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ABSTRACT
In order to obtain a machine understandable semantics for
web resources, research on the Semantic Web tries to an-
notate web resources with concepts and relations from ex-
plicitly defined formal ontologies. This kind of formal an-
notation is usually done manually or semi-automatically. In
this paper, we explore a complement approach that focuses
on the “social annotations of the web” which are annota-
tions manually made by normal web users without a pre-
defined formal ontology. Compared to the formal annota-
tions, although social annotations are coarse-grained, infor-
mal and vague, they are also more accessible to more peo-
ple and better reflect the web resources’ meaning from the
users’ point of views during their actual usage of the web re-
sources. Using a social bookmark service as an example, we
show how emergent semantics [2] can be statistically derived
from the social annotations. Furthermore, we apply the de-
rived emergent semantics to discover and search shared web
bookmarks. The initial evaluation on our implementation
shows that our method can effectively discover semantically
related web bookmarks that current social bookmark service
can not discover easily.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous

General Terms
Alogrithms, Experimentation
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1. INTRODUCTION
Semantic Web is a vision that web resources are made

not only for humans to read but also for machines to un-
derstand and automatically process [3]. This requires that
web resources be annotated with machine understandable
metadata. Currently, the primary approach to achieve this
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is to firstly define an ontology and then use the ontology
to add semantic markups for web resources. These seman-
tic markups are written in standard languages such as RDF
[20] and OWL [23] and the semantics is provided by the on-
tology that is shared among different web agents and appli-
cations. Usually, the semantic annotations are made man-
ually using a toolkit such as Protege or CREAM [26, 31]
or semi-automatically through user interaction with a dis-
ambiguation algorithm [18, 4, 5, 6]. There are also some
work on automatic annotation with minimum human efforts.
They either extract metadata from the web site’s underly-
ing databases [12] or analyze text content within the web
pages using learning algorithms [7] and/or NLP techniques
[8]. Most of these methods uses a pre-defined ontology as
the semantic model for the annotations. The manual and
semi-automatic methods usually requires the user be famil-
iar with the concept of ontologies and taxonomies. Although
these approaches have been successfully used in applications
like bioinformatics (e.g. [22]) and knowledge management
(e.g. [18]), they also have some disadvantages. Firstly, es-
tablishing an ontology as a semantic backbone for a large
number of distributed web resources is not easy. Different
people/applications may have different views on what exists
in these web resources and this leads to the difficulty of the
establishment of an commitment to a common- ontology.
Secondly, even if the consensus of a common ontology can
be achieved, it may not be able to catch the fast pace of
change of the targeted web resources or the change of user
vocabularies in their applications. Thirdly, using ontologies
to do manual annotation requires the annotator have some
skill in ontology engineering which is a quite high requirment
for normal web users.

In this paper, we explore a complement approach of se-
mantic annotations that focuses on the “social annotations”
of the web. In the recent years, web blogs and social book-
marks services are becoming more and more popular on the
web. A web blog service usually allows the user to catego-
rize the blog posts under different category names chosen by
the user. Social bookmark services (e.g. del.icio.us1) enable
users to not only share their web bookmarks but also assign
“tags” to these bookmarks. These category names and tags
are freely chosen by the user without any a-priori diction-
ary, taxonomy, or ontology to conform to. Thus, they can
be any strings that the user deems appropriate for the web
resource. We see them as the “social annotations” of the
web. We use the word “social” to emphasize that these an-
notations are made by a large number of normal web users

1http://del.icio.us



with implicit social interactions on the open web without a
pre-defined formal ontology. Social annotations remove the
high barrier to entry because web users can annotate web
resources easily and freely without using or even knowing
taxonomies or ontologies. It directly reflects the dynamics
of the vocabularies of the users and thus evolves with the
users. It also decomposes the burden of annotating the en-
tire web to the annotating of interested web resources by
each individual web users.

Apparently, without a shared taxonomy or ontology, so-
cial annotations suffer the usual problem of ambiguity of
semantics. The same annotation may mean different things
for different people and two seemingly different annotations
may bear the same meaning. Without a clear semantics,
these social annotations won’t be of much use for web agents
and applications on the Semantic Web. In this paper, us-
ing a social bookmark service as an example, we propose
to use a probabilistic generative model to model the user’s
annotation behavior and to automatically derive the emer-
gent semantics [2] of the tags. Synonymous tags are grouped
together and highly ambiguous tags are identified and sepa-
rated. The relationship with the formal annotations is also
discussed. Furthermore, we apply the derived emergent se-
mantics to discover and search shared web bookmarks and
describe the implementation and evaluation of this applica-
tion.

