
Model-based Version and Configuration Management
for a Web Engineering Lifecycle

Tien N. Nguyen
Electrical and Computer Engineering Department

Iowa State University

tien@iastate.edu

ABSTRACT
During a lifecycle of a large-scale Web application, Web develop-
ers produce a wide variety of inter-related Web objects. Follow-
ing good Web engineering practice, developers often create them
based on a Web application development method, which requires
certain logical models for the development and maintenance pro-
cess. Web development is dynamic, thus, those logical models as
well as Web artifacts evolve over time. However, the task of man-
aging their evolution is still very inefficient because design deci-
sions in models are not directly accessible in existing file-based
software configuration management repositories. Key limitations
of existing Web version control tools include their inadequacy in
representing semantics of design models and inability to manage
the evolution of model-based objects and their logical connections
to Web documents. This paper presents a framework that allows
developers to manage versions and configurations of models and to
capture changes to model-to-model relations among Web objects.
Model-based objects, Web documents, and relations are directly
represented and versioned in a structure-oriented manner.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Configuration management;
H.5.4 [Information Interfaces and Presentation]: Hypertext /
Hypermedia

General Terms
Documentation, Management

Keywords
Web Engineering, Model-based Configuration Management, Ver-
sioned Hypermedia

1. INTRODUCTION
A lot of efforts and time have been spent to develop and to main-

tain Web-based applications in the daily basis. Web sites with a
few dozens of static HTML pages can be developed using technolo-
gies and tools forad hocdevelopment. The dramatic growth of the
WWW leads to large-scale Web applications, often distributed over
several sites and containing a large number of highly dynamic Web
objects. Such large-scale, dynamic Web-based applications with
complex navigational patterns and sophisticated computational be-
haviors are no longer manageable with ad hoc methods.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

Web development is no longer considered as a simple document
authoring task. In fact, it requires the same rigorous methodolo-
gies and tools as in the successfulsoftware engineeringdiscipline.
In response, the discipline ofWeb engineeringhas emerged, advo-
cating a systematic approach to development of high quality Web-
based systems [21]. Several Web and hypermedia application de-
velopment methods have been proposed, such as OOHDM [27],
RMM [16], and WebComposition [12], guiding Web developers in
their design and implementation tasks. Those methods often in-
troduce logical models and associated entities to address different
aspects of the development and maintenance process. For example,
in OOHDM [27], the conceptual model allows developers to ex-
press relations among data objects, while the navigation model and
presentation model address navigational structure and information
presentation in a Web application, respectively.

Entities in design models are connected to each other and re-
lated to Web documents at the implementation level (e.g. HTML
pages or scripts). The logical connections among them are cru-
cial for a successful development process. For example, the rela-
tion between a particular navigational pattern and its realization via
user-interface elements in HTML documents is important. Another
example is the connection between an entity in a conceptual data
schema and its corresponding entity in a navigational schema. This
connection helps to express navigation paths to Web pages contain-
ing a particular piece of information.

During a Web engineering lifecycle, not only the logical models
are in a state of evolution, but also the logical connections among
their entities are changed as well. For example, in one version, a
particular navigational path is implemented asregular hyperlinks
embedded within HTML pages; in a newer version, it is realized
as acomputation linkencoded within a Java script. Keeping track
of changes to design/implementation models and the connections
among their Web objects would tremendously benefit Web devel-
opers in their development and maintenance tasks.

To achieve that, one could use a software configuration man-
agement system (SCM) to record changes to Web artifacts which
reflect development histories. SCM is a sub-discipline of software
engineering that is concerned with the management of changes to
a software system and its artifacts. However, due to the nature of
a Web-based application, existing SCM approaches for Web engi-
neering are not well-suited. With existing SCM systems, design de-
cisions are not directly accessible. They are embedded within file-
based resources stored in version control repositories. Those SCM
approaches are either too general or too specific, and fail to man-
age the evolution of logical models, associated objects, and model-
to-model relations. Key limitations of existing Web configuration
management tools include their inadequacy in efficiently represent-
ing semantics of design models and inability to model changes to

Molhado SCM repository

Graph-based representation model

Third-party Web engineering environment

 (editors, associated tools, etc)

bridges

Fine-grained, structure-oriented version control

Figure 1: Framework

model-based Web objects and logical connections. Some SCM
tools based on text (or binary) files are not well-suited for design
models whose objects are often structured and have rich underlying
semantics. They are focused on providing content change manage-
ment mainly for Web documents making up a Web application at
the implementation level. Those file-based Web SCM systems dis-
regard the underlying syntactic and semantic structures of model-
based Web objects. Changes between versions are handled at the
text line level. Thus, it is largely up to Web developers to figure out
changes at the model level.

In contrast, there are Web SCM tools that are designed toward
specific types of Web objects (e.g. XML or HTML) with the knowl-
edge about the languages being encoded within the tools. They
work perfectly with markup files at the implementation level. How-
ever, the logical structures of model-based Web objects such as in
complex design schemas might not be well reflected in tree-based
structures of XML or markup documents. Managing changes at
the tree-based structural level is apparently not suitable for model-
based evolution. In brief, existing Web configuration management
approaches make the development and maintenance process of Web
applications inefficient and error-prone.

To address those issues, we have developed a framework that
allows Web developers to manage versions and configurations of
model-based Web objects, and to capture changes to model-to-
model logical relations among them. The evolution of connections
and dependencies among model-based design objects and Web doc-
uments at the implementation level can also be recorded.

2. OUR APPROACH

2.1 Background
The work that is presented in this paper is part of a research effort

which aims at applying SCM techniques to Web and hypermedia
applications. Our previous research result has producedMolhado,
an object-oriented SCM repository, that is capable of managing ver-
sions of software artifacts at the object level [22]. The main target
of Molhado is no longer a file in a file system. File is considered
as just one type of object. All objects can be versioned and saved
persistently in Molhado object-oriented SCM repository. Molhado
allows developers to capture and retrieve changes to their software
objects, without concerning about the concrete level of file storing
and versioning in a file system.

We have also applied this object-oriented SCM technology to
build the first version of an SCM-centered Web development envi-
ronment, namedWebSCM[23]. The first version of WebSCM has
an extensible and pluggable architecture that allows for the inte-
gration of editors for any new document types whose internal rep-

resentation isXML-compatible. WebSCM uses a Document Ob-
ject Model (DOM) [8] parser to import tree-structured documents,
converts the DOM trees into Molhado’s document tree representa-
tion, and then manages them [23]. WebSCM is a structure-oriented
environment that provides editors for several kinds of Web docu-
ments. It has the structured editors for XML, HTML, and a syntax-
recognizing Java program editor (i.e. syntactical correctness of
documents is always enforced). In brief, the first version of Web-
SCM provides a fine-grained, structure versioning services for only
tree-structuredWeb documents in XML, HTML, and Java formats.

