
Relaxed—on the Way Towards True Validation
of Compound Documents ∗

Jirka Kosek
University of Economics, Prague

Dept. of Information and Knowledge Engineering
W. Churchill Sq. 4

130 67 Praha 3
Czech Republic

jirka@kosek.cz

Petr Nálevka
University of Economics, Prague

Dept. of Information and Knowledge Engineering
W. Churchill Sq. 4

130 67 Praha 3
Czech Republic

petr@nalevka.com

ABSTRACT
To maintain interoperability in the Web environment it is
necessary to comply with Web standards. Current specifica-
tions of HTML and XHTML languages define conformance
conditions both in specification prose and in a formalized
way utilizing DTD. Unfortunately DTD is a very limited
schema language and can not express many constraints that
are specified in the free text parts of the specification. This
means that a page which validates against DTD is not nec-
essarily conforming to the specification. In this article we
analyze features of modern schema languages that can im-
prove validation of Web pages by covering more (X)HTML
language constraints then DTD. Our schemas use combina-
tion of RELAX NG and Schematron to check not only the
structure of the Web pages, but also datatypes of attributes
and elements, more complex relations between elements and
some WCAG checkpoints. A modular approach for schema
composition is presented together with usage examples, in-
cluding sample schemas for various compound documents
(e.g. XHTML combined with MathML and SVG).

The second part of this article contains description of Re-
laxed validator application we have developed. Relaxed is
an extensible and powerful validation engine offering a con-
venient Web interface, a Web-service API, Java API and
command-line interface. Combined with our RELAX NG +
Schematron schemas, Relaxed offers very valuable validation
results that surpass W3C validator in many aspects.

Categories and Subject Descriptors
D.3.2 [Software]: Programming Languages—Language
Classifications; I.7 [Computing Methodologies]:
Document and Text Processing

General Terms
Standardization, Languages, Verification

∗This work is partially supported by the project “MedIEQ:
Quality labeling of medical web content using multilingual
information extraction” which is co-funded by the European
Commission, DG Health & Consumer Protection, Public
Health Programme.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

Keywords
XML, XHTML, validation, RELAX NG, Schematron, com-
pound documents

1. INTRODUCTION
The Web is a pervasive platform for sharing various kinds

of documents and for providing remote access to applica-
tions. Since its birth in the beginning of 90s, Web has been
developed as a heterogeneous system that should connect
agents (browsers) and servers developed by different soft-
ware vendors. In order to maintain interoperability, the Web
was built around a set of standardized protocols and data
formats which together define the Web environment. By
adhering to standards, authors of Web pages should be as-
sured that their pages will display correctly in browsers, be-
cause browsers should correctly implement support for Web
standards. The situation here is not yet perfect—there are
plenty of non-conforming pages available on the Web and
at the same time not all features of the Web standards are
correctly supported by all browsers.

But certainly there was a big movement for Web standards
during the last years. However, the will of authors to adhere
to Web standards is usually not sufficient—standards are
complex and there are just few people around the world who
know all details of (X)HTML language from a top of their
head. The rest of the Web authors should check their pages
using some sort of an automatic validation or a conformance
testing tool. Several such tools exist, the most known is the
W3C Markup Validation Service1.

The problem of the W3C validator (and of many other
similar services) is its sole dependency on a formal valida-
tion against DTD (Document Type Definition). But HTML
and XHTML are not defined only in terms of DTD. Respec-
tive specifications [10][2] contain a lot of constraints which
can not be expressed using DTD. This means that if some
document passes validation against DTD it is not necessarily
conforming to the (X)HTML standard.

To overcome limitations of DTD based validation we pro-
pose usage of more powerful schema languages that can
cover more constraints than DTD. From the (X)HTML val-
idation point of view the following features are the most
missing ones:

1http://validator.w3.org/

http://validator.w3.org/

• validation of element and attribute content against
data types;

• support for validation of compound documents
composed from XML fragments coming from various
namespaces;

• emulation of SGML exclusions for XHTML document
types;

• ability to express advanced constrains beyond struc-
tural validation.

In this paper we describe how can modern schema lan-
guages be utilized for this task (Section 2). Then we de-
scribe how we have reformulated XHTML constraints using
RELAX NG and Schematron (Section 3). The Section 4
describes Relaxed validator that uses previously mentioned
techniques to provide better validation service to Web con-
tent developers. In the last part of the article we outline
directions for future development of our validation approach
and the Relaxed application.

2. OVERVIEW OF THE MODERN
SCHEMA LANGUAGES

Shortly after launching the XML 1.0 standard it became
apparent that DTDs are lacking several critical features
needed in many XML applications. The two most
important and missing features were support for data types
and namespaces. DTD does not have the concept of data
types. Every element or attribute value is considered to
be almost an arbitrary string. It is not possible to define
content to look like a number, a date or a string with a
given length.

Namespaces allow to combine several XML vocabularies
in a single XML document. The resulting document is often
called a compound document. Compound documents pro-
mote information reuse and encourage to invent new, pre-
viously unknown ways to process information stored inside
documents.