2. SOCIAL BOOKMARKS AND SOCIAL
ANNOTATIONS

The idea of a social approach to the semantic annotation
is enlightened and enabled by the now widely popular so-
cial bookmarks services on the web. These services provide
easy-to-use user interfaces for web users to annotate and
categorize web resources, and furthermore, enable them to
share the annotations and categories on the web. For exam-
ple, the Delicious (http://del.icio.us) service

“allows you to easily add sites you like to your
personal collection of links, to categorize those
sites with keywords, and to share your collec-
tion not only between your own browsers and
machines, but also with others” – [29]

There are many bookmarks manager tools available [17, 11].
What’s special about the social bookmarks services like De-
licious is their use of keywords called “tags” as a funda-
mental construct for users to annotate and categorize web
resources. These tags are freely chosen by the user without
a pre-defined taxonomy or ontology. Some example tags are
“blog”, “mp3”, “photography”, “todo” etc. The tags page
of the Delicious web site (http://del.icio.us/tags/) lists most
popular tags among the users and their relative frequency of
use. These user-created categories using unlimited tags and
vocabularies was coined a name “folksonomy” by Thomas
Vander Wal in a discussion on an information architecture
mailing list [32]. The name is a combination of “folk” and
“taxonomy”.

As pointed out in [21], folksonomy is a kind of user cre-
ation of metadata which is very different from the profes-
sional creation of metadata (e.g. created by librarians) and
author creation of metadata (e.g. created by a web page
author). Without a tight control on the tags to use and
some expertise in taxonomy building, the system soon runs

into problems caused by ambiguity and synonymy. [21] cited
some examples of ambiguous tags and synonymous tags in
Delicious. For example, the tag “ANT” is used by many
users to annotate web resources about Apache Ant, a build-
ing tool for Java. One user, however, uses it to tag web re-
sources about “Actor Network Theory”. Synonymous tags,
like “mac” and “macintosh”, “blog” and “weblog” are also
widely used.

Despite the seemingly chaos of unrestricted use of tags,
social bookmarks services still attract a lot of web users
and provide a viable and effective mechanism for them to
organize web resources. [21] contributes the success to the
following reasons.

• Low barriers to entry

• Feedback and Asymmetric Communication

• Individual and Community Aspects

Unlike the professional creation of metadata or the formal
approach of the semantic annotation, folksonomy does not
need sophisticated knowledge about taxonomy or ontology
to do annotation and categorization. This significantly low-
ers the barrier to entry. In addition, because these anno-
tations are shared among all users in a social bookmark
service, there is an immediate feedback when a user tags a
web resource. The user can immediately see other web re-
sources annotated by other users using the same tag. These
web resources may not be what the user expected. In that
case, the user can adapt to the group norm, keep your tag
in a bid to influence the group norm, or both [34]. Thus,
the users of folksonomy are negotiating the meaning of the
terms in an implicit asymmetric communication. This local
negotiation, from the emergent semantics perspective, is the
basis that leads to the incremental establishment of a com-
mon global semantic model. [24] made a good analogy with
the “desire lines”. Desire lines are the foot-worn paths that
sometimes appear in a landscape over time. The emergent
semantics is like the desire lines. It emerges from the ac-
tual use of the tags and web resources and directly reflects
the user’s vocabulary and can be used back immediately to
serve the users that created them. In the rest of the paper,
we quantitatively analyze social annotations in the social
bookmarks data and show that emergent semantics indeed
can be inferred statistically from it.

3. DERIVING EMERGENT SEMANTICS
In social bookmarks services, an annotation typically con-

sists of at least four parts: the link to the resource (e.g. a
web page), one or more tags, the user who makes the an-
notation and the time the annotation is made. We thus
abstract the social annotation data as a set of quadruple

(user, resource, tag, time)

which means that a user annotates a resource with a specific
tag at a specific time. In this paper, we focus on who an-
notates what resource with what tag and do not care much
about the time the annotation is made. What interests us
is thus the co-occurrence of users, resources and tags. Let’s
denote the set U = {u1, u2, . . . , uK}, R = {r1, r2, . . . , rM},
T = {t1, t2, . . . , tN} to be the set of K users, M web re-
sources and N tags in the collected social annotation data



respectively. Omitting the time information, we can trans-
late each quadruple to a triple of (user, resource, tag). As
mentioned in Section 2, the social annotations are made by
different users without a common dictionary. Hence, the
problem of how to group synonymous tags, how to distin-
guish the semantics of an ambiguous tag becomes salient
for sematic search. In this section, we use a probabilistic
generative model to obtain the emergent semantics hidden
behind the co-occurrences of web resources, tags and users,
and implement semantic search based on the emergent se-
mantics.