2.2 Framework Summary
The research results presented here are from our efforts to ad-

dress the issues of managing the evolution of Web applications at
the model level. As discussed earlier, the tree-based version and
configuration management in Molhado and WebSCM was insuffi-
cient for managing the model-based evolution in a Web engineering
lifecycle. Also, a third-party Web development environment might
support a new design methodology and its associated model-based
entities might have more complex structures. Therefore, we need
to have a more generic representation model than XML document
tree model used in the previous version of WebSCM.

A generic and domain-independent representation model is de-
signed using a special data structure calledattributed, typed, nested,
anddirected graphs. Via this model, it is able to capture logical
structures of a wide variety of Web objects in logical models as
well as Web documents. A novel structure-oriented versioning al-
gorithm for that data structure has been developed to provide the
fine-grained content change and version management for Web enti-
ties of logical models. More importantly, that representation allows
us to take advantage of the storage and configuration management
capabilities of the Molhado object-oriented repository, to store dif-
ferent versions of Web objects and linking structures. The model-
to-model logical connections are managed via our versioned hy-
permedia infrastructure, in which linking structures are maintained
separately from Web objects. Thus, it facilitates systematic analyz-
ing and processing of those logical relations.

In a Web engineering/supporting environment that supports a
particular design model or in an editor for a model-based Web ob-
ject type, one could either directly use our representation for Web
objects and linking structures, or build abridge to act as a con-
verter between the native representation model of that environment
and our representation model (see Figure 1). The only requirement
on the bridge is that it needs to call our graph library functions to
update our repository whenever there are changes to Web objects in
a third-party development environment. Currently, we require one
bridge for each native Web object type.

We have developed a generic, structure-oriented differencing and
merging algorithms for model-based Web objects and documents.
They are extended to deal with both embedded and first-classhy-
permedia structure, which is defined as a collection of hyperlinks
and connected Web objects. This is a novel contribution to hyper-
text versioning research since no attempt has been made to apply
software merging techniques to versioned hypermedia documents.

Next section describes our structure-oriented, graph-based repre-
sentation model. Section 4 explains how that representation model
is implemented. A new fine-grained versioning mechanism is de-
veloped for this representation (Section 5). Section 6 presents the
use of our graph-based representation model for hypermedia struc-
tures. The structure-oriented differencing and merging frameworks
are presented in Section 7 and Section 8, respectively. The current
status of our implementation is described in Section 9. Section 10
presents related work. Conclusions appear in the last section.

3. STRUCTURE-ORIENTED REPRESENT-
ATION MODEL

This section describes a graph-based representation model for
Web objects and hypermedia structures among them. Graphs are
commonly known, well understood, have an established mathemat-
ical basis (graph theory), and encompass a huge number of con-
cepts, methods and algorithms [19]. This makes them very inter-
esting from a formal as well as a practical point of view. We use a
special type of graphs, calledattributed, typed, nested, anddirected
graphsto represent Web objects as well as hypermedia structures.

First of all, a directed graph can be defined as a tuple

G = {N, E, source, sink}

whereN is a finite set of nodes (or vertices),E is a finite set of
edges (or arcs), andN ∩ E = ∅. source and sink are func-
tions source : E → N andsink : E → N assigning exactly
one source and target node to each edge. We allow multi-graphs
where different edges can have exactly the same source and sink
nodes. However, we do not allow hyper-graphs, which contain
hyper-edges that have more than one source or target node.

Unlike document nodes in DOM or in many other XML-based
document models, a node in our model has a unique identifier. A
node has no values of its own. However, each node in a directed
graph can be associated with multiple attribute-value pairs. That is,
for eachn ∈ N , there is an associated attribute table consisting of
one or multiple attribute-value pairs(ai, vi) whereai is an attribute
name andvi is an attribute value. An attribute name can be any
string and must be uniquely identified. The domain ofvi can be
any data typeT , possibly thereferencetype. These typed attributes
accommodate multiple properties associated with nodes.

In other graph-based representation models, a graph could bela-
beled, where nodes and edges are attached by labels of some types
(often either string or integer). That is,label = (nlabel : N →
NodeLabel, elabel : E → EdgeLabel) is a pair of node-labeling
and edge-labeling functions. Our model extends this labeling tech-
nique by allowing each edge in a directed graph to be associated
with an attribute table in the same manner as a node.

Our model also allows a directed graph to be nested within an-
other in order to support composition and aggregation among Web
objects. Nesting is a natural way for humans to control the com-
plexity of a system. In a nested graph, the overall complexity is
reduced by allowing nodes to contain entire graphs themselves.
Nested graphs are also referred to ashierarchical graphs[19]. This
characteristic of a directed graph in our representation model is de-
fined by a partial node mapping function:nested : N → N ,
such that its corresponding relationnested ⊂ N × N is acyclic
and loop-free. This constraint is needed to ensure that we have
a nesting hierarchy and a proper composition mechanism, i.e., a
node cannot be contained within itself. Using relation notation,
(n, m) ∈ nested denotes thatn is directly nested inm.

The reason why attributed, typed, nested, and directed graphs
are used to represent Web objects and hypermedia structures in our
framework is manifold. Firstly, graphs are an intuitive, visually
attractive, general and mathematically well-understood formalism.
From the practical point of view, directed graphs are often used as
an underlying representation of arbitrarily complex software arti-
facts and their interrelationships in traditional software engineer-
ing environments [19]. Also, graphs have already been used for
describing and understanding a number of aspects of a software
system such as program behavior, program control flow, structural
and internal relations between parts of a system, etc. Applying to
Web engineering, nodes of a graph can represent Web objects such

as entities and relationships in RMM [16], classes and relations in
OOHDM’s conceptual schemas [27], user-interface components in
a navigational model [27], methods and classes in a program and a
script, and elements in XML or HTML documents, etc. The edges
can be used to represent all kinds of relationships between these
entities such as inheritance relations, dependencies, logical map-
pings, or navigational paths, etc. Directed graphs are sufficiently
general to be used for a wide variety of Web objects, depending on
the interpretation given to nodes and edges.

Secondly, a nesting mechanism is attached to the graphs to fa-
cilitate the composition and aggregation among Web objects. The
nested graphs also enable an encapsulation and layering mecha-
nism to reduce the complexity and to hide unimportant details of
an artifact from others. Low-level dependencies between nodes
can be abstracted to higher-level dependencies between the nodes
in which they are nested. It is apparent that many forms of nesting
occur in every phase of a Web application’s lifecycle. For exam-
ple, in design models, design schemas contain composite entities
such as in OOHDM’s conceptual schemas or abstract data view de-
sign schemas. At the implementation level, in scripts or programs,
we can easily find nested methods, composite classes, packages, or
nested elements in markup documents such as HTML.