Several new schema languages were created to overcome
DTD limitations. Many of them were just prototypes or pro-
prietary ones. Only two new schema languages get broader
acceptance—W3C XML Schema [11] and RELAX NG [6].
Both of those languages have very good support for data
typing and namespaces. At the same time there are also
big differences between those languages. Formal compar-
ison of DTD, W3C XML Schema and RELAX NG can
be found in [9]. To summarize briefly, RELAX NG is the
most expressive language and offers the greatest flexibility
in modularizing and combining schemas. This is the rea-
son why RELAX NG is very popular for creating complex
document oriented schemas like TEI2 or DocBook3. W3C
XML Schemas are enforcing unambiguity of schema4 and
thus they are very popular in scenarios where unambiguous
mapping from XML to object or database representation is
required.

All previously mentioned schema languages are so-called
grammar based languages. They define grammar of the

2http://www.tei-c.org/
3http://docbook.org
4This rule is called UPA (Unique Particle Attribution) in a
W3C XML Schema terminology.

XML vocabulary by enumerating all elements and their con-
tent models. However, this approach is not sufficient in all
situations. Some more complex constraints and relations be-
tween values in a document can not be captured in a gram-
mar based approach. This problem can be solved by using
rule based schema languages like Schematron. Schematron
schema consists of a set of XPath expressions that are eval-
uated against the validated document.

Each schema language is good only in constraining of some
document facets. In order to gain better validation results it
is reasonable to combine several schema languages and vali-
date document against all of them. Combination of Schema-
tron with RELAX NG or W3C XML Schema is an example
of such powerful constraint language. Moreover extensibil-
ity of both W3C XML Schema and RELAX NG allows to
embed Schematron rules directly into principal, grammar
based schema.

To prove the power of RELAX NG and Schematron for
Web documents validation we created a validation applica-
tion called Relaxed which utilizes RELAX NG and Schema-
tron schemas for XHTML.

3. REFORMULATION OF XHTML IN
RELAX NG AND SCHEMATRON

Relaxed is an open source project which aims to help au-
thors of HTML documents to achieve better international
standard compliance using an automated validation service.
Modern state-of-the-art XML technologies allow Relaxed to
provide better and more detailed validation results than
other similar services including W3C validator. The project
consists of two essential areas. The first is an HTML schema
written in RELAX NG with embedded Schematron patterns
which is further discussed in this section. The second but
nevertheless important area is a validation engine which is
discussed in Section 4.

The W3C’s HTML specifications usually consist of two
different parts. The first part is the specification text which
is basically a set of restrictions, recommendations and ex-
planations provided in a verbal form. The second part is
a DTD which is another source of restrictions written in a
formalized form. To write standard compliant documents
authors need to follow both parts, but only the DTD based
part may be validated automatically. This means that au-
thors still need to be familiar with the verbal specification,
but most of them aren’t. This leads to a huge amount of
non-standard documents in today’s Web environment which
causes many interoperability problems.

The aim of Relaxed is to express most of the verbally for-
mulated restrictions in a form that can be automatically val-
idated to reduce the authors’ knowledge requirements and to
achieve a better HTML specification compliance. To reach
this goal, Relaxed uses one of today’s most expressive combi-
nation of schema languages, RELAX NG and Schematron.
The biggest advantage over other similar approaches (in-
cluding W3C XML Schema combined with Schematron) is
aside from expressivity also some sort of elegance of use,
possibility to easily integrate both languages and a great
support for modularity.

3.1 Modularity
Relaxed HTML schemas are derived from the work of

James Clark “Modularization of XHTML in RELAX

http://www.tei-c.org/
http://docbook.org

NG” [7]. Those schemas demonstrate the power of RELAX
NG modularity. If you look at XHTML modularization
implementations using DTD or XML Schema, you see
they need a specific model or driver schema for every
used module combination. In RELAX NG, modularity is
much more straightforward. The only thing that needs to
be done is to include all desired modules and your new
schema combination is done on the fly.

Suppose that a separate hypertext module should add pos-
sibility to use a linking element (a) everywhere in the Web
page text. This can be accomplished by a simple definition
that adds an a element into a list of elements which are
permitted at the inline level.

<define name="Inline.class" combine="choice">

<ref name="a"/>

</define>

There is no need to completely redefine the content model
in which a occurs as is necessary in DTD and W3C XML
Schema.

Example 1: Modularity in RELAX NG

HTML4.01/XHTML1.0 specification defines three
language subsets (strict , transitional and frameset) and
every of them has it’s own monolithic schema. Those three
schemas contain a huge number of duplicities. Most of the
definition is basically repeated in an unchanged form in all
of them. This approach is really error-prone. One small
change in the shared language subset requires definition
modifications across all three different schemas. It is
difficult to keep such schemas consistent and the schemas
are also hard to read and understand. For instance, to find
out which elements are shared by all three subsets, you
have to go through all of the schemas. It’s also difficult
to tell which aspects of the language are specific for a
particular language subset.