3.1 Exploiting Social Annotations
After analyzing a large amount of social annotations, we

found that tags are usually semantically related to each
other if they are used to tag the same or related resources
for many times. Users may have similar interests if their an-
notations share many semantically related tags. Resources
are usually semantically related if they are tagged by many
users with similar interests. This domino effect on seman-
tic relatedness also can be observed from other perspectives.
For example, tags are semantically related if they are heav-
ily used by users with similar interests. Related resources
are usually tagged many times by semantically related tags
and finally users may have similar interests if they share
many resources in their annotations. This chain of seman-
tic relatedness is embodied in the different frequencies of
co-occurrences among users, resources and tags in the so-
cial annotations. These frequencies of co-occurrences give
expression to the implicit semantics embedded in them.

Inspired by research on Latent Semantic Index [30], we try
to make statistical studies on the co-occurrence numbers.
We represent the semantics of an entity (a web resource, a
tag or a user) as a multi-dimensional vector where each di-
mension represents a category of knowledge. Every entity
can be mapped to a multi-dimensional vector, whose com-
ponent on each dimension measures the relativity between
the entity and the corresponding category of knowledge. If
one entity relates to a special category of knowledge, the
corresponding dimension of its vector has a high score. For
example, in Del.icio.us, the tag ’xp’ is used to tag web pages
about both ’Extreme Programming’ and ’Window XP’. Its
vector thus should have high score on dimensions of ’soft-
ware’ and ’programming’. This actually is what we get in
our experiments in Section 3.2. As in each annotation, the
user, tag and resource co-occur in the same semantic con-
text. The total knowledge of users, tags and resources are
the same for them. Hence we can represent the three enti-
ties in the same multi-dimensional vector space, which we
call the conceptual space. As illustrated in Fig.1, we can
map users, web resources and tags to vectors in this con-
ceptual space. For an ambiguous tag, it may have several
notable components on different dimensions while a definite
tag should only has one prominent component. In short, we
can use the vectors in this conceptual space to represent the
semantics of entities. Conceptual space is not a new idea. It
also appears in many literatures studying e.g. the meaning
of words [33] and texts [30].

Our job next is to determine the number of dimensions
and acquire the vector values of entities from their co-occurrences.
There are research on the statistical analysis of co-occurrences
of objects in unsupervised learning. These approaches aim
to first develop parametric models, and then estimate pa-
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Figure 1: Mapping entities in folksonmies to con-
ceptual space

rameters by maximizing log-likelihood on the existing data
set. The acquired parameter values can then be used to pre-
dict probability of future co-occurrences. Mixture models
[14] and clustering models based on deterministic anneal-
ing algorithm [27] are of this kind approaches which have
been used in many fields such as Information Retrieval [13]
and Computational Linguistics [9]. We applied Separable
Mixture Model [14](one kind of mixture models mentioned
above) to the co-occurrence of tags and resources without
users before in a separate paper [36]. In this paper, we ex-
tend the bigram Separable Mixture Model to a tripartite
probabilistic model to obtain the emergent semantics con-
tained in the social annotations data.

We assume that the conceptual space is a D dimensional
vector space, each dimension represent a special category of
knowledge included in social annotation data. The genera-
tion of existing social annotation data can be modeled by
the following probabilistic process:

1. Choose a dimension dα to represent a category of knowl-
edge according to the probability p(dα), α ∈ [1, D] .

2. Measure the relativity between the interest of user ui

and the chosen dimension with the conditional proba-
bility p(ui|dα) .

3. Measure the relativity between the semantics of a re-
source rj and the chosen dimension with conditional
probability p(rj |dα) .

4. Measure the relativity between the semantics of a tag
tk and the chosen dimension according to the condi-
tional probability p(tk|dα) .

In the above model, the probability of the co-occurrence of
ui, rj and tk is thus:

p(ui, rj , tk) =

DX
α=1

p(dα)p(ui|dα)p(rj |dα)p(tk|dα) (1)

The log-likelihood of the annotation data set is thus:

L =
X

i

X
j

X

k

nijk log

DX
α=1

p(dα)p(ui|dα)p(rj |dα)p(tk|dα)

(2)
where nijk denotes the co-occurrence times of ui,rj and tk.

Probabilities in 2 can be estimated by maximizing the
log-likelihood L using EM (Expectation-Maximum) method.



Suppose that the social annotations data set contains C
triples. Let u(c), r(c), t(c) denote the cth record in the
data set containing the u(c)th user , the r(c)th resource and
the t(c)th tag in respective set of users, resources, and tags.
The C ∗D matrix I is the indicator matrix of EM algorithm.
Icα denote the probability of assigning the cth record to di-
mension α.

