symmetric in effect.
In addition to the queries shown above, we have also inspected
other queries in this use case. It turns out that every directional
axis in the various use cases can be replaced by the closest axis,
with the exception of the descendant axis. This can be explained
by the fact that these XPath expressions are all used to located
related nodes, and the related nodes are always closest to the
context nodes. In this use case, there is no instance of the use of
the parent axis; but the closest axis should be effective in replacing
it as well should it be used.
Although not present in the entire use cases document, recursive
hierarchies can also be problematic. Consider a recursive schema
in which all part elements are nested to represent subparts.
Located at the leaves in the hierarchy are those atomic parts that
have no subparts. In such a hierarchy the expression part->part may
or may not give the expected result. This expression returns the
immediate subparts while some users may believe all (recursive)

subparts should be returned. Again, the descendant-or-self axis
should be used to locate all subparts relative to a part.
Some XPath expressions fundamentally depend on a direction and
cannot be augmented with a closest axis. An example would be
that a query to find the names of all the elements that enclose a
book element, a parent axis would be necessary to locate the
enclosing element.

7. RELATED WORK
By facilitating the symmetric exploitation of hierarchical data, this
paper contributes to the following areas. First, it is a means for the
integration of XML data, because heterogeneous data can
potentially be queried with the same query. Second, it offers a
novel (not only syntactically but also semantically) construct to
XML query language. A user can effectively query XML data
without knowing its specific structure. We review related work in
these two areas respectively.
Many research projects have focused on the problem of data
integration [2] [5] [6] [10]. The goal of data integration is to
combine data from different sources into a single source. From a
user’s point of view, there is only one source and she can query
the data using the schema of that single source. For example, YAT
[2] and SilkRoute [5] translate relational data into XML. Query
over the underlying relational data is expressed through an XML
interface. The heterogeneity considered in these data integration
systems largely lies in the form of the data, e.g., relational and
XML data. This paper considers XML data only, but with
heterogeneous structures.
Data integration systems are usually classified as global-as-view
(GAV) and local-as-view (LAV). GAV means that there is a
global view, defined as a view over local schemas. In contrast, a
LAV approach defines local views in terms of the global schema.
Most data integration solutions are GAV, with just a few (for
example [10]) being LAV. Since our approach is structure-
independent, there is no schema or view visible to a user at all.
However, the philosophy of symmetric exploitation can in some
sense be regarded as a GAV data integration approach. The notion
of a global schema is manifested by the non-directional nature of
the closest axis. This schema is essentially a virtual graph. In this
graph, each directed edge represents the fact that the destination
node is in the closest axis of the source node. None of the
(undirected) tree edges needs to be represented in this graph.
Such a graph is a special kind of global schema in that the user is
not even expected to be aware of it.
Querying hierarchical data is often a non-trivial task. There has
been some work on the convenient formulation of queries over
XML data. For example, [8] and [12] propose descriptive
languages for specifying transformations of XML data. Similar to
the closest axis, these languages hide from users much of the
procedural specification necessary in a language such as XQuery
or XSLT. However, these special-purpose techniques are limited
because they still suffer from being structure-dependent. A query
might have to be rewritten when the data changes. Our objective
to flexibly issue queries independent of the structure is shared by
[4] and [9]. [4] presents a semantic search engine for XML. The
search relies on an interconnection relationship to decide whether
nodes are “semantically related.” Two nodes are interconnected if
and only if the path between them contains no other node that has
the same label as the two nodes. [9] proposes a schema-free
XQuery, facilitated by a Meaningful Lowest Common Ancestor
Structure (MLCAS) operation. Both the interconnection in [4]

and the MLCAS in [9] are similar to the “closest” relationship
between nodes in this paper. However, the closest axis is more
flexible due to the use of node type. Reasoning solely on node
label can lead to more counterintuitive results. With types, a query
can be much richer in semantics and can thus produce desirable
results more easily.