Relaxed schemas solve all the previously outlined prob-
lems. They define the three language subsets just by includ-
ing the right modules. Common modules are shared among
all the subsets. There is no duplicity and separation into
modules brings better readability and easier maintenance.
With such modular architecture it is easy to fine-tune the
level of restriction during the validation process. Whether
you want to validate HTML including the WCAG specifica-
tion [5] or you want to allow elements from different names-
paces, the only thing you need to do is just to include the
appropriate module.

3.2 Ability to easily extend schemas
Once we have basic schemas for XHTML ready, we can

start to use them as a basis for compound documents
schemas. This is a very challenging task especially if you
only have experiences with DTD or W3C XML Schema.
However, with a good initial schema organization it is quite
easy to create such schema in RELAX NG.

Assume that we want to create schema for a
XHTML+MathML validation. This means that proper
MathML elements can be used anywhere inside the body

element. Initial XHTML schemas used in Relaxed define a
wildcard named pattern otherNamespaceElement which is
used to allow non-XHTML elements and attributes almost

everywhere within XHTML documents (see Example 2).
This is used to allow unrestricted use of foreign elements
and attributes in XHTML.

<define name="otherNamespaceElement">

<element>

<anyName>

<except>

<nsName ns="http://www.w3.org/1999/xhtml"/>

</except>

</anyName>

<zeroOrMore>

<choice>

<attribute>

<anyName>

<except>

<nsName

ns="http://www.w3.org/1999/xhtml"/>

</except>

</anyName>

</attribute>

<text/>

<ref name="otherNamespaceElement"/>

</choice>

</zeroOrMore>

</element>

</define>

Example 2: Wildcard named pattern

But an XHTML+MathML schema should be more restric-
tive. It should precisely prescribe where MathML elements
may occur and at the same time the schema must validate
MathML fragments against a MathML schema. This means
that the wildcard pattern must be redefined to cover only
the elements outside from XHTML and MathML as is shown
in Example 3.

Example 4 shows the final schema for compound doc-
uments. We just need to include the standard XHTML
schema, but during this inclusion we redefine the wildcard
pattern to disallow also MathML elements. Then we add
the MathML schema as a permitted element to all inline
and block level contexts in XHTML.

We have used this approach to create schemas
for XHTML+MathML, XHTML+SVG and
XHTML+MathML+SVG. Every of those schemas comes
in three variants—strict, transitional and frameset.

3.3 Support for datatypes
A big advantage of using RELAX NG over DTD are def-

initely datatypes. DTD’s datatypes are very elementary
and incompetent to fully express the complexity of HTML
datatype requirements. By default RELAX NG contains
just two built-in data types, but those are fully extensible
using external datatype libraries. A good example is the
W3C XML Schema datatype library implementation, which
brings a set of thirty seven carefully selected types to be
used within RELAX NG. This set may be further restricted
by setting intervals or by using regular expressions.

Relaxed schemas reflect most of the HTML datatype re-
quirements including lengths and multilengths, characters,
pixels, targets, font sizes, colors and many more. Two rep-
resentative datatype definitions are shown in Example 5.

Assume that this schema is saved in ns-xhtml-mathml.rng.

<element

xmlns="http://relaxng.org/ns/structure/1.0">

<anyName>

<except>

<choice>

<nsName

ns="http://www.w3.org/1999/xhtml"/>

<nsName

ns="http://www.w3.org/1998/Math/MathML"/>

</choice>

</except>

</anyName>

<zeroOrMore>

<choice>

<attribute>

<anyName>

<except>

<choice>

<nsName

ns="http://www.w3.org/1999/xhtml"/>

<nsName

ns="http://www.w3.org/1998/

Math/MathML"/>

</choice>

</except>

</anyName>

</attribute>

<text/>

<ref name="otherNamespaceElement"/>

</choice>

</zeroOrMore>

</element>

Example 3: Wildcard pattern with excluded XHTML and
MathML elements

3.4 Using Schematron to enforce additional
checks

There are several reasons why embedding Schematron
patterns may help to enhance the schema definition. Some
restrictions are simply inexpressible using RELAX NG.
Those are usually complicated structural conditions. A
nice example is the requirement that select elements with
an absent multiple attribute can not have more selected

options (see Example 6), another example is the WCAG
requirement for a proper heading section order. Even
a simple requirement to keep id and name of the same
element equal, would be hard to express using RELAX NG
only.

Another reason for using Schematron are situations when
RELAX NG definition is possible but too complicated.
Some of the restrictions may be expressed using
Schematron with a simple XPath expression while RELAX
NG implementation would involve many lines of code or
changes across the schema modules. For instance, HTML
specification requires a form element to have no other form

elements nested. While RELAX NG definition would be
quite complicated, possibly involving the introduction of a
completely new module, by using Schematron we just need
to add a very simple XPath rule shown in Example 7.

Combining RELAX NG with Schematron may even sim-

<grammar ns="http://www.w3.org/1999/xhtml">

<include href="xhtml-strict.rng">

<define name="otherNamespaceElement">

<externalRef

href="exclude/ns-xhtml-mathml.rng"/>

</define>

</include>

<define name="Block.class" combine="choice">

<externalRef href="../mathml/mathml2.rng"

ns="http://www.w3.org/1998/Math/MathML"/>

</define>

<define name="Inline.class" combine="choice">

<externalRef href="../mathml/mathml2.rng"

ns="http://www.w3.org/1998/Math/MathML"/>

</define>

</grammar>

Example 4: XHTML+MathML compound document
schema

Interesting HTML datatypes defined in RELAX NG.