Thirdly, the association of an attribute table to a node or an edge
facilitates the modeling of complex Web artifacts and allows us
to take advantage of underlying SCM and version control services
for different data types provided by the Molhado repository [22].
Molhado is based on the attribute grammar technology and has a
rigorous type system basis [22]. This association enables us to take
advantage of that technology. Next section will explain how we
implement this graph-based model in Molhado.

Finally, the popular DOM [8] and XML document tree mod-
els [17, 37] can be nicely encoded via this attributed, directed graph-
based representation model since their trees form a sub-class of this
type of graph. Thus, many types of implementation artifacts in a
Web application such as HTML, XML, and other markup docu-
ments can be represented using our graph-based model.

4. STRUCTURE-ORIENTED VERSIONING

4.1 Data and Version Models
This section describes how the attributed, typed, nested, and di-

rected graphs are implemented in Molhado’s data model. First of
all, we would like to summarize Molhado’s data and version mod-
els. Details could be found in another document [22]. Figure 2
conceptually illustrates the main concepts in that data model:node,
slot, andattribute. In our terminology, a node and an attribute are
calledIntermediate Representation(IR) node and attribute, respec-
tively. An IR node is the basic unit ofidentity. An IR node has
no values of its own — it has only its unique identity. A slot is a
location that can store a value of any data type, possibly a reference
to an IR node or a set of slots. A slot can exist in isolation but typi-
cally slots are attached to IR nodes, using an attribute. An attribute
is a mapping from IR nodes to slots. It may have particular slots
for some nodes and map all other nodes to a default slot. All the
slots of an attribute hold values of the same data type. The data
model can thus be regarded asattribute tableswhose rows corre-
spond to IR nodes and columns correspond to attributes. The cells
of attribute tables are slots. Once we add versioning, the tables get
a third dimension: the version (see Figure 2).

With version control added, there are three kinds of slots. Acon-
stant slotis immutable and can only be given a value once, when it
is defined. Asimple slotmay be assigned even after it has been de-
fined. The third kind of slot is theversioned slot, which may have

Figure 2: Data Model

different values in different versions (slot revisions). Any primi-
tive data type of a slot can be versioned in Molhado. A slot may
also exist in acontainer, an entity with identity and ordered slots. A
container may be heterogeneous (arecord in which each slot has its
own type) or homogeneous (asequenceof slots of the same type).
A container may be fixed or variable in size.

In Molhado’s version model, aversion is global across entire
software system and is a point in atree-structured discrete time
abstraction. That is, the third dimension in the attribute table in
Figure 2 is tree-structured and versions move discretely from one
point to another. Molhado usesproduct versioningwhere a uniform
global version space is maintained. The version model is state-
based, where each version is a first class entity that represents a
state of a system. A version can be associated with a name and
meta-information such as date, time, authors, etc. Thecurrent ver-
sion is the version designating the current state of a system. Any
version may be made current. Every time a versioned slot is as-
signed a (different) value, we get a new version, branching off the
current version. In brief, Molhado knows how to manage versions
of slots in any data type, and how to store and correctly retrieve
versioned slots that belong to a particular version point.

4.2 Mapping to the Data Model
Since a directed graph in our representation model is also based

on attribute-value pairs, it is reasonably straightforward to realize
it via Molhado’s data model for versioning purpose. An attribute
table is constructed for a directed graph as follows.

(a) Each graph node is represented by an IR node in the table.
The associated attribute-value pairs of a graph node could be easily
mapped into a row of the table. Attribute values are realized as slots
associated with the corresponding IR node. The attributes in those
attribute-value pairs are added into the set of IR attributes of that
table. From now on, we simply refer to IR attributes as attributes.

(b) Each edge in the graph is also represented by a new IR node
(i.e. a new row) in the attribute table. Let us call it an “edge” node.
The associated attribute-value pairs of the edge are integrated into
the attribute table as in (a). Furthermore, for each “edge” node, two
additional attributes are defined: “sink” attribute defines the target
node of the edge, and “source” attribute defines its source node.

(c) For each IR node that is used to represent a graph node, an
additional “children” attribute defines a slot containing a reference
to a sequence of outgoing edges of the node. An example of this
process will be described later (see Figure 3).

4.3 Nesting Mechanism
To handle nested graphs, we make use of the composite compo-

nent version control mechanism in Molhado [22]. In this mecha-
nism, A Molhadocomponentis an entity that represents alogical

objectin a software system. It can be versioned, persistently saved,
loaded from disk, and exists within the version space of a software
system. In Web engineering, a component can be used to model
a Web object in any phase of a software lifecycle. Each compo-
nent carries a component identifier that serves to identify ituniquely
within a Web system. Components are classified into two groups:
atomicandcompositecomponents. Anatomic componentcannot
contain other components, but might have internal structure. A
composite componentis defined as a composition or aggregation
of atomic components and/or other composite components. Com-
posite components can share the same constituent components, and
have arbitrary internal structure.

In our representation model, a directed graph that contains other
graphs will have at least one node thatlogically contains another
directed graph. Let us call that type of directed graph “compos-
ite” graph and that type of node “composite” node. Otherwise, let
us call it an “atomic” graph. In our framework, an “atomic” or
“composite” directed graph is encoded within a Molhado’s atomic
or composite component, respectively. In other words, a directed
graph is used as the internal structure of a Molhado component.
For a “composite” graph, an additional attribute, attribute “ref”, is
created to define for each “composite” node a versioned slot con-
taining a reference to the Molhado component that corresponds to
the subgraph nested at that “composite” node.

Figure 3 shows an example of the representation of an attributed,
typed, nested, and directed graph using Molhado’s data model.
There are two graphs in the figure: the directed graph correspond-
ing to the componentA is nested within the directed graph corre-
sponding to the componentC via the node 5. The attribute table in
Molhado representing for componentC is shown. Nodes “n1” to
“n5” are IR “node” nodes (i.e. representing for a graph node) while
nodes “n6” to “n10” are IR “edge” nodes (i.e. representing for an
edge). Each “edge” node has “source” and “sink” slots. For exam-
ple, “edge” node “n6” “connects” IR nodes “n1” and “n2”. Each
“node” node has a children slot. For example, “n2” has two out-
going edges (“n8” and “n9”). Node 5 has no outgoing edge, thus,
the “children” slot of “n5” containsnull. However, it is also acom-
positenode, therefore, its “ref” attribute refers to the componentA.
The attribute table for componentA is similar (not shown).

