
WS-Replication: A Framework for
Highly Available Web Services∗

Jorge Salas, Francisco Pérez-Sorrosal, Marta Patiño-Martı́nez, Ricardo Jiménez-Peris
School of Computer Science

Universidad Politécnica de Madrid
Madrid, Spain

{jsalas,fpsorrosal,mpatino,rjimenez}@fi.upm.es

ABSTRACT
Due to the rapid acceptance of web services and its fast spread-
ing, a number of mission-critical systems will be deployed as web
services in next years. The availability of those systems must be
guaranteed in case of failures and network disconnections. An ex-
ample of web services for which availability will be a crucial issue
are those belonging to coordination web service infrastructure, such
as web services for transactional coordination (e.g., WS-CAF and
WS-Transaction). These services should remain available despite
site and connectivity failures to enable business interactions on a
24x7 basis. Some of the common techniques for attaining avail-
ability consist in the use of a clustering approach. However, in an
Internet setting a domain can get partitioned from the network due
to a link overload or some other connectivity problems. The un-
availability of a coordination service impacts the availability of all
the partners in the business process. That is, coordination services
are an example of critical components that need higher provisions
for availability. In this paper, we address this problem by provid-
ing an infrastructure, WS-Replication, for WAN replication of web
services. The infrastructure is based on a group communication
web service, WS-Multicast, that respects the web service auton-
omy. The transport of WS-Multicast is based on SOAP and relies
exclusively on web service technology for interaction across orga-
nizations. We have replicated WS-CAF using our WS-Replication
framework and evaluated its performance.

Categories and Subject Descriptors
H.3.5 [Information Systems]: Online Information Systems—On-
line Information Storage Retrieval, Information Services, Web-Based
Services; C.2.4 [Computer Systems Organization]: Computer-
Communication Networks—Distributed Systems, Client/server; C.4
[Computer Systems Organization]: Performance of Systems—
fault tolerance, reliability, availability, and serviceability; H.2.4
[Information Systems]: Database Management—Transaction pro-
cessing

∗This work has been partially supported by the Spanish Sci-
ence Foundation (MEC) under grant TIN2004-07474-C02-01, the
Madrid Regional Research Council (CAM) under grant P-TIC-
285-0505, and the European EUREKA/ITEA S4ALL project under
grant FIT-340000-2005-144 from the Spanish Ministry of Industry
(MITyC).

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

General Terms
Reliability, Performance

Keywords
Web services, group communication, availability, transactions, WS-
CAF

1. INTRODUCTION
Web service technology is witnessing a rapid acceptance in all

fields. If this trend continues, an increasing number of mission
critical web services will start to be deployed during the next few
years. However, current web service technology still has serious
lacks for providing the levels of availability required by mission
critical systems. Although there are specifications dealing with re-
liable message exchange (e.g. WS-Reliability [32]) availability has
been largely overlooked.

After some level of maturity of basic web service infrastructure
specifications such as SOAP [42], WSDL [43] and UDDI [31],
a wide number of specifications are being developed to support
more sophisticated applications and providing stronger guarantees.
Among these new efforts, a number of them addresses the support
for transactional business processes across different business do-
mains [25]. Two recent efforts in this direction are OASIS Web
Service Composite Application Framework (WS-CAF) [33] and
WS-Coordination, WS-Transaction [26] promoted by IBM, Mi-
crosoft and BEA. These specifications provide support for inter-
operable transactional context propagation and transactional coor-
dination. Transactional coordination requires among other things
the appointment of a site as transaction coordinator. The designa-
tion of a coordination entity presents an inherent weakness; if the
coordinator becomes unavailable the coordination protocol blocks,
what has an impact in the availability of all partners participating in
the transaction that cannot progress anymore. This means that co-
ordination services become a critical infrastructure requiring higher
levels of availability.

Traditional clustering solutions are not enough in an Internet set-
ting in which network partitions are more likely than in LANs (e.g.
due to link overloads, site and connectivity) and that can separate
the domain where the coordinator entity lies from the rest of the net-
work. In this paper, we address precisely the issue of web service
availability and present a framework, WS-Replication, for WAN
replication of web services. WS-Replication uses multicast (i.e,
group communication [9]) to communicate with the replicas of a
web service. One of the main challenges of this work is how to
replicate web services preserving the underlying web service au-
tonomy principle avoiding the use of ad hoc mechanisms, such
as the opening of ad hoc ports at partner sites. For this purpose,

we have developed a web service for group communication, WS-
Multicast, that uses SOAP as transport protocol. The paper also
presents an evaluation of the WS-Replication framework. WS-
Replication has been used to replicate an implementation of WS-
CAF and has been evaluated through an instrumented version of
WS-I.

The contributions of the paper are: the design and implementa-
tion of an infrastructure for seamlessly providing high availability
of web services in a WAN setting based exclusively on web ser-
vice technology; and a multicast web service component that can
be used independently. These contributions have been thoroughly
evaluated through micro-benchmarks and a replicated version of
WS-CAF.

The rest of the paper is organized as follows. Section 2 intro-
duces replication and group communication. Section 3 describes
the components of the replication framework. A case of study (WS-
CAF) is presented in Section 4 and evaluated in Section 5. Finally,
related work and conclusions are presented in Sections 6 and 7.

2. REPLICATION AND GROUP COMMU-
NICATION

Replication is the main technique to provide high availability.
Availability is achieved by deploying the same service in a set of
sites (replicas), so if one site fails, the others can continue pro-
viding the service. There are three different process replication
techniques: active replication, semi-active replication and passive
replication. In active replication [39], all requests to a replicated
service are processed by all the replicas. Service requests must be
processed in the same order in all the replicas to guarantee that
all replicas have the same state. Moreover, replicas must be de-
terministic. That is, with the same sequence of requests, they act
deterministically producing the same output. With this approach,
if one replica fails, the rest of the replicas can continue provid-
ing service in a transparent way for the client, without loosing
any state. Depending on the level of reliability, the client can re-
sume its processing after obtaining the first reply from a replica,
a majority of replies or all the replies. If the server code is non-
deterministic, it is possible to use semi-active replication [41] in
which all sites process all requests, but non-deterministic actions
are executed only by a site appointed as master. The master sends
the resulting state to the other sites, named followers, after exe-
cuting a non-deterministic action. A complementary approach is
passive replication [10]. In this approach, one of the servers is
appointed as primary and the other as backups. Clients submit re-
quests to the primary that processes them and sends the resulting
server state to the backups. That is, only the primary executes client
requests. Upon failure of the primary, one of the backups takes over
as new primary. In this case, failover is not totally transparent from
the client point of view. That is, the last request issued by a client
may need to be resubmitted (the primary failed before replying)
and a duplicate removal mechanism is needed in the backups (the
new primary may have already received the state produced by that
request in the failed primary).