<define name="tabindexNumber.datatype">

<data type="nonNegativeInteger">

<param name="pattern">[0-9]+</param>

<param name="minInclusive">0</param>

<param name="maxInclusive">32767</param>

</data>

</define>

<define name="Target.datatype">

<data type="string">

<param name="pattern">_(blank|self|parent|top)

|[A-Za-z].*</param>

</data>

</define>

Example 5: HTML datatypes

plify the schema modularity design. In RELAX NG it is
usually very simple to extend some elements by importing
an additional module. You just need to specify the type
of mutual combination and elements with same names are
automatically merged. But element restrictions are more
complicated. In this case you need to completely redefine
some element within an import statement to create its more
restrictive version. In some situations this may cause prob-
lems as imports usually take place outside modules in the
main scheme where we specify all modules which shall be
used. To keep this schema simple it is usually inconvenient
for us to invade this part with any additional element def-
initions. A very convenient solution is to use Schematron
for this additional restriction by including a simple rule into
the module where it really belongs. Such restriction is au-
tomatically applied in case the module is imported.

As you can see RELAX NG and Schematron are very
good fellows. Combining them together brings a strong
value added. It may not only increase the expressiveness,
but also simplify the schemas and make them more human-
readable. Both languages have a very distinct philosophy

Sometimes grammar based languages cannot express what
is otherwise easily expressible by a rule based language.

<sch:rule context="html:select">

<sch:report test="not(@multiple) and

count(html:option[@selected]) > 1">

Select elements which aren’t marked

as multiple may not have more

then one selected option.

</sch:report>

</sch:rule>

Example 6: Selected options

In some situations, using grammar based languages may be
an overhead. Schematron is used here to emulate SGML
exclusions feature unavailable in XML DTD.

<sch:rule context="html:form">

<sch:report test="descendant::html:form">

form element can not have any nested

form elements

</sch:report>

</sch:rule>

Example 7: Disabling nested forms using Schematron

and their use is more or less suitable in different situations
and for different purposes. Smart decisions about where to
use which language can significantly improve the schemas
by getting the best value of both.

3.5 Example of improved validation
The power of RELAX NG and Schematron can be seen

on Example 9. This page contains four HTML specification
violations:

• border attribute contains value 10%, but according to
the specification it should contain only integer value5,
not percent value.

• color attribute has nougat value. According to the
specification6 this attribute can contain only numeric
color value (sRGB) or one from the sixteen predefined
color names7.

• The second part of the page contains form element
which is nested inside another form element. This is
also prohibited8.

• The last form has attributes name and id with distinct
values (form1 and form2). But according to the speci-
fication9 these attributes must share same value when
used on the single form element.

If you try to validate this page with W3C Markup Vali-
dation Service you are notified that this page is valid. But

5http://www.w3.org/TR/html4/struct/tables.html#
adef-border-TABLE
6http://www.w3.org/TR/html4/present/graphics.html#
adef-color-FONT
7http://www.w3.org/TR/html4/types.html#type-color
8http://www.w3.org/TR/html4/interact/forms.html#
h-17.3
9http://www.w3.org/TR/html4/struct/links.html#
anchors-with-id

The transitional subset of XHTML is with few exceptions
less restrictive than the strict subset. One of the exceptions
is the param element and it’s name attribute which is optional
in strict but mandatory in transitional. The following rule
embedded in one of the transitional specific modules can
easily solve this requirement.

<sch:rule context="html:param">

<sch:assert test="@name">

The name attribute of param element is mandatory.

</sch:assert>

</sch:rule>

Example 8: Schematron is a good option to use in case of
restrictive modularity

as you can see, this page contains four violations of HTML
specification. In contrast validation against our RELAX NG
and Schematron schema reveals all errors (see Figure 2).

<html>

...

<body>

...

<h1>Datatype tests</h1>

<table border=’10%’>

<tbody>

<tr>

<td>B</td>

</tr>

</tbody>

</table>

...

<h1>Nested form</h1>

<form action=’process.form’>

<div>

<form action=’process.subform’>

<p>Somethings wrong</p>

</form>

</div>

</form>

...

<h1>Id and name are not the same</h1>

<form name=’name1’ id=’name2’

action=’process.form’>

<p>Somethings wrong</p>

</form>

...