5. WEB CONFIGURATION MANAGEMENT
Previous section presented our graph-based representation model

for Web applications. Our goal is to provide structure-oriented
version control supports for model-based Web objects, Web docu-
ments, and hypermedia structures. Thus, a fine-grained, structure-
oriented version control scheme for that type of directed graphs is
required. This section presents such a scheme, which takes advan-
tage of Molhado repository. We also explain how configurations
are maintained among atomic and composite graphs.

5.1 Fine-grained Version Control
Our framework is based on the assumption that either one of

these following conditions holds: (1) the associated tools or edi-
tors for model-based Web objects in a third-party Web engineer-
ing environment directly use our graph-based representation model
for those objects and will call our provided library functions for
graphs and attributes in order to modify the objects’ structures or
properties; or (2) if those editors/tools for logical models have their
own native representations, the bridges/converters need to be con-
structed and call those library functions for graphs and attributes
to reflect changes made to Web objects in the environment. Those
functions will then update the values of slots in attribute tables in-
cluding structural slots (i.e. “children”, “source”, and “sink”).

 1

 2

 3

 4

 5

n1

n2

n3

n4

n5

n6

n7

n8

"source" "children"

[n6]

IR node

.....

.....

.....

.....Component C

Component A

"sink" "ref"

n9

n10

Attribute table for C

"type"

node

node

node

node

node

"attr1"

edge

edge

edge

edge

edge

n6

n7

n8 n9

n10

undef

undef

undef

undef

undef

n1

n3

n2

n2

n4

undef

undef

undef

undef

undef

n2

n1

n3

n5

n2

[n8,n9]

[n7]

[n10]

null

undef

undef

undef

undef

undef

comp_A

null

null

null

null

null

null

null

null

null

....

....

....

....

....

....

....

....

....

....

....

Figure 3: Nested Graph Representation

Figure 4 displays a new version ofC andA shown in Figure 3.
In the new version, the attribute table was updated to reflect the
changes to the graph structure as well as to the slot values. For
example, since node 4 and edges corresponding to “n9” and “n10”
were removed, any request to attribute values associated with those
nodes will result in an undefined value. On the other hand, node 11
and two edges were inserted, thus, one new “node” node (“n11”)
and two new “edge” nodes (“n12” and “n13”) were added into the
table. Attribute values of these nodes were updated to reflect new
connections. Attribute values of existing nodes were also modified.
For example, “children” slot of “n3” now contains an additional
child (“n12”), since that new edge (“n12”) comes out of node 3.
The attribute table for componentA was similarly updated.

This fine-grained versioning scheme is very efficient since com-
mon structures are shared among versions and all information in-
cluding structures and contents are versioned via one mechanism.
Importantly, this scheme is general for any subgraph at a node.
Therefore, fine-grained version control can be achieved for any
Web entity in a logical model that is represented by a node. Mol-
hado’s storage mechanism is able to handle efficiently these three-
dimensional attribute tables, which sometimes could be sparse.

5.2 Configuration Management
The graph-based structure versioning scheme enables the fine-

grained version management of models and their associated Web
objects. However, managing the evolution of a Web application is
much more than versioning of individual Web entities.Web config-
uration managementfor a large-scale Web application must include
other functionality such as consistent configuration management,
transaction support, workplace management, and merging and dif-
ferencing functionality for different versions of artifacts [22].

Fortunately, most of these tasks could be accomplished by us-
ing Molhado SCM infrastructure except the last two tasks. Mol-
hado has a highly reusable and tailorable architecture [22]. This
attributed directed graph-based representation model perfectly con-
forms to the Molhado framework as shown in the previous section.
Therefore, it is possible to re-use those SCM services. Take a sub-
task of maintaining consistent configurations among Web objects
as an example. The issue is how to determine the right versions of

 1

 2

 3

 11

 5

n1

n2

n3

n4

n5

n6

n7

n8

"source" "children"

[n6]

IR node

.....

.....

.....

.....New version of component C

New version of

component A

"sink" "ref"

n9

n10

Attribute table for C

"type"

node

node

node

undef

node

"attr1"

edge

edge

edge

n6

n7

n8

n12

undef

undef

undef

undef

undef

n1

n3

n2

undef

undef

undef

undef

undef

n2

n1

n3

[n8]

[n7, n12]

undef

null

undef

undef

undef

undef

comp_A

null

null

null

null

null

null

....

....

....

....

....

....

....

....

n13

n11

n12

n13

undef undef

undef undef undef undef undef undef

undef undef undef undef undef

node

edge

edge

undef undef

n3 n11

n11 n5

[n13] null

undef

undef

null

null

....

....

Figure 4: Graph-based Version Control

member objects for a version of a composite object. For an atomic
object, via the Molhado’s product versioning mechanism, when the
current version of the Web application is globally selected, the val-
ues of properties (represented by versioned slots) and the internal
structure of the object (represented by a directed graph, if any) will
be correctly determined since Molhado knows how to retrieve ver-
sioned slots belonging to the current version. Similarly, a version
of a composite object is easily retrieved: first of all, the internal
structure of the composite object (i.e. a directed graph) is correctly
retrieved after the current version is selected. Then, the “ref” ver-
sioned slots of “composite” nodes will refer to proper member ob-
jects of the composite object at the current version as well. The
same process continues for each member object.

In our previous research [23], the merging and differencing tools
were specifically designed for HTML, XML, Java scripts, and other
tree-structuredWeb artifacts at the implementation level. The ap-
proach does not scale to model-basedgraph-structuredobjects.
Our novel differencing/merging algorithms will be described later.

5.3 An Example
Figure 5 shows an example of our representation for an OOHDM

conceptual schema. In OOHDM, conceptual design is the elabora-
tion of a model of the application domain and determines the uni-
verse of discourse [27]. A conceptual schema is built upon classes,
relationships, and sub-systems. Classes are described as usual in
object-oriented models, though attributes may be multi-typed, rep-
resenting different perspectives of the same real-world entity.

In Figure 5, a conceptual schema for an online newspaper is dis-
played. There are stories, which can be essays or interviews. Every
story has an author, and an interview is related to the person who
grants the interview. Class and relation in a conceptual schema are
defined as Molhado atomic components. To represent this schema,
we use our attributed directed graph model. Each entity (class, rela-
tion, etc) is represented by a node except that each inheritance rela-
tion is represented by an edge (e.g. between “n1” and “n2”). Edges
connect nodes together to reflect the relationships in the schema.
The “ref” attribute defines for each node a reference to the cor-

Title: string
Date: date

...

Story

Text: string

Illustration:...
...

Essay

Audio_file: ...

...

Interview

Tel: int
Name: string

...