E-step:

I(t)
cα =

p(dα)(t)p(uu(c)|dα)(t)p(tt(c)|dα)(t)p(rr(c)|dα)(t)PD
α=1 p(dα)(t)p(uu(c)|dα)(t)p(tt(c)|dα)(t)p(rr(c)|dα)(t)

(3)
M-step:

p(dα)(t+1) =

PC
c=1 I

(t)
cα

C
(4)

p(ui|dα)(t+1) =

P
c:u(c)=i I

(t)
cα

PC
c=1 I

(t)
cα

(5)

p(rj |dα)(t+1) =

P
c:r(c)=j I

(t)
cα

PC
c=1 I

(t)
cα

(6)

p(tk|dα)(t+1) =

P
c:t(c)=k I

(t)
cα

PC
c=1 I

(t)
cα

(7)

Iterating E-step and M-step on the existing data set, the
log-likelihood converges to a local maximum gradually, and
we get the estimated values of p(d), p(u|d), p(r|d) and p(t|d).
We can use these values to calculate the vectors of users,
resources and tags in conceptual space using Bayes’ theorem.
For example, the component value of the vector of user ui

can be calculated as :

p(dα|ui) =
p(ui|dα)p(dα)

p(ui)
∼ p(ui|dα)p(dα) (8)

Since
PD

α=1 p(dα|ui) = 1, we are able to calculate p(dα|ui)
by the probabilities obtained in EM methods. p(dα|ui) mea-
sures how the interests of ui relate to the category of knowl-
edge in the dimension α.

In each iteration, the time complexity of the above EM
algorithm is O(C ∗ D), which is linear to both the size of
the annotations and the size of the concept space dimension.
Notice that the co-occurrence number is usually much larger
than any one data set of entities, so the indicator matrix
I occupies most of the storage spaces. We interleave the
output of E-step and the input of M-step without saving
indicator matrix I. Hence the space complexity without the
storage of raw triples in the algorithm is O(D∗(K+M+N)).

3.2 Experiments
We collected a sample of Del.icio.us data by crawling its

website during March 2005. The data set consists of 2,879,614
taggings made by 10,109 different users on 690,482 different
URLs with 126,304 different tags. In our experiments, we
reduced the raw data by filtering out the users who annotate
less than 20 times, the URLs annotated less than 20 times,
and the tags used less than 20 times. The experiment data
contains 8676 users, 9770 tags and 16011 URLs. Although
it is much less than the raw data, it still contains 907,491
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Figure 2: The Log-Likelihood on the times of itera-
tion of different number of aspects

Table 1: Top 5 tags in 10 out of 40 conceptual di-
mensions

1 java programming Java eclipse software
2 css CSS web design webdesign
3 blog blogs design weblogs weblog
4 music mp3 audio Music copyright
5 search google web Google tools
6 python programming Python web software
7 rss RSS blog syndication blogs
8 games fun flash game Games
9 gtd productivity GTD lifehacks organization
10 programming perl development books Programming

triples. We perform EM iterations on this data set. Figure 2
presents the log-likelihood on the social annotations data by
choosing different number of dimensions and with different
iteration times.

In Figure 2, we can find that the log-likelihood increases
very fast from 2-dimensions to 40-dimensions and slows down
in dimensions higher than 40. Because the web bookmarks
collected on Del.icio.us are mainly in the field of IT, the
knowledge repository is relatively small and the conceptual
space with 40 dimensions is basically enough to represent
the major category of meanings in Del.icio.us. Higher di-
mensions are very probably redundant dimensions which can
be replaced by others or a combination of other dimensions.
Large number of dimensions may also bring out the problem
of over-fitting. As to iteration, iterate 80 times can provide
satisfying result and more iterations won’t give great im-
provement and may cause over-fitting. In our experiment,
we model our data with 40 dimensions and calculate the
parameters by iterating 80 times.

We choose the top 5 tags according to p(tk|dα) on each di-
mension, and randomly list 10 dimensions in Table 1. From
this table, we can find that each dimension concern with a
special category of semantics. Dimension 1 is mainly about
’programming’, and dimension 5 talk about ’search engines’.
The semantically related tags have high component values
in the same dimension, such as ’mp3’ and ’music’, while ’css’
and ’CSS’, ’games’ and ’Games’ are actually about the same
thing.