</body>

</html>

Example 9: Sample HTML document with errors

4. RELAXED APPLICATION
Relaxed application was designed to be fully configurable,

extensible and to provide a transparent and easy-to-use vali-
dation interface. Beside the application programming inter-
face (API), which may be used to embed Relaxed validation
functionality into other applications or tools, Relaxed fea-
tures a Web-based user interface and a command-line user
interface as well. Where command-line interface is mainly
intended for testing and administration, the Web-based in-
terface may serve for two different purposes. An HTML

http://www.w3.org/TR/html4/struct/tables.html#adef-border-TABLE
http://www.w3.org/TR/html4/struct/tables.html#adef-border-TABLE
http://www.w3.org/TR/html4/present/graphics.html#adef-color-FONT
http://www.w3.org/TR/html4/present/graphics.html#adef-color-FONT
http://www.w3.org/TR/html4/types.html#type-color
http://www.w3.org/TR/html4/interact/forms.html#h-17.3
http://www.w3.org/TR/html4/interact/forms.html#h-17.3
http://www.w3.org/TR/html4/struct/links.html#anchors-with-id
http://www.w3.org/TR/html4/struct/links.html#anchors-with-id

font-end may be rendered by a Web browser to allow a
broad variety of users to interact with the validation engine,
whereas an XML result output is intended for automated
processing by another service or application.

4.1 Web-based user interface
Users may access Relaxed validation functionality

through an HTML user interface with their Web browser.
The only mandatory parameter to start a validation
process is the URL of the source document. But the user
can specify a number of additional validation parameters
as well. Documents are implicitly validated against
XHTML1.0/HTML4.01 specification, but as you can see
on Figure 1 there are several other possibilities to choose
from the “restriction” select box. For instance the user
may include WCAG 1.0 [5] restrictions, choose to disallow
elements from different namespaces, to validate compound
documents etc...

By default the document type declaration is automati-
cally detected by Relaxed. The “doctype” select box allows
user to force Relaxed to handle his document as a different
document type than declared. XHTML1.0/HTML4.0 spec-
ifies three language subsets with different level of strictness.
One reasonable approach to use this validation parameter
is to check your document’s validity for a less or more re-
strictive language subset. In case your document is valid
for a different document type than declared, you may think
about changing your document type declaration. You may
also use this parameter to bypass the Relaxed autodetection
mechanism for some reason.

At the bottom in Figure 1 you see three check boxes. They
represent another validation parameters which can be also
specified. The check box labelled “view source” appends
the complete document’s source at the bottom of the valida-
tion output and links the error messages to the correspond-
ing source lines. “Brief output” hides messages with a low
severity level when checked. The last check box called “dirty
parser” makes Relaxed convert the current document into
well-formed XML before the validation takes place. This
helps authors to focus on the structural problems rather
than on syntactical ones. The purpose of those three pa-
rameter’s is mainly to rearrange the validation output to
make it more readable and easy to understand.

In Figure 2 you see an example of the validation output.
The demonstrational document is considered to be invalid.
There is one info message at the top telling the user that
Relaxed has successfully detected the document type. This
is followed by four error messages. The first one complains
about a mismatched name and id attribute within the scope
of the same element. The second error highlights a form

element nested into another form element. And the third
and fourth error reflects an HTML datatype violation. All
of the mentioned errors are XHTML1.0/HTML4.0 specifi-
cation violations and none of them is reported when using
the current version of W3C validator (see Section 3.5).

4.2 Relaxed internals
Relaxed validation engine is written in Java and uses a

number of third-party libraries. One of those libraries is the
Sun‘s Multi-Schema Validator (MSV), which is used to val-
idate XML against RELAX NG schemas. Another reason
for using MSV is that it implements a common validation
interface called JARV. This interface allows Relaxed to eas-

ily switch to a different validation library or to configure
Relaxed to use schemas written in several different schema
languages and combine them.

Relaxed was also designed to validate Schematron
patterns embedded in RELAX NG schemas. This step is
achieved through several XSLT transformations. Those are
processed using the Saxon10 library. One of the reasons to
use Saxon are its extension capabilities. As the standard
transformation mechanism doesn’t provide information
about current source file line numbers, one of the Saxon’s
extensions is used to provide this information, which is
essential for validation results usability and convenience.

Using current XML technologies gives Relaxed the power
to validate more than the others, but not all real-life HTML
documents are XML instances. Despite XML brings many
advantages to HTML, there is still a significant number of
documents adhering to the HTML 4.x specification, which
is an application of SGML. As SGML is less restrictive than
XML, those documents mostly don’t meet the requirements
for a well-formed XML which makes processing of those
documents using common XML tools impossible. Enabling
Relaxed to validate XHTML documents only would make
its applicability in current heterogeneous Web environment
very limited. That’s a reason why Relaxed uses another
library called TagSoup. A specially modified version of Tag-
Soup brings the possibility to convert HTML documents to
well-formed XML (basically to XHTML) and to keep users
informed about most SGML syntax violations at the same
time. TagSoup architecture always guarantees a well-formed
output which makes possible to validate almost all of the
current real-life HTML documents using Relaxed validation
engine.

4.2.1 Application architecture
Relaxed architecture consists of several integrated com-

ponents. The centerpiece of the application is a validator
container, which contains a set of different validation com-
ponents. The container basically manages the validation
process. It invokes all registered validation components in a
sequence and finally aggregates their validation results.

A validation component is designed to handle a large num-
ber of validation requests against a small set of prearranged
schemas. Preparing a schema for validation may be a quite
expensive operation. For that reason the component caches
every prepared schema when it is first requested in order to
make it ready for future immediate use.