Author

Email: string

grants

is_author_of

1

32

4 5

6

a. Diagram

b. Graph representation

n1

n2

n3

story

 "ref"

interview

essay

n4 undefined

n5 author

n6 undefined

"type"
class

class

class

class
relation

relation

c. Attribute table

Figure 5: Conceptual Data Modeling

a1 a2

a3 a4

l_1

l_2 a5

Web object nodea anchor node

l link node

A hypermedia structure graph

Web object graphs

LEGEND:

refer to via "ref" attr

Figure 6: Hypermedia Structure Representation

responding component except for the “relation” nodes (e.g. “n4”
and “n6” in Figure 5). Each property of a class and its data type
are represented by attributes “propertyname” and “datatype” as-
sociated with the class component node (e.g. “n1”). The “relation”
nodes are associated with additional attribute-value pairs represent-
ing other properties of the relations such as arity, name, etc. Fig-
ure 5c) shows the partial attribute table.

Data records for objects instantiated from a class are stored in
an attributed tree with the depth of two, branching off the class
node. Each of those tree nodes at the first level represents a record.
Each record can be associated with a sequence of fields, which are
represented by children nodes of the record node. Each of these
nodes has additional attributes such as “name”, “type”, and “value”
to represent the name, type, and value of each field. In general,
the conceptual schema and data records for objects are represented
as attributed directed graphs and trees at two abstract levels: the
schema level and individual data object level.

6. MODEL-TO-MODEL RELATIONSHIPS
Web objects in design models are related to each other and to

Web documents at the implementation level. As discussed earlier,
maintaining the logical connections among them over time is cru-
cial for Web developers in having better understanding of the sys-
tem’s evolution. To manage model-to-model logical relations, we
use the first-class hypermedia structures in which a link is repre-

dir A

dir B dir C

a.html b.html

ADV representation graph File representation tree

d.pl

Hypermedia structure graph

l_1a1

a2

a3

l_2a4 a5

maps to

refers to

File directory structureADV user-interface objectsa)

b)

c.pl

Figure 7: Mappings from Design to Implementation

sented as a first-class entity such as in XLink standard [40]. The
advantages of first-class hyperlinks have been acknowledged by hy-
permedia research communities [38]. For example, they facilitate
the process of browsing, visualizing, and analyzing of relationship
networks among Web objects in different logical models.

We have built a hypermedia model that supports first-class hy-
permedia structures [22]. This section summarizes its core con-
cepts. In that model, alinkbaseis a container forhypertext net-
worksand/or other linkbases. Ahypertext network, which repre-
sents a hypermedia structure, can belong to only one linkbase. The
relation between a linkbase and a hypertext network is the same
as the relation between a directory and a file in a file system. A
hypertext network containslinks andanchors. A link is n-ary and
connects a set of its anchors together. An anchor can belong to
multiple links. A link or an anchor can also belong to multiple hy-
pertext networks. An anchor does not belong to an object. Itrefers
to a graph node within a Web object or to entire object. Attribute-
value pairs can be associated with any link or anchor.

To apply our versioning services to first-class hypermedia struc-
tures, we realize our hypermedia model via the graph-based rep-
resentation. In particular, a hypertext network is implemented as
an atomic component, whose internal structure is a directed graph.
Each link or anchor is represented by a node in that graph (Fig-
ure 6). A directed edge connects an anchor’s node to a link’s node
if the link contains the anchor. Attribute “ref” associates a slot to
each anchor’s node in the graph. The slot holds a reference to either
a component or a graph node within a component. That node (or
that component) is considered to be the position of the anchor. This
separation between anchors and object nodes allows for the separa-
tion between hypertext networks and the contents of components.
Also, a linkbase is implemented as a composite component, whose
internal structure is a tree. In brief, a hypertext network, represent-
ing for a hypermedia structure, is modeled and versioned according
to the graph-based versioning scheme as described earlier.

Figure 7 illustrates the use of our hypermedia infrastructure to
maintain the logical mappings from user-interface objects in Ab-
stract Data View (ADV) design model [27] to HTML documents or
scripts at the implementation level. Figure 7b) displays the graph
representing the hyperlink structure for the logical mappings. Note
that the hyperlink graph is separated from the representation graphs
and trees for Web objects/documents. Since a hypertext structure
is realized as a Molhado component, multiple model-to-model re-

lationship networks can be defined for different purposes, without
embedding multiple sets of HTML hyperlinks into Web documents.

7. STRUCTURAL DIFFERENCING
One of the basic functionalities in a SCM system is a differenc-

ing tool which displays changes between different versions of an ar-
tifact. Since model-based Web objects are represented as attributed
directed graphs, astructure-orienteddifferencing algorithm is re-
quired for that type of graph. This section describes such an algo-
rithm. A third-party Web engineering environment could use this
algorithm, which is realized as API library functions, to build a
specialized differencing tool for its supported Web objects.

Suppose that we have two versionsV1 andV2. The question is
how to determine if a node or an edge has beendeleted, inserted,
or moved, and if an associated attribute table has beenmodified. To
detect if an attribute table and its values have been changed, we use
a mechanism calledVersioned Unit Slot Information(VUSI) [23].
VUSI attaches a “dirty” bit to a slot (containing an attribute value).
Those bits will be set to “true” to signify changes. They are also
saved into the repository for later retrieval. Note that functions for
slots are called directly or indirectly (via the bridge) by editors.

To detect the deletion of a node or an edge from a directed graph,
the values of structural attributes (i.e. “source”, “sink”, and “chil-
dren”) are examined. A special value (undefined) signifies a dele-
tion. The removed node (or edge) is not permanently deleted in
the SCM repository since it still exists in previous versions. The
insertion of a node or an edge to a directed graph is signified by
the appearance of a new row in the representation attribute table.
To detect the relocation of a sub-graph, we examine the change of
the “source” value of an “edge” node. If the “source” slot refers
to a different node, the sub-graph starting from the “sink” node of
that edge is relocated. These detection functions are applicable to
any node and edge. A function to return differences between two
arbitrary versions of an attributed graph is also provided.

There are several characteristics of our framework that make
this structural differencing algorithm simple, efficient, and accu-
rate. Firstly,unique identifiersof nodes and edges facilitate the
maintenance of Web object histories, especially when objects are
relocated. Furthermore, the unique identifiers areimmutable. Sec-
ondly, we assume that the editors of third-party Web engineering
environments for objects arestructure-oriented, in which the opera-
tions will preservethose identifiers. Finally, the actual development
history is accessible since our API functions for graph structures
and attribute values are called by the bridge whenever Web ob-
jects are modified in a third-party environment. Therefore, changes
that were actually performed from one version to another could be
easily reconstructed by pairwise comparisons of versions without
dealing with sequences of actual operations explicitly.