We also study the ambiguity of different tags on dimen-
sions. The entropy of a tag can be computed as



Table 2: Tags and their entropy

NO. Tags Entropy Tags Entropy
1 todo 3.08 cooking 0
2 list 2.99 blogsjava 0
3 guide 2.92 nu 0
4 howto 2.84 eShopping 0
5 online 2.84 snortgiggle 0
6 tutorial 2.78 czaby 0
7 articles 2.77 ukquake 0
8 collection 2.76 mention 0
9 the 2.71 convention 0
10 later 2.70 wsj 0
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Figure 3: Conditional Distribution of Tag ’todo’ on
dimensions of conceptual space

E = −
DX

α=1

p(dα|t) log p(dα|t) (9)

and it can be used as an indicator of the ambiguities of the
tag. The top 10 and bottom 10 tags of ambiguity in our ex-
periment are shown in Table 2. We find that the tag ’todo’
in Figure 3 has the highest entropy. It’s the most ambiguous
tag used in Del.icio.us and its distribution on dimensions are
very even. The tag ’cooking’ in Figure 4 has the lowest en-
tropy. Its meaning is quite definite in this social annotation
data set. We will take a looking at the tag ’xp’ in Figure 5,
which has 2 comparatively high components in dimension 27
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Figure 4: Conditional Distribution of Tag ’cooking’
on dimensions of conceptual space
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Figure 5: Conditional Distribution of Tag ’xp’ on
dimensions of conceptual space

and 34 while keeps very low on other dimensions. The top
5 tags on dimension 27 are ”security windows software unix
tools”, on dimension 34 they are ”java programming Java
eclipse software” . The word ’xp’ can be an abbreviation
of two phrases. One is ’Window XP’ which is an operat-
ing system. The other is ’Extreme Programming’ which is
a software engineering method. Many extreme program-
ming toolkits are developed by ’Java’ in ’Eclipse’ IDE. In
this case, the vector representation of the tag ’XP’ identifies
its meaning very clearly through its coordinates in the con-
ceptual space. Similar results can be achieved for resources
and users. This enables us to to give semantic annotation
to users, tags and resources in the form of vectors, which
can represent their meanings in the conceptual space. For
tags, annotations identify the ambiguity and synonymy; For
users, annotation will present the users’ interests which can
be utilized for personalized search; For web resources, anno-
tation can present the semantics of contents in the resources.

3.3 Semantic Search and Discovery
After deriving the emergent semantics from social anno-

tations, the semantics of user interests, tags and web re-
sources can be represented by vectors in the conceptual
space. Based on these semantic annotations, an intelligent
semantic search system can be implemented. In such a sys-
tem, users can query with a boolean combination of tags
and other keywords, and obtain resources ranked by rele-
vance to users’ interests. If the meaning of input query is
ambiguous, hints will be provided for a more detailed search
on a specific meaning of a tag.

3.3.1 Basic Search Model
In this part, we develop the basic search model. Ad-

vanced functions such as personalized search and compli-
cated query support are built upon it. The basic model deals
with queries that are a single tag and rank semantic related
resources without considering personalized information of
the user. This problem can be converted to a probability
problem.

p(r|t) =

DX
α=1

p(r|dα)p(dα|t) (10)

In (10), the effects of all dimensions are combined together
to generate the conditional probability. The return resources
will be ranked by the conditional probability p(r|t).

We can also provide a more interactive searching inter-



face, when a user queries with tag tj which is ambiguous
and have a high entropy calculated in (9) larger than a pre-
defined threshold. The user will, in addition to the usual
query results, also get a list of categories of knowledge with
top tags as further disambiguation choices for the tag. The
categories are ranked by p(d|tj). When the user chooses
a specific category of knowledge, the resources will return
ranked by p(u|d), which helps to narrow the search scope
and increase search accuracy.

3.3.2 Resource Discovery
The basic search model developed above searches and

ranks related resources of a given tag according to the condi-
tional probability p(r|t), which is directly related to the sim-
ilarity of their vectors in the conceptual space. This model
is thus totally based on the emergent semantics of social an-
notations without using any keyword matching metrics. We
can go into this direction even further by discovering highly
semantically related resources which are even not tagged by
the query tag by any user before. We can extend our basic
model to support this if we force:

p(r|t) =

� PD
α=1 p(r|dα)p(dα|t) : ntr = 0

0 : ntr > 0
(11)

In (11), ntr denotes the number of co-occurrences of the tag
and resource. We filter out the already-tagged resources by
set their conditional probability to zero and only return re-
sources that are not tagged by the query tag and rank them
by p(r|t). We implemented this resource discovery search on
the Del.icio.us data set and it produces interesting results.
For example, when a user searches with the tag ’google’ in
this resource discovery mode, the returned URL list con-
tains an introduction of ’Beagle’ which is a desktop search
tool for GNOME on linux. This web page is never tagged by
’google’ by any user in the data set. It even does not contain
the word ’google’ in its web page content. This page thus
can not be found using traditional search methods, such as
keyword search or search based on tags, although ’beagle’
and ’google’ are semantically related. More interestingly, if
queryed with ’delicious’, the method will return web pages
that are highly related to semantic web technologies such
as RDF and FOAF. This search result reveals interesting
semantic connection between the Del.icio.us web site and
the semantic web. We list these two discovery results of
’delicious’ and ’google’ in appendix section A.