One of the main building blocks for implementing a replicated
system is group communication. Group communication systems
(GCS) provide multicast and the notion of view [9]. A set of pro-
cesses may join a group (group members). A view contains cur-
rently connected and active group members. Changes in the com-
position of a view (member crash or new members) are eventu-
ally delivered to the application. Multicast messages are sent to a
group. Multicast primitives can be classified attending to the order
guarantees and fault-tolerance provided. FIFO ordering delivers

all messages sent by a group member in FIFO order. Total order
ensures that messages are delivered in the same order by all group
members. With regard to reliability, reliable multicast ensures that
all available members deliver the same messages. Uniform reli-
able multicast ensures that a message that is delivered by a member
(even if it fails), it will be delivered at all available members.

Replicas of a server form a group in order to implement repli-
cation1. Failures of replicas are detected when a new view is de-
livered excluding members of the previous view. Total order mul-
ticast is used to propagate requests in the active replication model
to guarantee that all replicas deliver requests in the same order and
therefore, they will reach the same state. FIFO order is used in pas-
sive and semi-active replication to send the state or the result of the
non-deterministic actions. Since this information is only sent by
one replica, the application of those messages in FIFO order will
guarantee that all the replicas reach the same state. Depending on
the consistency level needed by the application, multicast messages
are either reliable or uniform.

Two important properties of GCSs are primary component mem-
bership and strong virtual synchrony [11]. In a primary component
membership, views installed by all members are totally ordered
(there are no concurrent views), and for every pair of consecutive
views there is at least one member that survives from one view
to the next one. Strong virtual synchrony ensures that messages
are delivered in the same view they were sent (also called sending
view delivery) and that two members transiting to a new view have
delivered the same set of messages in the previous view (virtual
synchrony) [11].

Several group communication toolkits have been developed in
the last two decades. Isis was the first one and since then, others
have been developed i.e., Horus [38], Ensemble [17], Transis [14],
Totem [29], NewTop [16], JGroups [20] and Spread [3]. Some of
these toolkits are implemented as a stack of micro-protocols. Each
micro-protocol is in charge of implementing a reliability, ordering
or view property. Horus was the first to adopt this architecture and
others followed, such as Ensemble and JGroups.

Figure 1: High Level View of WS-Replication

1Note that group communication is not required by any replication
technique, but it largely simplifies the implementation.

3. WS-REPLICATION: A REPLICATION
FRAMEWORK FOR WEB SERVICES

WS-Replication is a framework for seamless active replication of
web services, that is, it respects web service autonomy and provides
transparent replication and failover. The communication within the
framework is exclusively based on SOAP without forcing the use
of an alternative communication means. WS-Replication allows
the deployment of a replicated web service using web service tech-
nology and SOAP for transporting information across sites. What
is more, clients invoke a replicated web service in the same way
they invoke a non-replicated one. Internally, WS-Replication takes
care of deploying the web service in a set of sites, transparently
transforming a web service invocation into a multicast message to
replicate the invocation at all sites, awaiting for one, a majority or
all replies, and delivering a single reply to the client.

Figure 1 depicts the high level vision of WS-Replication. Let us
assume that the web service we want to replicate is named ws. In
the figure, we can see a replicated web service, ws, deployed at two
replicas represented by large rectangles, using active replication.
We distinguish among its WSDL interface (shown as a rectangle
with the name of the web service), the proxy (shown as an ellipse)
and the ws implementation (shown as a circle). The client is local
to the replica on the top of the figure2.

The client invokes a web service ws with exactly the interface
of the target web service (step 1 in the figure). Internally, the WS-
Replication framework intercepts the request through a proxy (step
2) and takes care of reliably multicasting in total order this invoca-
tion to all the replicas using a private transport web service (step
3). Upon reception of the multicast message (step 4), the mes-
sage is processed by the WS-Replication framework to provide the
required delivery guarantees (e.g. total order). Finally, the web
service is locally executed at each replica (step 5).

WS-Replication consists of two major components: a web ser-
vice replication component and a reliable multicast component (WS-
Multicast).

3.1 Replication Component
The replication component enables the active replication of a

web service. The service to be replicated has to behave as a state
machine [39], that is, the service should produce the same output
if the same input sequence is provided. The replication compo-
nent enables the replication of stateful services even with persistent
state.

The web service replication component consists of a web service
deployer, a proxy generator for seamless web service replication,
and a web service dispatcher (WS-Dispatcher).

The deployer provides a distributed deploying facility in the form
of a web service that enables the deployment of a service to be
replicated at different sites from a central location. It takes a web
service bundle as argument that contains all what is necessary to
deploy the web service in a single file (like ear or jar bundles for
Java applications) and deploys it at all replicas.

The proxy generator generates a proxy for each operation of the
web service that intercepts the invocation and interacts with the
dispatcher to replicate the invocation. The proxy code carries out
two tasks at the site where the invocation is issued: 1) it intercepts
invocations to the replicated web service and forwards them to the
dispatcher; 2) upon reception of the reply from the dispatcher, it
returns it to the client.

2If needed, WS-Replication also supports to deploy proxies at sites
that do not hold replicas of the web service. This is useful when
clients are remote to all replicas.