Note that our structural differencing algorithm is efficient be-
cause it does not use complex directed graph comparison algo-
rithms as in many existing tools. We have applied this algorithm
to build structural differencing tools for OOHDM’s conceptual de-
sign diagrams, Java source code, HTML, and XML documents, and
integrated them into WebSCM (see Section 9).

8. STRUCTURE-ORIENTED MERGE

8.1 Merging of Versions of Attributed Graphs
This section presents a generic three-way merge framework for

attributed, directed graphs. In our merge framework, the informa-
tion in the common ancestor from which both versions originated
is also used during the merge process. Suppose that starting from

a base versionB, there are two alternative versionsA1 andA2. A
merge versionM needs to be constructed which combinesA1 and
A2 with respect toB. When a conflict is detected during the merge
process, developers will receive a message containing detailed de-
scription of the conflict. The principle of our merge algorithm is
to analyze the presence and absence of nodes/edges and associated
attribute values in those three versions. Depending on a particu-
lar scenario, different action would be invoked. The result is the
complex case scenario analysis as follows.

Case 1:A noden satisfies:n ∈ B, n ∈ A1 andn ∈ A2. Noden
will be added into the merged versionM . Consider the attribute
table ofn. If there is an attribute-value pair that was inserted in one
branch but not in the other, then it will be also inserted inM . If
an attribute-value pair is deleted in one branch, but the value was
modified in the other, aconflict will be notified. However, if the
value was not modified in the other branch, we do not add that
attribute-value pair intoM . If the attribute set is unchanged, we
analyze each attribute-value pair(ai, vi) of noden:

• FromB to A1, if vi has been changed, and fromB to A2, it
has also been changed, aconflict will be notified.

• FromB to A1, if vi has been changed, and fromB to A2, it
hasnot been modified: in merged versionM , ai will get the
new value atA1.

• FromB to A2, if vi has been changed, and fromB to A1, it
hasnot been modified: in merged versionM , ai will get the
new value atA2.

• FromB to A1, if vi is un-changed, and fromB to A2, it is
also un-changed: in merged versionM , ai will get the same
value as the one atA1 (or A2).

Case 2:A noden satisfies:n ∈ B, n ∈ A1, andn 6∈ A2 (i.e.
n was deleted at versionA2). If all attribute-value pairs associated
with n are un-changed fromB to A1, we do not addn into version
M . Otherwise, aconflict is notified.

Case 3:A noden satisfies:n ∈ B, n 6∈ A1, andn ∈ A2 (i.e. n
was deleted at versionA1). Similar to Case 2.

Case 4: A noden satisfied:n ∈ B but n 6∈ A1 andn 6∈ A2.
That is, the node was deleted in both branches. Then, it will not
appear in versionM either.

Case 5: A node n satisfied: n 6∈ B but n ∈ A1 and n ∈
A2. That is, the node was inserted in both branches. It will also
be added at versionM . Then, we do the same analysis for the
associated attribute table ofn as in Case 1.

Case 6:A noden satisfied:n 6∈ B, n ∈ A1, andn 6∈ A2. That
is, the node was inserted in only one branch. Then, the node and its
attribute table will be added at versionM .

Case 7:A noden satisfied:n 6∈ B, n 6∈ A1, butn ∈ A2. This
is similar to Case 6.

Case 8:n 6∈ B, n 6∈ A1, andn 6∈ A2 (not applicable).
Similar scenario analyses are applied for every edge. This pro-

cess will be repeated for all sub-graphs nested within a graph. When
using this algorithm, a third-party Web environment will interpret
those cases in accordance with its interpretation of nodes, edges,
and attributes. Moreover, one could customize this algorithm by
adding domain-specific knowledge into the merge process for bet-
ter decisions. We have used this algorithm as a foundation to build
merge tools for different types of Web objects in WebSCM.

8.2 Merging of Hypermedia Structure
The merge algorithm that was presented also handles merging of

embeddedhypermedia structures since the HTML hyperlinks are

represented by the “HREF” attribute values in attribute tables as-
sociated with nodes of HTML document trees. To deal with first-
class hypermedia structures and connected Web objects is not much
more complicated. The main reason is that the set of link/anchor
nodes in a hypermedia network does not intersect with the set of
graph nodes in Web objects (see Figure 6). Also, both of the hy-
permedia structure and the structure of related Web objects are rep-
resented as attributed graphs. Thus, the aforementioned merge al-
gorithm for attributed graphs is still applicable with some modifi-
cations. The procedure for merging of versions of a hypermedia
structure and connected Web objects is as follows.

First of all, we examine allanchornodes in the hypermedia net-
work. For each anchor nodea, the corresponding Web object node,
na, is uniquely determined via the “ref” attribute. Let us denote a
Web object graph containingna by G(na). If the versionsA1 and
A2 of G(na) have not been merged, the graph-based merge algo-
rithm is now applied to them. The same procedure is carried out for
all anchor nodes. After this phase, all changes to connected Web
object graphs have been merged into versionM .

Next, we apply the graph-based merge algorithm to the hyper-
media structure itself. However, an extra procedure is added into
the algorithm in the cases in which an anchor nodea might poten-
tially be insertedinto the merged versionM (i.e. cases in which
according to the merge algorithm described earlier,a will be added
into M , such as cases 6 and 7). However, if the corresponding
object node ofa was not added intoM , there is no need to have an-
chors defined on that node. Therefore, the extra procedure checks
if na (i.e. the corresponding object node ofa) did not appear in
M according to the first phase, thena and connected edges ofa
will not be added intoM . If the object node appears inM , thena
will be also added intoM . Whenlink nodes are analyzed, the extra
procedure is not used since they do not refer to object nodes.

9. IMPLEMENTATIONS
To verify our framework, we have implemented all aforemen-

tioned models and algorithms. We have been investigating existing
Web and hypermedia design methodologies such as OOHDM [27],
RMM [16], WebComposition [12], etc, and their supporting devel-
opment environments. We have carefully examined different types
of logical models and their Web objects. We have also looked at
editing environments for design models as well as for different
types of Web documents. Although very few of them have open
sources, we have successfully used our framework to build bridges
and added model-based, structure-oriented versioning supports into
an object-oriented, UML-based environment, namedThorn [33],
and a Scalable Vector Graphic (SVG) and animation editor, named
DrawSWF[9]. For the Thorn environment, the bridges for different
types of UML diagrams and schemas make use of the graph-based
representation. The bridges create the connection between Thorn’s
internal representation and our graph-based representation. They
make sure that changes to UML model-based entities and struc-
tures are properly reflected in the representation graphs.