Currently there are two different validation components
implemented in the Relaxed project. One of them is basi-
cally a wrapper around the JARV validation interface. The
component can be be configured to use any schema language
supported by any validator which implements the JARV in-
terface. This validation component is used in the Relaxed
project to validate the modular RELAX NG schemas.

The second component does the embedded Schematron
pattern validation. The schema preparation process is a
series of three XSLT transformations. First transformation
extracts the embedded Schematron patterns from RELAX
NG schema modules. After that, Schematron is transformed
into an XSLT stylesheet. Finally the third transformation
adds Saxon line number extension elements. The outcome of
those transformations is again an XSLT stylesheet which can
be directly used for validation of the individual documents.

10http://saxon.sf.net

http://saxon.sf.net

Figure 1: Relaxed user interface

Figure 2: Validation output

Such validation process is again nothing else than another
XSLT transformation.

Another part of the architecture is a filter chain
mechanism. Before any document is processed by
the validator container, it is first passed into a filter

chain. The chain can consist of a number of filters.
Filters may modify the validated document content
with respect to the current validation properties. As
well as the validation components, filters also have the
ability to issue validation errors. One example of a filter

Schemas

Result

Document

Relaxed application

Error
Handler

F1 F2

FilterChain

HTML2XHTMLFilter

SharedDocumentStorage

ValidatorContainer

V1SchematronValidatorJARVValidator

Figure 3: Application architecture

Author

 in
XHTML
Validated
document

transformation

Messages
 out

XSLT
Schematron
schema->XSLT

transformation

XSLT
Schematron
XSLT

 in

outXSLT
Schematron
XSLT
+ line number
elements

XSLT
Saxon line
number
extension

Schema
Relax NG
 +
Schematron

 in

XSLT
Schematron
extractor

transformation

Schema
Schematron

transformation
in

out

 out

Figure 4: Schematron validation

implementation is the HTML to XHTML conversion
filter.

4.2.2 Schema selection
As there are several types of HTML documents and every

type needs a special schema to be validated, Relaxed valida-
tor needs some mechanism to map document types to rele-
vant schemas. An eligible unique document type identifier
is the public identifier used in the document type declara-
tion. Occurrence of such declaration in HTML documents
is required by the W3C HTML specification.

Relaxed validation components use a special configuration
file to map document types to schemas. Such mapping may
be further structured into different validation options which
are basically different mapping subsets. It is possible to
specify which option to use at each validation request. For
instance a user may specify such an option, using a select
box in a user interface. Grouping mappings into options
allows Relaxed users to select schemas or a group of schema
modules involved in the particular validation process and
thereby for instance adjust the level of validation strictness.

4.2.3 Validation dispatching and validation result
aggregation

When a validation request is retrieved, the validation con-
tainer component performs a sequence of predefined steps.
At first the specified document is retrieved, filtered by the
filter chain and stored in a reusable form to be accessible
among several validation components. After that the valida-
tor container triggers all registered validation components to
start their individual validation tasks.

During this process, the validator container propagates
a shared error handler instance into all validation compo-
nents and even into all chained filters. The error handler
collects all messages issued by different components. It may
also perform additional operations e.g. message sorting or
grouping on them.

A message contains an explanatory text, severity level and
when it makes sense also a position of the described issue in
the source document (usually specified by a line number and
possibly by a column). The info severity level is used to in-
form the user about the validation process stages. Warnings
are used in case some observed issue is not directly violating
the specification, but instead its use in such a context is not
recommended or questionable. The validated document is
labelled as invalid in a case that the error handler retrieves
any error or fatal error messages. The error severity level
is used in case of a recoverable schema violation, while fa-
tal error announces a serious problem, which makes further
document processing impossible (e.g. document isn’t well-
formed).

4.2.4 Legacy HTML parser
As discussed in Section 4.2, for Relaxed it is very impor-

tant to keep backward compatibility with HTML4.x doc-
uments. For that reason the TagSoup11 library has been
integrated into the Relaxed project. TagSoup is a SAX-
compliant parser which allows standard XML tools to be ap-
plied to the real-life HTML documents. What’s important,
TagSoup architecture guarantees a well-formed output un-
der all circumstances without any syntax error thrown. The
TagSoup motto is “Just Keep On Trucking”. This means
that from any HTML4.x document Relaxed gets always a
well-formed input.12

From the Relaxed point of view the TagSoupes
philosophy is both, its biggest advantage and its biggest
disadvantage. Relaxed requirement is to convert the
SGML syntax into the more strict XML syntax but
to stay notified about any SGML violations at the

11http://home.ccil.org/~cowan/XML/tagsoup/
12We also tested Java version of HTML Tidy (http://
sourceforge.net/projects/jtidy), but this library was
not able to correctly load and parse many real world docu-
ments.

http://home.ccil.org/~cowan/XML/tagsoup/
http://sourceforge.net/projects/jtidy
http://sourceforge.net/projects/jtidy

same time. A TagSoup patch was necessary to achieve
that.