8. CONCLUSION
XPath suffers from a lack of symmetric exploitation in path
expressions. Path expressions in XPath are asymmetric because
they are enmeshed in the structure of a hierarchy to navigate to
desired data. Asymmetric path expressions are brittle and have a
tendency to break when the hierarchy evolves or when the
expression is applied to a new hierarchy with a different structure.
This paper proposes a new axis, which we call the closest axis,
that can be used to exploit data symmetrically. The closest axis
contains nodes that are closest to the context node, where
closeness is measured as the distance from the context node in any
direction. Unlike other axes, the closest axis is non-directional. So
though the structure of the data may vary, the nodes in the closest
axis for a given context node remain closest. We described the
syntax and semantics of the closest axis. We also showed how the
closest axis can be efficiently implemented for both in-memory
and persistent XPath/XQuery evaluation engines. The key to
efficient implementation is to use type information to quickly find
a path that leads to a closest node. We introduced an LCA-join
operation to compute such paths in a persistent implementation.
Finally, we showed how some XQuery Use Cases could be
rewritten using the closest axis. Though the closest axis does not
make the queries significantly shorter, the same queries can be
evaluated over heterogeneously structured hierarchies.
Much still remains to be done. Though we have specified the
semantics of the closest axis and sketched efficient algorithms to
evaluate it, we have yet to implement the axis in a product. We
plan to test two implementation strategies using eXist, an open
source native XML DBMS. One strategy will utilize a pre-
processor to convert non-directional queries into directional
queries. This will demonstrate that the closest axis can be
implemented as a layer, at low cost. The second strategy will
modify the internals of eXist to implement the LCA-join. A
benchmark comparison of the two techniques will help to
determine the effectiveness of the LCA-join. The LCA-join also
has applications in restructuring data, where data is transformed
from one hierarchy to another. Another avenue of future work is
to define a complete set of non-directional axes. We speculate that
there exist other non-directional axes that involve conditions
expressed on labels and types. We are also working on a
functional query language called PathFree that will entirely
eliminate path expressions since the closest axis can be used to
locate data and a related technique can restructure data.

9. REFERENCES
[1] V. Christophides, S. Cluet, and J. Simèon. On wrapping

query languages and efficient XML. SIGMOD Record,
Volume 29, Issue 2, June 2000, pp. 141-152.

[2] S. Cluet, C. Delobel, J. Simeon, and K. Smaga. Your
mediators need data conversion. Proceedings of the ACM
SIGMOD, 1998.

[3] E. F. Codd. A Relational Model of Data for Large Shared
Data Banks. Commun. ACM 13(6): 377-387 (1970).

[4] Sara Cohen, Jonathan Mamou, Yaron Kanza, and Yehoshua
Sagiv. XSEarch: A Semantic Search Engine for XML.
Proceedings of VLDB Conference, Berlin, Germany, 2003,
pp. 45-56.

[5] M. Fernandez, W. Tan, and D. Suciu. Silkroute: Trading
Between Relations and XML. Proceedings of the Ninth
International World Wide Web Conference, 2000.

[6] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A.
Rajaraman, Y. Sagiv, J. Ullman, and J. Widom. The
TSIMMIS project: integration of heterogeneous information
sources. Journal of Intelligent Information Systems 1997.

[7] S. Kepser. A proof of the Turing-completeness of XSLT and
XQuery. Technical report SFB 441, Eberhard Karls
Universitat Tubingen, May 2002.

[8] S. Krishanmurthi, K. Gray, and P. Graunke. Transformation-
by-example for XML. The 2nd International Workshop of
Practical Aspects of Declarative Languages, Springer-Verlag,
Lecture Notes in Computer Science 1753, 2000.

[9] Y. Li, C. Yu, and H. V. Jagadish. Schema-Free XQuery. In
Proc. VLDB Conf., Sep. 2004, Toronto, Canada.

[10] I. Manolescu, D. Florescu, and D. Kossmann, Answering
XML Queries over Heterogeneous Data Sources, VLDB
Conference, 2001, pp. 241-250.

[11] P. McBrien, and A. Poulovassilis. A Semantic Approach to
Integrating XML and Structured Data Sources. Conference
on Advanced Information Systems Engineering, 2000.

[12] T. Pankowski. A High-Level Language for Specifying XML
Data Transformations. ADBIS 2004, Springer-Verlag,
Lecture Notes in Computer Science 3255, 2004.

[13] World Wide Web Consortium. Document Object Model
(DOM). www.w3.org/DOM.

[14] World Wide Web Consortium. Extensible Markup Language
(XML) 1.0 (Third Edition). www.w3.org/TR/REC-xml.

[15] World Wide Web Consortium. XML Path Language (XPath)
2.0. http://www.w3.org/TR/2005/CR-xpath20-20051103/.

[16] World Wide Web Consortium. XML Query Use Cases.
http://www.w3.org/TR/xquery-use-cases/.