In the experiment with DrawSWF editor, since it has XML as
the internal representation, attributed trees are sufficient to model
its supported Web artifacts. In fact, the bridge that we have built for
this SVG editor is used for all XML-based and hierarchically struc-
tured Web artifacts that were supported in the previous version of
WebSCM such as HTML, XHTML, and many other markup docu-
ments. The bridge for this type of Web objects has a library that is
very similar to DOM [8]. However, those API functions know how
to properly update attributed trees in Molhado. Java scripts are also
supported with the use of a bridge that creates the connection be-
tween abstract syntax trees and attributed trees used in our frame-

Figure 8: Model-to-model Logical Connections

work. Structural differencing tools have also been constructed to
display changes between two versions of an HTML, XML docu-
ment, a Java script, and file directory structure.

To experiment with other types of Web objects in design mod-
els, we have been using WebSCM as an experimental platform.
WebSCM has a pluggable architecture supporting the integration
of new editors with any native internal representations. Different
editors for Web objects were plugged into WebSCM. For example,
we have built editors and provide structure-oriented version control
and SCM supports for OOHDM conceptual schemas, navigation
and composition schemas amongWeb screens(a similar concept to
an ADV user-interface object in OOHDM [27]).

In WebSCM, we have used the versioned hypermedia infrastruc-
ture to managemodel-to-modellogical connections, dependencies,
and mappings among Web objects in different logical models. For
example, WebSCM is able to manage logical connections among
Web screens, implementation files, and data records in a Web ap-
plication. The right window in the Figure 8 shows the navigational
and compositional designs for a Web site of a laboratory. The top
left window displays data objects (e.g. lab staffs, students, projects,
publications, etc) in a hierarchical view. The directory structure of
the Web site at the implementation level is presented in the bottom
left window. WebSCM is able to record the evolution of a mapping
from a screen in the design model to actual files that realize the
design of that screen (e.g. screen “Tien” and file “tien.html”). In
addition, Web developers can manage the composition of screens
and map them into HTML frames or pages. When users click on
a composite screen, its member components will be presented (e.g.
the “Main” page in Figure 8). The logical mapping from a data
object to a Web screen in the screen design model is also captured
over time. For example, when data object “Tien” is selected, the
screen “Tien” is highlighted in the right window.

Figure 9 displays structural changes between two versions of a
conceptual schema. Nature of changes is shown by attached icons.
For example, between versionsv6 andv7, “CREDIT CHARGE”
was inserted (having an “i” icon), “ORDERPICKUP CLERK”
was deleted (having an “X” icon), “SALEDEPARTMENT” was
modified (having a pencil icon), and the relation “charge” is newly
added. The changes at the data level can be similarly displayed.

Figure 9: Structural Differencing of Versions of an OOHDM Conceptual Schema

10. RELATED WORK
Vendors in the SCM area are taking many approaches to Web

configuration management. All have added Web functions to their
SCM tools by offering access to some or all SCM functionality
through a browser [6]. WebSynergy [36] provides a Web front-end
into all of its existing SCM capabilities as well as Web authoring
tools. MKS’s WebIntegrity [35] integrates its version control facil-
ities with an authoring tool, while in Merant’s PVCS [20], version
control is separated. However, both of them provide version con-
trol at thefile level. StarTeam [30] is Web-enabled with the inten-
tion of tool integration. TrueChange [34] provides content change
management along with its version control, but with less focus on
fine-grainedWeb configuration management.

ClearQuest [4], a change request management tool of ClearCase,
coordinates developers in editing Web documents. Content change
management in SourceSafe [29] is line-oriented. Computer Asso-
ciate’s CCC/Harvest [3] pays considerable attention to supporting
collaboration among distributed development teams. Perforce [25]
has the ability to migrate repositories from other SCM tools. Al-
though all of these commercial SCM tools have distinguished and
valuable features, their main target isfiles that make up a Web ap-
plication. None of them focuses on supportingmodel-basedWeb
objects during the development process.

There are a number of advanced Web development methodolo-
gies and supporting Web engineering environments such as RM-
Case [7], WebComposition [12], Matilda [18], OOHDM-Web [26],
HDM [13], etc. They introduce different design models and model-
based Web objects but have not had a well-suited SCM tool for
them. As in commercial Web site development environments (e.g.
DreamWeaver [10], ColdFusion [5]), file-based SCM tools are of-
ten used. Other tools, such as TeamSite [32] and StoryServer [31],
are designed to support many aspects of Web development, with
particular strength in supporting collaboration. DynaBase [15] is
an integrated content management and publishing platform for Web
applications. It is XML-based and focuses on management and
reuse of data. ArticleBase [1]’s versioning support is file-based.

Many researchers inhypertext versioningcommunity [14, 24,
38] have focused on version control for documents in the pres-
ence of hyperlinks. However, the main goals of versioned hy-
permedia systems often do not include supports for Web applica-

tion development. Therefore, supports for source code are very
limited. Moreover, merging and differencing tools for hyperme-
dia structures have not been addressed. To improve the author-
ing and browsing features for versioned contents of Web pages,
some researchers in this area followed the language-oriented ap-
proach. They have attempted to change the Uniform Resource
Locator (URL) of a Web page to include a version identifier [28].
Bendix and Vitali proposed VTML (Versioned Text Markup Lan-
guage) [2] to express change operations for HTML documents. The
WebDAV protocol [39] is an extension of the Hypertext Transfer
Protocol (HTTP) to support distributed authoring and versioning.
It extends HTTP to include versioning operations for Web pages.
ττApache is transaction-time HTTP server that supports document
versioning [11]. To construct a document version history, snapshots
of the documents files are obtained over time.

In the context of merging of versions of Web objects at the model
level, previous software merging approaches are either too general
or too specific, and fail to address the presence of hyperlinks among
Web objects. Merging tools that are based on text files are not suit-
able for structured entities in design models since they disregard the
underlying structures of objects [29]. To those tools, a line of text
is considered as an indivisible unit. On the other hand, there are
many approaches that are tailored toward specific languages [17,
37]. They allowsyntactic-orientedor semantic-orientedmerging
with smarter decisions during the merge process. However, the
knowledge about the language is encoded within the tools. There-
fore, they could not be effectively used in a third-party Web devel-
opment environment.

In general, existing version control and SCM systems for Web
applications have a large variety of useful functionality. However,
their approaches consider a file as an undividable unit for SCM.
Their content change management is coarse-grained, with differ-
encing done on a line-by-line basis. None of them has a repre-
sentation model that adequately captures a wide variety of com-
plex Web objects in hypermedia design models. On the other hand,
other research approaches are too restricted to a particular type of
Web content such as XML-based or hierarchically structured doc-
uments [17, 37]. Those versioning and merging approaches are
not well-suited for complex graph-structured Web objects. In brief,
existing Web configuration management approaches have not well

addressed the configuration management and version control for
Web objects and their logical connections at themodellevel.