TagSoup is basically a simple state-machine. When pars-
ing a document, every important unit of the document tran-
sits TagSoup into a different state by invoking an action. A
simple example of such behavior is an end tag without the
start tag. This transits TagSoup into a special state where
a repair action is invoked and the omitted tag is set right.
Other violations e.g. missing end tag, unknown entities,
attribute minimization, overlapping tags (see Example 10)
etc. are repaired in a similar manner. The problem is that
fixed SGML violations stay hidden to Relaxed and the user
doesn’t get notified about them. Overlapping tags are a fa-
tal violation of XML as well as SGML. If TagSoup wouldn’t
fix such a problem the XML parser used in Relaxed would
throw a fatal error, the validation process stops and the user
gets finally notified. As you can see one solution is to modify
TagSoup to fix just those errors which violate XML but not
SGML.

before TagSoup:

<p> <i> Hello,</p> world! </i>

after TagSoup:

<p> <i> Hello,</i></p><i> world! </i>

Example 10: Overlapping elements

Another approach currently used in Relaxed is to let Tag-
Soup fix all problems, but force him to report those, which
are an SGML as well as an XML violation, with a specific
error message. This approach is more comfortable for the
user. As the validation process doesn’t stop, the user gets
most of the errors during a single validator run.

4.2.5 REST Interface
Representational State Transfer (REST) is a model for

building Web-services based solely on the HTTP protocol
and the URL specification. The client accesses a URL (a
resource identifier) and gets a response (a resource repre-
sentation) in some understandable form, for instance XML,
HTML, PNG etc... REST is a light-weight alternative to
SOAP, XML-RPC and other protocols which may mean an
overhead in some simple situations. This is exactly the case
of Relaxed as it features just one method with a small num-
ber of parameters.

The general URL for Relaxed REST Interface looks like
this:

http://servername/context/method?parameter1=value&

parameter2=value&...¶meterN=value.

The validation method is called validate and the context
name depends on the particular server deployment. The
validate method has a set of parameters. They basically
correspond to the validation parameters introduced in Sec-
tion 4.1.

Validation parameters

uri the document to be validated (mandatory to start the
validation process)

option name of the validation option, specified in the doc-
ument type to schema mapping, see Section 4.2.2 (if
not specified a default option is used)

source (true / false – default) specifies whether to in-
clude the full document’s source within the validation
output

severity (true / false – default) filters low severity
level messages from the output

filterForcedDoctype (... / autodetect – default)
forces an explicit document type, if not default

filterDirtyParser (true / false – default) if true, doc-
ument is converted to well-formed XML before valida-
tion

xml (true / false – default) choose between HTML and
XML output

The xml parameter determines the output format. If not
specified the output is by default HTML which can be ren-
dered by a Web browser. If set to true, the response is an
XML output which is tailored for further automated pro-
cessing by some other tools, applications or different services
(see Example 11).

<relaxed>

<source

url="http://nalevka.com/resources/

relaxed/poc.html"/>

<output result="Your document is invalid.">

<message severity="INFO">

<text>Forced document type:

-//W3C//DTD XHTML 1.0 Strict//EN</text>

</message>

<message severity="ERROR">

<locator line="9" column="25" />

<text>attribute "border" has a bad value:

"10%" does not satisfy

the "nonNegativeInteger" type</text>

<source>...<table border=’10%’></source>

</message>

... more messages ...

</output>

</relaxed>

Example 11: Relaxed XML output

5. FUTURE WORK
There is no doubt that compound documents are the fu-

ture of the Web. Compound documents combine elements
from several vocabularies in one XML document. In the
Web paradigm, compound document is usually a combina-
tion of XHTML with SVG, MathML, XForms, SMIL or
VoiceXML fragments. In Section 3.2 we have shown how
to manually create a schema which combines several vo-
cabularies together and which can be used for validation
of compound documents. We plan to create schemas for ad-
ditional vocabulary combinations in the future. However,
this approach does not scale well because there are simply
too many possible vocabulary combinations.

In order to create even better support for compound doc-
uments in Relaxed we plan to implement our own NVDL
based validator. NVDL (Namespace Validation and Dis-
patching Language) [1] is an upcoming ISO standard for val-
idation of compound documents. In NVDL you can specify

how to split compound document into several fragments and
how to validate these fragments against separate schemas.

<rules xmlns="http://purl.oclc.org/dsdl/

nvdl/ns/structure/1.0">

<namespace ns="http://www.w3.org/1999/xhtml">

<validate schema="xhtml.rng">

<mode>

<namespace ns="http://www.w3.org/1999/

02/22-rdf-syntax-ns#">

<validate schema="rdfxml.rng">

<mode>

<anyNamespace>

<attach/>

</anyNamespace>

</mode>

</validate>

</namespace>

</mode>

</validate>

</namespace>

</rules>

Example 12: NVDL script for XHTML+RDF

We do not only plan to improve Relaxed internals, but we
also plan to create usable tools for end users on top of Re-
laxed. One example of such tool is a validator browser plugin
that lets you automatically validate a currently loaded page.