The web service dispatcher is a component that interfaces with
the group communication and takes care of the matching between
invocations and messages. More concretely, the dispatcher imple-
ments two functionalities. As a sender (the instance collocated with
the client), it transforms web service invocations forwarded by the
proxy into multicast messages using the underlying multicast in-
frastructure. As a receiver (collocated with a replica), it recon-
structs the web service invocation from the multicast message and
invokes the target web service using a particular deployment style.
Depending on the required degree of dependability the dispatcher
can return control to the client (via the proxy) after receiving the
first reply, a majority of replies or all replies. The treatment of
replies is indicated in the deployment descriptor of the replicated
web service.

There are two types of deployment for a replicated web service:
as a private web service or as a Java implementation. The former
enables to deploy any web service as a replicated web service, al-
though the price of this flexibility is an extra SOAP message in-
volved in each invocation (the one from the dispatcher to the web
service). The latter only works for Java implementations of the web
service, but it benefits from saving that SOAP message which is re-
placed by a Java method invocation, which is significantly cheaper.
This (SOAP) Java invocation corresponds to step 5 in Figure 1.

A more detailed view of the path of a replicated web service in-
vocation is shown in Figure 2. The client invokes the replicated
web service as a regular web service (step 1 in the figure). The
invocation is intercepted by the proxy that delegates it to the dis-
patcher (step 2). The dispatcher multicasts the invocation through
WS-Multicast (step 3). WS-Multicast uses the transport web ser-
vice to multicast the message to all replicas (step 4). Upon recep-
tion of this message (step 5), WS-Multicast enforces the delivery
properties of the message (ordering and reliability properties) pos-
sibly exchanging other messages between micro-protocols. When
the message fulfils its delivery properties, WS-Multicast delivers
it to the dispatcher (step 6). The dispatcher executes locally the
target web service (step 7). The reply of the local web service invo-
cation is returned to the dispatcher (step 8). The dispatcher where
the request was originated will just wait for the specified number
of replies (first, majority, all). The dispatchers at other replicas
use WS-Multicast (step 9) to send the reply back via unicast to the
dispatcher where the request was originated (step 10). When each
reply is received (step 11), the local WS-Multicast forwards the re-
ply to the local dispatcher (step 12). The dispatcher will deliver the
reply to the client via the proxy once it has compiled the specified
number of replies (step 13).

Since all replicas have received the invocation and all replicas
are returning the resulting reply, replica failures are masked as far
as there is an available replica. That is, the replicated service will be
available and consistent. The proxy will return to the client as soon
as it compiles the required number of replies despite failures. Note
that by collocating a proxy with the client the client can access the
replicated web service as far as there are enough replicas available.

3.2 Multicast Component
The WS-Multicast component provides group communication

based on SOAP. More concretely, it consists of a web service in-
terface for multicasting messages, an equivalent Java interface for
multicasting and receiving messages, a reliable multicast stack for
group communication, and a SOAP-based transport.

WS-Multicast as a web service exhibits a WSDL interface that
is used to attain the reliable multicast functionality using a SOAP
transport. It consists of two parts: a user interface and an internal
interface. The user interface enables the creation and destruction

(a) Request Path (b) Reply Path

Figure 2: Low Level View of WS-Replication and WS-Multicast

of groups (via channels that act as group handles) and their con-
figuration. It also allows discovering the members of a group as
well as unicasting and multicasting messages. The second inter-
face is used internally by the GCS to disseminate multicast mes-
sages, perform failure detection, and other tasks to achieve group
communication properties. Failure detection is achieved through a
specific SOAP based ping micro-protocol that monitors the group
members. A private operation of the WS is a transport operation
(shown as transport in Figure 2) that takes an array of bytes as
parameter, and is used to transfer messages with a SOAP transport.

The group communication stack implements the multicast func-
tionality. In order to reuse some well-known micro-protocols such
as those for total order and reliability, our SOAP group communi-
cation support has been integrated into an existing group commu-
nication stack, JGroups [20]. In this way, WS-Multicast can use
micro-protocols of JGroups, and JGroups can be used over SOAP.
A similar approach can be used with other stack-based GCSs. WS-
Multicast also relies on a SOAP engine to enable web service inter-
action for transporting messages over SOAP. Our implementation
uses Apache Axis SOAP engine [4].

Both the public web service interface and the Java one of WS-
Multicast provide the same operations. The Java interface is exactly
the same as the one provided in JGroups. In order to send (receive)
multicast messages to (from) a group, the sender (receiver) has to
create and connect to a channel (the channel is like a socket or file
handle). The parameter of the createChannel operation is the list
of properties to configure the micro-protocols in the group commu-
nication stack. To join a group, the group member must connect
to a channel providing the name of the group, after connecting to a
channel. The send operation is used both for multicast and unicast

messages. The send operation has three arguments: the message
destinations, the source address and the message to be sent. The
message destination may be null, then the message is multicast to
all members of the group. If it is not null, the message is unicast
to that address. The source address indicates the recipients of the
response to that message (null indicates the channel address).

The receive operation is used to receive messages, views, sus-
picions and blocks. Internally, messages are stored in a queue.
When the receive operation is invoked, the message in the head of
the queue is removed and returned. This operation blocks, if there
are no messages. The receive operation can return an application
message, a view change, a SuspectEvent (indicating that a group
member is suspected to be failed), or a BlockEvent (indicates the
application to stop sending messages in order to implement strong
virtual synchrony).

Finally, the disconnect operation removes the invoker from the
group membership. The close operation destroys a channel in-
stance and the associated protocol stack.

4. A CASE STUDY: REPLICATION OF WS-
CAF

Web Services Composite Application Framework (WS-CAF) is
a framework for WS coordination at different levels of sophistica-
tion, from context sharing to advanced transactional models, such
as long running activities (LRAs) [33]. WS-CAF consists of a set
of three related specifications: Web Services Context (WS-CTX),
Web Services Coordination Framework (WS-CF) and Web Ser-
vices Transactions (WS-TXM).

WS-CTX defines a standard extensible context structure that en-
ables different business partners to propagate, interpret and extend

this context. The basic operations are creation, update and termina-
tion of a context. The basic context stores a context identifier and
might be extended to store additional information.