3.3.3 Personalized Search Model
Due to the diversity of users in the social bookmarking

service, it’s possible for two users to search with the same
tag but demand different kinds of resources. For example,
searching with the tag ”xp”, a programmer may prefer re-
sources related with ”Extreme Programming” while a sys-
tem manager may want to know about the operating system
”Window XP”. Since users’ interests can be represented by
vectors in the conceptual space, we can attack the prob-
lem by integrating personalized information in the semantic
search. It can be formalized by:

p(r|u, t) =

DX
α

p(r|dα)p(dα|u, t)

=

DX
α

p(r|dα)
p(u, t|dα)p(dα)

p(u, t)

∼
DX
α

p(r|dα)p(u|dα)p(t|dα)p(dα) (12)

In our model, as shown in Figure 1, entities can be viewed
independently in the conceptual space, thus p(u, t|dα) =
p(u|dα)p(t|dα). p(u, t) keeps the same in one search process,

and
PN

j=1 p(rj |u, t) = 1, so we can calculate the resources’

semantic relatedness p(r|u, t) by (12).

3.3.4 Complicated Query Support
In the above model, users can only query with a single

tag. That’s far from enough to express complicated query
requirements. If the web resources are documents, users may
want to search its contents using keywords in addition to
tags. We extend our basic model to support queries that can
be a boolean combination of tags and other words appearing
in the resources. Let q denote the complicated query. The
basic model can be modified to (13).

p(r|q) ∼
DX

α=1

p(r|dα)p(q|dα)p(dα) (13)

Now the problem turns to estimate p(q|dα). Let’s start from
the simplest case. Suppose the query q is a single word w
in a document and is not a tag. We utilize the document
resources as an intermediate, and convert the problem to
estimate p(w|r) in (14).

p(w|dα) =

NX
j=1

p(w|rj)p(rj |dα) (14)

p(w|rj) can be viewed as the probability of producing a
query word w from the corresponding language model of
the document resource rj . We can use the popular Jelinek-
Mercer [16] language model to estimate p(w|rj).

p(w|rj) = (1− λ)pml(w|rj) + λp(w|COL) (15)

where pml(w|rj) =
c(w,rj)P
w c(w,rj)

. c(w, rj) denotes the count

of word w in resource document rj . p(w|C) is the general
frequency of w in the resource document collection COL.

When the input query q is a boolean combination of tags
and other words, we adopt the extended retrieval model [28]
to estimate p(q|d). The query is represented in the following
manner:

q = {k1 : a1, k2 : a2, . . . , kp : ap} (16)

In (16), ki denote the ith component in the query, which can
be either a tag or a keyword. ai denote the weight of the
component ki in the query, which measures the importance
of this component in the query. In our experiments, we as-
signed equal weights to each component. p is the number of
components. The boolean combination of these components
could be either ’and’ or ’or’. The probability of ’and’ query
and ’or’ query can be calculated in (17) and (18) respec-
tively using [28].



Query

Processor


User

Processor


Presentation

Arrangement


Semantic

Search

Engine


Search Mode


Query


User


Vector


Vector


Results

Social


Annotations


Semantic

Index


Figure 6: The framework of our social semantic
search system

p(qand|d) = 1−[
ap
1(1− p(k1|d))p + . . . + ap

n(1− p(kn|d))p

ap
1 + ap

2 + . . . + ap
n

]

1
p

(17)

p(qor|d) = [
ap
1p(k1|d)p + ap

2p(k2|d)p + . . . + ap
np(kn|d)p

ap
1 + ap

2 + . . . + ap
n

]

1
p

(18)
For more complicated boolean combinations that contains
both ’and’ and ’or’, it can be calculated using (17) and (18)
recursively. For example, the query {(tA : 0.3 and wA :
0.4) : 0.2 or (tB : 0.1)} in which tA and tB are tags while
wA is a keyword but is not tag. We first calculate the ’and’
probability of tA and wA,

p(tA and wA|d) = 1−
r

0.32(1− p(tA|d))2 + 0.42(1− p(wA|d))2

0.32 + 0.42

and then calculate the total conditional probability.

p(q|d) =

r
0.22p(tA and wA|d)2 + 0.12p(tB |d)2

0.22 + 0.12

p(tA|d) and p(tB |d) are acquired after the EM iterations and
p(wA|d) is calculated in (14).