6. RELATED WORK
As far as we know Relaxed is the only validator that pro-

vides validation of compound documents.13 There are val-
idators like XML schema validator14 and Validation Service
for RELAX NG15 which are based on W3C XML Schema
or RELAX NG and are able to check data types better then
DTD validators. However, none of those validators is sup-
porting embedded Schematron rules and thus it is far be-
yond Relaxed validation capabilities. This is also supported
by the fact that our RELAX NG schemas for XHTML are
being used by another validation services, not only by Re-
laxed.

Currently Relaxed is also used for evaluating Web page ac-
cessibility in European Internet Accessibility Observatory16

project. We cooperate with MedIEQ17 project. The aim of
this project is to develop tools for quality labelling of med-
ical Web sites. Relaxed will be used there to check validity
and some aspects of accessibility.

13Strictly speaking W3C validator can validate
XHTML+MathML. But as this validator is DTD based
you are forced to use specific namespace prefixes in your
document.

14http://schneegans.de/sv/
15http://hsivonen.iki.fi/validator/
16http://www.eiao.net/
17http://zeus.iit.demokritos.gr/medieq

7. CONCLUSIONS
This article has shown that our approach of using RELAX

NG combined with Schematron for Web documents valida-
tion is in all aspects superior to currently used DTD based
validation. Implementation of our validation approach—
Relaxed validator—is mature enough for production use.
Significance of Relaxed will grow up with adoption of com-
pound documents on the Web because currently there are
no other validators able to validate compound documents.

Relaxed is an open-source project hosted on
SourceForge18. Relaxed on-line validation service is
available at http://badame.vse.cz/validator/.

8. REFERENCES
[1] Document Schema Definition Languages (DSDL) — Part

4: Namespace-based Validation Dispatching Language —
NVDL. ISO/IEC FCD 19757-4. 2005.

[2] XHTMLTM 1.0 The Extensible HyperText Markup
Language (Second Edition). W3C, 2002.
WWW:
http://www.w3.org/TR/2002/REC-xhtml1-20020801/

[3] Altheim, M., McCarron, S., Boumphrey, F., Dooley, S.,
Schnitzenbaumer, S., Wugofski, T.: Modularization of
XHTMLTM . W3C, 2001.
WWW: http://www.w3.org/TR/2001/
REC-xhtml-modularization-20010410/

[4] Biron, P., Malhotra, A.: XML Schema Part 2: Datatypes
Second Edition. W3C, 2004.
WWW:
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

[5] Chisholm, W., Vanderheiden, G., Jacobs, I.: Web Content
Accessibility Guidelines 1.0. W3C WAI, 1999.
WWW:
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/

[6] Clark, J., Murata, M.: RELAX NG Specification. OASIS
Committee Specification, 2001.
WWW: http://www.relaxng.org/spec-20011203.html

[7] Clark, J.: Modularization of XHTML in RELAX NG.
Thai Open Source Software Center Ltd, 2003.
WWW: http://www.thaiopensource.com/relaxng/xhtml/

[8] Jelliffe, R.: The Schematron Assertion Language 1.5.
Academia Sinica Computing Centre, 2002.
WWW: http://xml.ascc.net/resource/schematron/
Schematron2000.html

[9] Murata, M., Dongwon, L., Murali, M., Kawaguchi, K.:
Taxonomy of XML Schema Languages using Formal
Language Theory. 2004.
WWW: http://web.cs.wpi.edu/~mmani/toit/taxonomy/
new/taxonomy.pdf

[10] Ragget, D., Le Hors, A., Jacobs, I.: HTML 4.01
Specification. W3C, 1999.
WWW:
http://www.w3.org/TR/1999/REC-html401-19991224/

[11] Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N.:
XML Schema Part 1: Structures Second Edition. W3C,
2004.
WWW:
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

18http://relaxed.sourceforge.net

http://schneegans.de/sv/
http://hsivonen.iki.fi/validator/
http://www.eiao.net/
http://zeus.iit.demokritos.gr/medieq
http://badame.vse.cz/validator/
http://www.w3.org/TR/2002/REC-xhtml1-20020801/
http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/
http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/
http://www.relaxng.org/spec-20011203.html
http://www.thaiopensource.com/relaxng/xhtml/
http://xml.ascc.net/resource/schematron/Schematron2000.html
http://xml.ascc.net/resource/schematron/Schematron2000.html
http://web.cs.wpi.edu/~mmani/toit/taxonomy/new/taxonomy.pdf
http://web.cs.wpi.edu/~mmani/toit/taxonomy/new/taxonomy.pdf
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://relaxed.sourceforge.net

	Introduction
	Overview of the modern schema languages
	Reformulation of XHTML in RELAX NG and Schematron
	Modularity
	Ability to easily extend schemas
	Support for datatypes
	Using Schematron to enforce additional checks
	Example of improved validation

	Relaxed application
	Web-based user interface
	Relaxed internals
	Application architecture
	Schema selection
	Validation dispatching and validation result aggregation
	Legacy HTML parser
	REST Interface

	Future work
	Related work
	Conclusions
	REFERENCES -9pt