WS-CF extends WS-CTX by defining the coordinator role that
takes charge of submitting notification messages to WSs in a partic-
ular context. Finally, WS-TXM defines different transaction coor-
dination protocols: two phase commit (2PC) for traditional ACID
transactions, long running activities (LRAs) and business process
transactions. These transaction coordination protocols aim to agree
on a common transactional outcome among the transaction partici-
pants. In this paper we will replicate (active replication) and evalu-
ate the performance of LRAs.

The LRA model is designed for business interactions that can
expand for long periods of time. An LRA is structured as a set of
basic ACID activities. When a basic ACID activity completes its
effects are visible. LRAs provide atomicity despite relaxing isola-
tion using compensation. A compensating action logically reverses
the effects of an LRA (e.g. a cancellation reverses a booking).
LRA activities can be nested. The work performed by LRAs is
required to remain compensatable till the enclosing LRA informs
that compensation is no longer needed. The coordinator registers
the compensator through the LRA protocol before the LRA activity
terminates.

The LRA protocol consists of three messages: Complete, Forget
and Compensate. Complete is sent as a notification of successful
completion. Compensate compensates work that has already been
completed by an LRA. The information needed to compensate is
kept till a Forget message is received at that time it can be garbage
collected. We have implemented WS-CAF (version 0.1). The im-
plementation is available as an open source project at ObjectWeb3.

In order to evaluate the performance of WS-Replication with a
real application we have replicated WS-CAF using active replica-
tion. The replicated services are the operations of WS-CTX (the
context management services, activity services, and ALS services),
WS-CF (coordinator services) and WS-CAF (LRA services).

5. EVALUATION
The evaluation has been performed in two steps. First of all, a

micro-benchmark was conducted to understand the overheads of
the proposed framework. In a second stage, the replication frame-
work was used to build a replicated WS-CAF that was benchmarked
using an implementation of WS-I application enriched with LRAs
[45].

The micro-benchmark is based on a simple web service: a web
service that implements a counter. It just takes an integer and adds
it to a local counter. This simple web service will let us show the
overhead of the GCS. We conducted an evaluation that led to a se-
ries of improvements in the WS-Replication framework (Section
5.1). Then, we evaluated and compared WS-Replication with two
baselines: (1) the non-replicated web service with SOAP transport;
(2) the replicated service with group communication based on TCP
transport. Baseline (1) measures the cost of a SOAP invocation.
It enables to measure the cost of replication with respect a non-
replicated web service. Baseline (2) measures the cost of repli-
cating an invocation using group communication based on TCP
transport. Therefore, Baseline (2) enables to quantify the cost of
introducing a SOAP transport in group communication compared
to TCP-based one. This evaluation was run both in a LAN and a
WAN (Section 5.2).

In order to show the performance in a realistic application, the
aforementioned replicated version of WS-CAF was built based on

3ObjectWeb JASS project. http://forge.objectweb.org/projects/jass/

the WS-Replication framework. This replicated version was used
by an implementation of WS-I enriched with the LRA advanced
transactional model supported by WS-CAF. The benchmark was
run in a WAN (Section 5.3).

Four locations were used for the WAN evaluations: Madrid (Spain),
Montreal (Canada), Bologna (Italy), and Zurich (Switzerland). The
distances among locations in terms of message latency (in ms) are
summarized in Table 2. They have been obtained running 10 times
the ping command between each location pair and taking the aver-
age among them. The hardware configuration at each site is shown
in Table 1. All sites run linux 9.0, Axis 1.1 with JBoss 3.2.3 and
PostgreSQL 7.3.2.

Site # Processors CPU Memory
Madrid Bi-processor AMD Athlon MP 2 GHz 0.5 GB RAM
Bologna Quad-processor Intel Xeon 1.8 GHz 2 GB RAM
Zurich Bi-processor Intel Pentium IV 3 GHz 1 GB RAM

Montreal Bi-processor Intel Pentium IV 3 GHz 1 GB RAM

Table 1: Hardware configuration at each site

Madrid Bologna Zurich Montreal
Madrid
Bologna 30
Zurich 41 23

Montreal 130 140 123

Table 2: Average time (ms) returned by ping between pairs of
endpoint locations

5.1 Evolution of WS-Replication
This experiment uses the counter web service to show the over-

head of the framework. The experiment was run with a range of
1-3 replicas and a single client in a LAN. Each experiment consists
of an overall number of 10,000 requests. There is a single client
that submits a request, waits for the reply, and immediately after
submits a new request. The results are shown in Figure 3.

When comparing WS-Replication (WS-Replication (v1) in the
figure) with the performance of a replicated web service using TCP-
based group communication (GC-TCP), it turned out that there was
a huge performance degradation even for a single replica. In terms
of throughput WS-Replication (v1) behaved 3 to 4 times worse than
using TCP transport (GC-TCP), which it is an upper bound on the
performance achievable by WS-Replication. In terms of response
time, it did relatively worse, from 3 to 5 times fold increase in
response time with respect the TCP based group communication.
The reason for the overhead was that the serialization performed at
the web service level (the SOAP message) for a multicast message
(send operation) was generating a 1KB message for an invocation
with a single integer parameter, whilst a regular invocation with
SOAP was generating a 40 bytes message. The send operation of
WS-Multicast has the destination of the message, the source and
the message itself as parameters. The message contains the name of
the invoked operation, the parameters and the corresponding stub
class. Even Java serialization was still very inefficient, although
more efficient than the one of web services. A non-negligible num-
ber of bytes was being generated for a class without any attribute.
The solution was to define a streamable interface that enabled the
serialization into basic types and a multicast transport web service
with a single generic parameter, an array of bytes. The alternative
of rewriting the serialization methods was not enough since it did
not provide enough control over the generated stream. It serialized

Throughput

0

10

20

30

40

50

60

1 2 3

of replicas

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
)

GC-TCP
WS-Replication(V1)
WS-Replication(V2)
WS-Replication(V3)

Response Time

0

20

40

60

80

100

120

1 2 3

of replicas

R
e

s
p

o
n

s
e

T
im

e
(m

s
)

GC-TCP

WS-Replication(V1)

WS-Replication(V2)

WS-Replication(V3)

Figure 3: Different implementations of WS-Replication and WS-Multicast in a LAN

class information that was not needed. Note that the serialization
improvements are only performed on the private transport web ser-
vice so they do not affect to WS interoperability. This is just an
internal communication means based on SOAP transport for the
replicas to communicate among them.