Our search models are quite flexible. The web bookmarks
discovery model, personalized search model and complicated
query support model are independent optional parts built
on the basic model. We can use them separately or combine
several of them together. For example, (19) combined all of
them together.

p(r|u, q) ∼
DX

α=1

p(r|dα)p(u|dα)p(q|dα)p(dα) (19)

4. IMPLEMENTATION AND EVALUATION
In this section, we describe the implementation of a se-

mantic search and discovery system2 based on the mod-
els developed above, and the application of this system to
the Del.icio.us social annotations data. Figure 6 shows the
framework of our system, which can be divided into two
parts by function. The back-end part collects and builds
semantic index on folksonmies data while the foreground

2The system can be accessed via http://apex.sjtu.edu.cn:
50188

accepts query, retrieve related resources and present results
in a friendly manner.

In the back-end part, after the data is collected and stored
to the ’Social Annotations DB’, the system will start to run
the EM algorithm with respect to the tripartite model devel-
oped in Section 3.1 and compute the vectors of users, web
resources and tags as the semantic index. For the words
which are not tags but appear in the web pages of URLs, a
language model approach developed in Section 3.3.4 is im-
plemented to index them.

In the foreground part, when a user initiates a search ac-
tion, three parameters are passed to the system: the input
query, user’s identification and the search model (personal-
ized or discovery or both). In the ’query processor’ unit,
the input query q is first parsed to a boolean combination
of tags and other keywords and then mapped to a vector

〈p(q|d1), p(q|d2), . . . , p(q|dD)〉
according to the method introduced in Section 3.3.4. In the
’user processor’ unit, the user will be identified and mapped
to the related vector stored in the ’semantic index’ unit. The
search engine receives the output vectors of query processor
and user process, finds the related URLs according to the
input search mode, and then passes the raw result to the
’presentation arrangement’ unit, where the results are re-
fined to provide an interactive web user-interface.

One important difference of our search model is the ability
to discover semantically-related web resources from emer-
gent semantics, even if the web resource is not tagged by
the query tags and does not contain query keywords. This
search capability is not available in the current social book-
marking services. We evaluate the effectiveness of this dis-
covery ability using our implementation system.

We choose 5 widely used tags ’google’, ’delicious’, ’java’,
’p2p’ and ’mp3’ on Del.icio.us folksonomy data set, and sep-
arately input them into our system. The system works in
the resources discovery mode (filtering out the URLs tagged
by these tags), and returns the discovered list of URLs. We
choose top 20 URLs in every list to evaluate the semantic
relatedness between the tags and the results. As the URLs
in Del.icio.us are mainly on the IT subjects, we invited 10
students in our lab who are doctor or master candidates ma-
joring in computer science and engineering to take part in
the experiment. Each student is given all the 100 URLs.
They are asked to judge the semantic relatedness between
the tag and the web pages of URLs based on their knowl-
edge and score the relatedness from 0 point (not relevant)
to 10 points (highly relevant). We average their scores on
each URL and use the graded precision to evaluate the ef-
fectiveness of the resources discovery capability. The graded
precision is:

gpi =

Pi
α=1 score(α)

i ∗ 10
: i <= 20 (20)

In (20), score(α) denotes the average score of the αth URL
for a tag search. For each tag search, we calculate gpi, with
i ranging from 1 to 20 to represent the top i results. The
graded precision result is shown in Figure 7.

5. RELATED WORK
Since it’s a quite new service and topic, there are only very

few published studies on social annotations. [10] gives a de-
tailed analysis of the social annotations data in Del.icio.us
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from both the static and dynamic aspects. They didn’t,
however, make deep analysis on the semantics of these an-
notations. [25] proposes to extend the traditional bipar-
tite model of ontology with a social dimension. The author
found the semantic relationships among tags based on their
co-occurrences with users or resources but without consid-
ering the ambiguity and group synonymy problems. It also
lacks a method to derive and represent the emergent seman-
tics for semantic search.