11. CONCLUSIONS
Systematic approaches to Web engineering become increasingly

necessary as Web applications grow and have longer lifetimes. Ad-
vanced Web development methods put more emphasis on the sep-
aration between the high level of logical design models from the
low level of implementation in Web documents. However, with ex-
isting Web version management tools, major Web design decisions
are embedded within files in SCM repositories. The changes at the
model level, and the logical connections among model-based ob-
jects and Web documents are not directly accessible. As a result,
Web maintenance activities are error-prone and inefficient. Our
framework presented in this paper addresses this problem.

Our framework allows developers to manage versions and con-
figurations of design models and to capture changes to model-to-
model logical relations among design objects. Model-based ob-
jects, Web documents, and logical connections among them are di-
rectly represented, persistently stored, and versioned in a structure-
oriented and fine-grained manner. Our SCM tools with relationship
management supports help Web developers to have better under-
standing about the evolution of their Web applications, and facili-
tate consistent management among models. Using our approach, a
third-party Web engineering environment could provide structure-
oriented SCM services for its supported Web objects at both design
and implementation levels. Our future work includes conducting
experimental studies with the emphasis on the automatic generation
of bridges for different environments. Currently, space complexity
is high relative to text-based SCM (three to six times), but we gain
model-based, fine-grained SCM for a Web engineering lifecycle.

12. REFERENCES
[1] ArticleBase. http://www.runningstart.com/.
[2] L. Bendix and F. Vitali. VTML for Fine-grained Change

tracking in Editing Structured Documents. InProceedings of
the 9th International Workshop on Software Configuration
Management, pages 139-156. Springer Verlag, 1999.

[3] CCC/Harvest. http://www3.ca.com/.
[4] ClearQuest. www.rational.com/clearquest/index.jsp.
[5] ColdFusion. http://www.allaire.com/.
[6] S. Dart.Configuration Management: the missing link in Web

engineering. Artech House, 2000.
[7] A. Diaz, T. Isakowitz, V. Maiora, G. Gilabert. RMC: A tool

to design WWW applications.The World Wide Web, 1995.
[8] Document Object Model. http://www.w3.org/dom/.
[9] DrawSWF. drawswf.sourceforge.net.

[10] Macromedia DreamWeaver. http://www.dreamweaver.com/.
[11] C. Dyreson, H.-L. Lin, and Y. Wang. Managing Versions of

Web Documents in a Transaction-time Web Server. In
Proceedings of the 13th International World Wide Web
Conference (WWW 2004), pages 422-432. ACM Press, 2004.

[12] M. Gaedke and G. Graf. Development and Evolution of
Web-applications Using the WebComposition Process
Model. InProceedings of 2nd Web Engineering Workshop at
the 9th International World Wide Web Conference, 2000.

[13] F. Garzotto, P. Paolini, and D. Schwabe. HDM: A Model-
based Approach to Hypermedia Application Design.ACM
Transactions on Information Systems, 11(1):1-26, Jan 1993.

[14] D. L. Hicks, J. J. Leggett, P. J. Nurnberg, and J. L. Schnase.
A hypermedia version control framework.ACM Transactions
on Information Systems (TOIS), 16(2):127–160, 1998.

[15] DynaBase content management.
http://www.rbii.com/products/dynabase/.

[16] T. Isakowitz, E. Stohr, and P. Balasubramanian. RMM: A
Methodology for Structured Hypermedia Design.
Communications of the ACM, 38(8):34–44, 1995.

[17] T. Lindholm. A three-way merge for XML documents. In
Proceedings of the 2004 ACM Symposium on Document
Engineering, pages 1–10. ACM Press, 2004.

[18] D. Lowe, A. Ginige, M. Sifer, and J. Potter. The Matilda data
model and its implications. InProceedings of 3rd
International Conference on Multimedia Modeling, 1996.

[19] Luqi. A Graph Model for Software Evolution.IEEE
Transactions on Software Engineering, 16(8):917–927, 1990.

[20] PVCS. http://www.merant.com/.
[21] S. Murugesan, Y. Deshpande, S. Hansen, and A. Ginige.

Web Engineering: A new discipline for Web-Based System
Development. InWeb Engineering: Managing Diversity and
Complexity of Web Application Development (LNCS 2016),
pages 3–13. Springer Verlag, 2001.

[22] T. N. Nguyen, E. V. Munson, J. T. Boyland, and C. Thao. An
Infrastructure for Development of Object-Oriented
Configuration Management Services. InProceedings of the
27th International Conference on Software Engineering
(ICSE 2005), pages 215–224. ACM Press, 2005.

[23] T. N. Nguyen, E. V. Munson, and C. Thao. Fine-grained,
structured configuration management for Web projects. In
Proceedings of the 13th International World Wide Web
Conference (WWW 2004), pages 433–443. ACM Press, 2004.

[24] K. Østerbye. Structural and cognitive problems in providing
version control for hypertext. InProceedings of the ACM
Conference on Hypertext, pages 33–42. ACM Press, 1992.

[25] Perforce. http://www.perforce.com/.
[26] D. Schwabe and R. de Almeida Pontes. A Method-Based

Web Application Development Environment. InProceedings
of the 1st Web Engineering Workshop at the 8th International
World Wide Web Conference, 1999.

[27] D. Schwabe and G. Rossi. An Object Oriented Approach to
Web-based Application Design.Theory and Practice of
Object Systems, 4(4):207–225, 1998.

[28] J. Simonson, D. Berleant, X. Zhang, M. Xie, and H. Vo.
Version augmented URIs for reference permanence via an
Apache module design. InProceedings of the WWW7
Conference, Computer Networks and ISDN Systems, 1998.

[29] Microsoft Visual SourceSafe.
http://msdn.microsoft.com/ssafe/prodinfo/overview.asp.

[30] StarTeam. http://www.startbase.com/.
[31] StoryServer. http://www.vignette.com/.
[32] TeamSite. http://www.interwoven.com/.
[33] Thorn UML editor. http://thorn.sphereuslabs.com/.
[34] TrueChange. http://www.truesoft.com/.
[35] WebIntegrity. http://www.mks.com/.
[36] WebSynergy. http://www.continuus.com/.
[37] W. Wei, M. Liu, and S. Li. Merging of XML Documents. In

Proceedings of the ER’04 Conference. Springer Verlag, 2004.
[38] E. J. Whitehead, Jr.An Analysis of the Hypertext Versioning

Domain. PhD thesis, University of California – Irvine, 2000.
[39] E. J. Whitehead, Jr. WebDAV and DeltaV: collaborative

authoring, versioning, and configuration management for the
Web. InProceedings of the ACM Conference on Hypertext
and Hypermedia, pages 259–260. ACM Press, 2001.

[40] W3C XML Linking. http://www.w3c.org/XML/Linking.