These improvements where evaluated in WS-Replication (v2) in
Figure 3. We can observe a substantial improvement, especially
for one and two replicas. The throughput for two replicas was
very close to the one of TCP-based group communication and in-
creased almost four times compared to WS-Replication (v1). For
three replicas, the improvement in throughput although it was sig-
nificant, it showed a high degradation compared to the one showed
by two replicas. The response time of WS-Replication (v2) was
significantly reduced to a third of the one of WS-Replication (v1)
and almost matched the one of GC-TCP, except for three replicas.

Another source of the overheads was related to the fact that each
web service invocation produced three web service invocations: the
one made by the client and intercepted by the proxy, one to the
transport operation and finally, another one to invoke the web ser-
vice replica. Since the implementation of the web service is in
Java, we used the Java deployment style of WS-Replication. This
deployment style enables to forward the invocation to the web ser-
vice through a plain Java invocation. Of course this performance
saving only works for WS Java implementations. WS-Replication
(v3) shows the results of this deployment style. It can be observed
that the throughput increases for two and three replicas. The re-
sponse time for three replicas now increases smoothly compared to
WS-Replication (v2).

All these improvements (WS-Replication (v3)) prevented the bot-
tlenecks created with 3 replicas in WS-Replication (v2) resulting in
a reduction of the response time and an increased throughput.

It should be noted that with one replica WS-Replication (v2)
and WS-Replication (v3) behaved better than the TCP-based group
communication. The reason is that the TCP implementation cre-
ates dynamically the invocations from TCP messages, whilst WS-
Replication generates specific stubs upon deployment. This re-
sulted in better performance when there was no replication (1 replica).

It can be concluded that the throughput attained by the final ver-
sion of WS-Replication was very close to its ceiling, the TCP-based
group communication (GC-TCP). In terms of response time, it was
almost the same as the one shown using TCP-based group com-
munication. This means that the engineering performed in WS-
Replication has been very effective in minimizing the overheads
induced by group communication and SOAP.

5.2 Performance of WS-Replication
The experiment in this section compares the performance of WS-

Replication with the two baselines previously discussed, a non-
replicated web service (SOAP in the graphs), and a replicated web
service using group communication based on TCP transport (GC-
TCP in the graphs). We show the performance from 1 to 3 replicas
for an increasing load for both the TCP-based group communica-
tion and WS-Replication. The load is increased by augmenting the
number of clients submitting requests. Each client submits a re-
quest and as soon as it gets the reply, it submits a new request. The
total number of requests sent by each client is 1/n of the over-
all number of requests (10,000), where n is the number of clients.
The experiments have been conducted both in a LAN and a WAN
setting. The client and the web service replicas were located at
different sites. In the WAN setting, the client was in Madrid and
the replicas in Bologna, Zurich and Montreal. The replicated web
service was configured to wait for the first response.

In a LAN we can see that for one replica WS-Replication per-
forms better than GC-TCP (Figure 4). As explained in the previous
section, this is an artifact of the experiment. The GC-TCP imple-
mentation has a generic code to manipulate and build web service
invocations. This generality results in a lower performance. In
contrast, WS-Replication generates specific handling code for each
replicated web service that results in a lower serialization and in-
vocation construction overheads that compensate the use of SOAP
instead of TCP for one replica. That is, the overhead due to ma-
nipulation of serialization and invocations has a higher impact than
the overhead introduced by the less efficient SOAP transport. The
cost of using group communication and replication is shown com-
paring the SOAP curve with the 1-replica curves of GC-TCP and
WS-Replication.

When looking at the curves for more than one replica in a LAN
setting, one interesting observation is that for two replicas WS-
Replication is still slightly better than GC-TCP both in terms of
response time and throughput, and only for three replicas the higher
overhead in the transport layer becomes the dominant factor over
the serialization and invocation handling cost.

The results for the WAN are illustrated in Figure 5. In order to
quantify the impact of the distance in the throughput and response
time we show the performance of a single replica at the three dif-
ferent sites (BOLogna, ZURich and MONtreal). As one would ex-
pect, the farthest site from the client (located in Madrid), Montreal,
yields the worst throughput and response time. The comparison of
the SOAP and 1-Rep-BOL curves shows that the overhead of the

Throughput

0

20

40

60

80

100

120

140

160

180

1 5 10 15 20

Load (# of clients)

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
)

SOAP
GC-TCP(1 Rep)
GC-TCP(2 Rep)
GC-TCP(3 Rep)
WS-Replication(1 Rep)
WS-Replication(2 Rep)
WS-Replication(3 Rep)

Response Time

0

50

100

150

200

250

300

1 5 10 15 20

Load (# of clients)

R
e

s
p

o
n

s
e

T
im

e
(m

s
)

SOAP

GC-TCP(1 Rep)

GC-TCP(2 Rep)

GC-TCP(3 Rep)

WS-Replication(1 Rep)

WS-Replication(2 Rep)

WS-Replication(3 Rep)

Figure 4: Evaluation of WS-Replication and WS-Multicast in a LAN

Throughput

0

20

40

60

80

100

120

140

160

180

1 5 10 15 20

Load (# of clients)

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
)

SOAP(BOL)

WS-Replication(1 Rep-BOL)

WS-Replication(1 Rep-ZUR)

WS-Replication(1 Rep-MON)

WS-Replication(2 Rep-BOL-ZUR)

WS-Replication(3 Rep-BOL-ZUR-MON)

Response Time

0

50

100

150

200

250

300

350

1 5 10 15 20

Load (# of clients)

R
e

s
p

o
n

s
e

T
im

e
(m

s
)

SOAP(BOL)
WS-Replication(1 Rep-BOL)
WS-Replication(1 Rep-ZUR)
WS-Replication(1 Rep-MON)
WS-Replication(2 Rep-BOL-ZUR)
WS-Replication(3 Rep-BOL-ZUR-MON)

Figure 5: Evaluation of WS-Replication and WS-Multicast in a WAN

replication framework with respect to SOAP is smaller than in a
LAN in relative terms (from about a 50% to a 25%) for the closest
replica.