Semantic annotation is a key problem in the Semantic
Web area. A lot of work has been done about the topic.
Early work like [26, 31] mainly uses an ontology engineering
tool to build an ontology first and then manually annotate
web resources in the tool. In order to help automate the
manual process, many techniques have been proposed and
evaluated. [7] learns from a small amount of training exam-
ples and then automatically tags concept instances on the
web. The work has been tested on a very large-scale basis
and achieves impressive precision. [4] helps users annotate
documents by automatically generate natural language sen-
tences according to the ontology and let users interact with
these sentences to incrementally formalize them. Another
interesting approach is proposed by [5] that utilizes the web
itself as a disambiguation source. Most annotations can be
disambiguated purely by the number of hits returned by web
search engines on the web. [6] improves the method using
more sophisticated statistical analysis. Given that many
web pages nowadays are generated from a backend data-
base, [12] proposes to automatically produce semantic an-
notations from the database for the web pages. Information
extraction techniques are employed by [8] to automatically
extract instances of concepts of a given ontology from web
pages. However, this work on semantic annotations follows
the traditional top-down approach to semantic annotation
which assumes that an ontology is built before the annota-
tion process.

Much work has been done to help users manage their
bookmarks on the (semantic) web such as [17]. [11] gives a
good review of the social bookmarks tools available. These
tools help make the social bookmarking easy to use but lack
capabilities to derive emergent semantics from the social
bookmarks.

Work on emergent semantics [19, 2] has appeared recently,
for example [35, 1, 15]. [1] proposes an emergent semantics
framework and shows how the spreading of simple ontology
mappings among adjacent peers can be utilized to incremen-

tally achieve a global consensus of the ontology mapping.
[15] described how to incrementally obtain a unified data
schema from the users of a large collection of heterogeneous
data sources. [35] is more related to our work. It proposes
that the semantics of a web page should not and cannot be
decided alone by the author. The semantics of a web page
is also determined by how the users use the web page. This
idea is similar to our thought. In our work, a URL’s seman-
tics is determined from its co-occurrences with users and
tags. However, our method of achieving emergent seman-
tics is different from [35]. We use a probabilistic generative
model to analyze the annotation data while [35] utilizes the
common sub-paths of users’ web navigation paths.

6. CONCLUSIONS AND FUTURE WORK
Traditional top-down approach to semantic annotation in

the Semantic Web area has a high barrier to entry and is
difficult to scale up. In this paper, we propose a bottom-up
approach to semantic annotation of the web resources by ex-
ploiting the now popular social bookmarking efforts on the
web. The informal social tags and categories in these social
bookmarks is coined a name called “folksonomy”. We show
how a global semantic model can be statistically inferred
from the folksonomy to semantically annotate the web re-
sources. The global semantic model also helps disambiguate
tags and group synonymous tags together in concepts. Fi-
nally, we show how the emergent semantics can be used to
search and discover semantically-related web resources even
if the resource is not tagged by the query tags and does not
contain any query keywords.

Unlike traditional formal semantic annotation based on
RDF or OWL, social annotation works in a bottom-up way.
We will study the evolution of social annotations and its
combination with formal annotations. For example, enrich
formal annotations with social annotations.

Social annotations are also sensitive to the topic drift in
the user community. With the increasing of a special kind
of annotations, the answers for the same query may change.
Our model can reflect this change but requires re-calculation
on the total data set periodically which is quite time consum-
ing. One goal of our future work is to improve our model to
support incremental analysis of the social annotations data.
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APPENDIX

A. RESOURCES DISCOVERY

A.1 Discovery results for query tag ’delicious’
1 http://www.betaversion.org/ stefano/linotype/news/57
2 http://www.amk.ca/talks/2003-03/
3 http://www.ldodds.com/foaf/foaf-a-matic.html
4 http://www.foaf-project.org/
5 http://gmpg.org/xfn/
6 http://www.ilrt.bris.ac.uk/discovery/rdf/resources/
7 http://xml.mfd-consult.dk/foaf/explorer/
8 http://xmlns.com/foaf/0.1/
9 http://simile.mit.edu/welkin/
10 http://www.xml.com/pub/a/2004/09/01/

hack-congress.html
11 http://www.w3.org/2001/sw/
12 http://simile.mit.edu/
13 http://jena.sourceforge.net/
14 http://www.w3.org/RDF/
15 http://www.foafspace.com/

A.2 Discovery results for query tag ’google’
1 http://www.musicplasma.com/
2 http://www.squarefree.com/bookmarklets/
3 http://www.kokogiak.com/amazon4/default.asp
4 http://www.feedster.com/
5 http://http://www.gnome.org/projects/beagle/
6 http://www.faganfinder.com/urlinfo/
7 http://www.newzbin.com/
8 http://www.daypop.com/
9 http://www.copernic.com/
10 http://www.alltheweb.com/
11 http://a9.com/-/search/home.jsp?nocookie=1
12 http://snap.com/index.php/
13 http://www.blinkx.tv/
14 http://www.kartoo.com/
15 http://www.bookmarklets.com/