The overhead introduced by the coordination among replicas is
shown comparing the 2-replica curve with the 1-replica ones at
Bologna and Zurich. The overhead of two replicas in terms of
throughput is about a 20%. If we look at the overhead of a 3-replica
setting, it can be seen that it has a slightly higher overhead than two
replicas, but it behaves better than a single replica at Montreal. The
reason is that the experiment was configured to wait only for the
first reply. With three replicas, Bologna or Zurich always replied
before Montreal. In terms of response time, the triplicated version
is significantly better than the 1-replica located at Montreal. This
means that clients by using replication will get an average perfor-
mance respect to the closest replicas, despite the existence of some
distant replica.

As a summary we can conclude from the LAN experiment that
the engineering performed in WS-Replication was very effective in
attaining a performance competitive with a TCP-based group com-
munication. The overhead with respect to a non-replicated web
service is higher in terms of throughput, due to the extra CPU con-
sumption spent in manipulating extra messages. However, in terms
of response time is less significant. The WAN experiment shows
that the relative overheads are smaller than in a LAN. What is more,
it shows that a triplicated web service will behave better than a sin-
gle distant replica. An important observation is that this experiment

is using an almost null web service, so it measures the pure over-
head introduced by extra communication. This means that using a
realistic web service with some relevant processing associated to
each request (i.e. performing some relevant CPU processing and
possibly some IO), this performance loss will be much smaller in
relative terms, as we will show in the next experiment.

5.3 Replication of WS-CAF
In this experiment we use the WS- I application to evaluate the

performance of a replicated WS-CAF. WS-I is a supply chain man-
agement application [45]. It consists of four roles: consumers
(clients), retailer, warehouses, and manufacturers. The latter three
exhibit a web service interface. A retailer offers goods to con-
sumers. The retailer places orders to warehouses to fulfil consumer
requests. Orders should be served completely by a retailer. The
warehouses have to keep stock levels for the items they offer. If the
stock of an item falls below certain threshold, the warehouse must
refill the stock of the item from a manufacturer. Figure 6(a) shows
the interactions among the different actors in WS-I.

We have enriched the WS-I application with advanced transac-
tions, more concretely with LRAs, in order to evaluate our WS
replication framework. The interaction between the client and the
retailer is modeled as a top level LRA that may include several
nested activities. Nested LRAs model the interaction between the
retailer and a warehouse, or between a warehouse and a manufac-
turer. Warehouses and manufacturers are registered as participants

(a) Participants and Interactions (b) Transaction Nesting

Figure 6: WS-I application

in the active LRA when they include items in an order or when they
have ordered or manufactured, respectively. These interactions can
be compensated if the client interaction (top-level LRA) is not fully
accomplished (i.e. if the warehouses cannot deliver the whole order
to the client).

Figure 6(b) shows a potential scenario of LRA nesting in which
the retailer contacts warehouse A and warehouse B. Warehouse A
needs to contact manufacturer A, whilst warehouse B contacts both
manufacturers B and C. The whole client request is a top-level LRA
that encompasses three nested LRAs, corresponding to each inter-
action between warehouses and manufacturers to refill the stock of
a particular item. When a nested LRA completes, it registers the
corresponding compensators with its parent. This enables compen-
sation in case the top-level LRA does not succeed.

5.3.1 WS-CAF Evaluation
Figure 7 shows the results of the WS-I application evaluating

the replicated WS-CAF implementation in a WAN setting. The
client and the WS-I application were run in Madrid at two different
sites in all the experiments. For comparison purposes we run the
same experiment without replicating WS-CAF. In this case WS-
CAF was located in Zurich (No Rep curve in Fig.7). Then, we run
the experiments with one replica in Bologna (Rep-1), two replicas
adding Zurich (Rep-2) and three replicas, adding Montreal (Rep-3).
Each client submits 100 requests during which the measurements
are done plus 25 warm-up and 25 cold down requests.

It can be noted that the difference between 1-3 replicas is very
small in terms of response time, around a 15%. This is mainly due
to the stub configuration that is set up to return to the client af-
ter receiving the first reply from a replica. Awaiting the first reply
is sufficient for many applications and can be considered the de-
fault case. In a later experiment we compare the performance of
getting the first reply with the one of getting a majority of replies.
Comparing the throughput curves for 2-3 replicas with the non-
replicated one we can observe that the throughput degradation is
smaller for higher loads than for lower loads. The reason is that
the non-replicated setting achieves its maximum throughput with 5
clients. After that, the throughput does not increase anymore. The
replicated case achieves the maximum throughput with a highest
load. Interestingly, the overhead of replication in terms of response

time is much smaller in relative terms. The increase in response
time between one and three replicas is smaller than a 10% for the
higher load. This is quite beneficial because the main concern in
WAN replication is response time and the obtained overheads are
very affordable.

In Figure 8 we show the performance difference when the repli-
cated web service is configured to wait for a majority of the re-
sponses before returning to the client. For two replicas waiting for
a majority of replies means to wait for all the replies. As one might
expect, the throughput decreases. However, the overhead is not
very high especially in the case of three replicas which have a 13%
lower throughput. Regarding response time the relative overhead is
slightly higher. This is unavoidable, since one has to wait for the
second slowest reply, when waiting for a majority of responses.

6. RELATED WORK
Several specifications have been developed that tackle different

aspects of web service dependability. For instance, WS-Reliability
[32] deals with quality of service in the delivery SOAP messages.
For example, a message is sent at most once, exactly once or at
least once. Transactional semantics has been addressed by OA-
SIS WS-CAF [33] and WS-Transaction and WS-Coordination [26].
Basically, they provide a means to describe a transactional context,
appoint a coordinator entity for transactions and distributed coor-
dination protocols (either two-phase commit for ACID transactions
or more sophisticated coordination for advanced transactions). To
the best of our knowledge none of the WS specifications have ad-
dressed the availability issue yet. WS-Replication addresses this
issue and provides a framework for replication of web services ex-
clusively based on web service technology.

An architecture for web services availability has been presented
in [8]. The proposed system does not rely exclusively on web ser-
vice technology. Instead, it relies on TCP to provide group commu-
nication across sites. They provide a (LAN) clustered intermediary
message queue for reliable message exchange that is resilient to site
failures but not to WAN connectivity failures. WS-Replication pro-
vides a more complete infrastructure that deals with highly avail-
able web services and deals with both site and connectivity failures.

Replication of a particular web service, UDDI, has been researched
in [40]. The paper presents an implementation of a replicated UDDI

WS-CAF Throughput (GET FIRST)

0

50

100

150

200

250

300

350

0 5 10 15 20

Load (# of clients)

T
h

r
o

u
g

h
p

u
t

(
tp

m
)

No Rep

Rep-1

Rep-2

Rep-3

WS-CAF Resp. Time (GET FIRST)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20

Load (# of clients)

R
e
s
p

.
T

im
e

(
m

s
)

No Rep

Rep-1

Rep-2

Rep-3

Figure 7: WS-I performance in a WAN waiting for the first response

WS-CAF Throughput (GET FIRST vs ABS. MAJORITY)

0

50

100

150

200

250

300

0 5 10 15 20

Load (# of clients)

T
h

r
o

u
g

h
p

u
t

(
tp

m
)

Get First 2 Rep

Get Abs. Majority 2 Rep

Get First 3 Rep

Get Abs. Majority 3 Rep

WS-CAF Resp. Time (GET FIRST vs ABS. MAJORITY)

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20

Load (# of clients)

R
e
s
p

.
T

im
e

(
m

s
)

Get First 2 Rep

Get Abs. Majority 2 Rep

Get First 3 Rep

Get Abs. Majority 3 Rep

Figure 8: WS-I performance in a WAN comparison of majority and first

registry using TCP-based group communication and compares it
against the replicated UDDI specification [30]. There are two dif-
ferences between this work and ours. The first difference is that it
is a TCP-based solution. Thus, they do not rely exclusively on web
service technology. However, unlike the previous approach, they
deal with connectivity failures since they perform WAN replication
as we do. An additional difference is that the reported approach is
particular for UDDI and not a generic framework for WAN repli-
cation of web services like the one provided by WS-Replication.

The techniques used for replicating web services exhibit some
similarities with the replication of other middleware platforms. The
first breed of replicated middleware was possibly fault-tolerant CORBA
that finally led to the FT-CORBA specification [34]. Different ap-
proaches were proposed for replicating CORBA either transpar-
ently, as we proposed for web services, or explicitly by exporting
some services to build fault-tolerant applications [28, 27, 13, 22, 6].
Some recent work has studied the clustering of application servers
[46, 5, 36] in the context of the Adapt project [1, 7].

The replication of transactional applications has also been stud-
ied in other contexts such as object oriented systems (i.e., Arjuna
[24]) and databases (Postgres-R [21], Middle-R [35, 23], Ganymed
[37]). Regarding advanced transactions there was a lot of theoreti-
cal work on proposing advanced transaction models [19, 15], how
to model their atomicity and isolation properties [12], and their ap-
plications, e.g. to workflows [2, 44]. This research has resulted in
the current specifications for implementing advanced transactions

such as CORBA Activity Service [18] or WS-CAF that we have
used as case study for benchmarking WS-Replication.

7. CONCLUSIONS
In this paper, we have presented WS-Replication a replication

framework for seamless replication of web services. The frame-
work allows the deployment of a web service in a set of sites to
increase its availability. One of the distinguishing features of WS-
Replication is that replication is done respecting web service au-
tonomy and exclusively using SOAP to interact across sites. One
of the major components of WS-Replication is WS-Multicast that
can also be used as a standalone component for reliable multicast in
a web service setting. The evaluation shows that with an adequate
engineering, the overhead of replication on top of SOAP can be-
come acceptable. We have tested WS-Replication with a complex
service, WS-CAF, using a realistic application such as WS-I. We
believe that the kind of support provided by WS-Replication will
be essential for the upcoming breed of critical web services with
more exigent availability requirements.

8. REFERENCES
[1] Adapt: Middleware Technologies for Adaptive and

Composable Distributed Components. IST-37126.
http://adapt.ls.fi.upm.es/adapt.htm.

[2] G. Alonso, D. Agrawal, A. Abbadi, M. Kamath, R. Günthör,
and C. Mohan. Advanced transaction models in workflow

contexts. In Proc. of the IEEE Int. Conf. on Data
Engineering (ICDE), pages 574–581, 1996.

[3] Y. Amir, C. Danilov, and J. R. Stanton. A low latency, loss
tolerant architecture and protocol for wide area group
communication. In DSN, 2000.

[4] Apache. Axis SOAP Engine. http://ws.apache.org/axis/.
[5] O. Babaoglu, A. Bartoli, V. Maverick, S. Patarin,

J. Vuckovic, and H. Wu. A Framework for Prototyping J2EE
Replication Algorithms. In Proc. of Int. Symp. on Distributed
Objects and Applications (DOA), pages 1413–1426, 2004.

[6] R. Baldoni and C. Marchetti. Three-tier replication for
ft-corba infrastructures. SPE, 33(8):767–797, 2003.

[7] A. Bartoli, R. Jimenez-Peris, B. Kemme, C. Pautasso,
S. Patarin, S. Wheater, and S. Woodman. The adapt
framework for adaptable and composable web services.
IEEE Distributed Systems On Line, September 2005.

[8] K. Birman, R. van Renesse, and W. Vogels. Adding High
Availability and Autonomic Behavior to Web Services. In
Proc. of Int. Conf. on Software Engineering (ICSE), 2004.

[9] K.P. Birman. Building Secure and Reliable Network
Applications. Prentice Hall, NJ, 1996.

[10] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg.
Primary–backup protocols: Lower bounds and optimal
implementations. In Proc. of DCCA, September 1992.

[11] G. V. Chockler, I. Keidar, and R. Vitenberg. Group
communication specifications: A comprehensive study. ACM
Computer Surveys, 33(4), 2001.

[12] P. K. Chrysanthis and K. Ramamritham. ACTA: A
Framework for Specifying and Reasoning about Transaction
Structure and Behavior. In Proc. of ACM SIGMOD Int. Conf.
on Management of Data, pages 194–203, 1990.

[13] M. Cukier, J. Ren, C. Sabnis, D. Henke, J. Pistole, W. H.
Sanders, D. E. Bakken, M. E. Berman, D. A. Karr, and R. E.
Schantz. AQuA: An Adaptive Architecture that Provides
Dependable Distributed Objects. In IEEE SRDS’98.

[14] A.Y. Dolev, D. Krameer, and S. Malki. Transis: A
Communication Sub-system for High Availability . In
FTCS-22, 1992.

[15] A. K. Elmagarmid, Y. Leu, J. G. Mullen, and O. Bukhres.
Introduction to Advanced Transaction Models. In Database
Transaction Models. 1992.

[16] P. D. Ezhilchelvan, R. A. Macêdo, and S. K. Shrivastava.
Newtop: A fault-tolerant group communication protocol. In
ICDCS, pages 296–306, 1995.

[17] M. Hayden. The Ensemble System. Technical Report
TR-98-1662, Department of Computer Science. Cornell
University, January 1998.

[18] I. Houston, M. C. Little, I. Robinson, S. K. Shrivastava, and
S. M. Wheater. The CORBA Activity Service Framework for
Supporting Extended Transactions. Software Practice and
Experience, 33(4):351–373, 2003.

[19] S. Jajodia and L. Kerschberg, editors. Advanced Transaction
Models and Architectures. Kluwer, 1997.

[20] JGroups: A Toolkit for Reliable Multicast Communication.
http://www.jgroups.org.

[21] B. Kemme and G. Alonso. Postgres-R, a new way to
implement database replication. In VLDB, 2000.

[22] M.O. Killijian, J.C. Fabre, J.C. Ruiz-Garcia, and S. Chiba. A
Metaobject Protocol for Fault-Tolerant CORBA
Applications. In Proc. of IEEE Symp. On Reliable and
Distributed Systems (SRDS), 1998.

[23] Y. Lin, B. Kemme, M. Patiño-Martı́nez, and
R. Jiménez-Peris. Middleware based data replication
providing snapshot isolation. In Proc. of the ACM Int. Conf.
on Management of Data (SIGMOD). ACM Press, 2005.

[24] M. C. Little and S. K. Shrivastava. Object Replication in
Arjuna. Technical Report 50, BROADCAST Project, 1994.

[25] Mark Little. Models for web services transactions. In
SIGMOD Conf., page 872, 2004.

[26] Microsoft, IBM, and BEA.
WS-Coordination/WS-Transaction Specification, 2005.

[27] G. Morgan, S.K. Shrivastava, P.D. Ezhilchelvan, and M.C.
Little. Design and Implementation of a CORBA
Fault-tolerant Object Group Service. In Proc. of DAIS, 1999.

[28] L. E. Moser, P. M. Melliar-Smith, P. Narasimhan,
L. Tewksbury, and V. Kalogeraki. The Eternal System: An
Architecture for Enterprise Applications. In EDOC, 1999.

[29] L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal, R.K.
Budhia, and C.A. Lingley-Papadopoulos. Totem: A
Fault-Tolerant Multicast Group Communication System.
Communications of the ACM, 39(4):54–63, April 1996.

[30] OASIS. UDDI Replication Specification.
[31] OASIS. Universal Description, Discovery and

Integration(UDDI). http://uddi.org/.
[32] OASIS. Web Service Reliable Messaging, 2004.
[33] OASIS. Web Services Composite Application Framework

(WS-CAF), 2005.
[34] OMG. Fault Tolerant CORBA. OMG, 2000.
[35] M. Patiño-Martı́nez, R. Jiménez-Peris, B. Kemme, and

G. Alonso. Middle-r: Consistent database replication at the
middleware level. ACM TOCS, 2005.

[36] F. Pérez-Sorrosal, J. Vuckovic, M. Patiño-Martı́nez, and
R. Jiménez-Peris. Highly Available Long Running
Transactions and Activities for J2EE Applications. In
ICDCS, 2006.

[37] C. Plattner and G. Alonso. Ganymed: Scalable replication
for transactional web applications. In Proc. of the
ACM/IFIP/USENIX Int. Middleware Conf., 2004.

[38] R. Van Renesse, K.P. Birman, and S. Maffeis. Horus: A
Flexible Group Communication System. Communications of
the ACM, 39(4):76–83, April 1996.

[39] F. B. Schneider. Implementing Fault-Tolerant Services Using
the State Machine Approach: A Tutorial. ACM Computing
Surveys, 22(4):299–319, 1990.

[40] C. Sun, Y. Lin, and B. Kemme. Comparison of UDDI
Registry Replication Strategies. In ICWS, 2004.

[41] P. Verissimo, P. Barret, A. Hilborne, L. Rodrigues, and
D. Seaton. The Extra Performance Architecture (XPA). In
D. Powell, editor, Delta-4: A Generic Architecture for
Dependable Distributed Computing, pages 211–266. 1991.

[42] W3C. Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR/soap/.

[43] W3C. Web Services Description Language (WSDL).
http://www.w3.org/TR/wsdl.

[44] D. Worah and A. P. Sheth. Transactions in transactional
workflows. In Advanced Transaction Models and
Architectures, pages 3–34. Kluwer Academic Press, 1997.

[45] WS Interoperability Organization. Web Service
Interoperability (WS-I), 2005.

[46] H. Wu and B. Kemme. Fault-tolerance for stateful
application servers in the presence of advanced transactions
patterns. In SRDS, 2005.

