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ABSTRACT
Ontologies are at the heart of the semantic web. They define
the concepts and relationships that make global interoper-
ability possible. However, as these ontologies grow in size
they become more and more difficult to create, use, under-
stand, maintain, transform and classify. We present and
evaluate several algorithms for extracting relevant segments
out of large description logic ontologies for the purposes of
increasing tractability for both humans and computers. The
segments are not mere fragments, but stand alone as on-
tologies in their own right. This technique takes advantage
of the detailed semantics captured within an OWL ontol-
ogy to produce highly relevant segments. The research was
evaluated using the GALEN ontology of medical terms and
procedures.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and
Methods]: Semantic networks; I.2.8 [Problem Solving,
Control Methods, and Search]: Graph and tree search
strategies

General Terms
Algorithms, Experimentation, Performance

Keywords
Ontology, OWL, Segmentation, Scalability, Semantic Web

1. INTRODUCTION

1.1 The problem of large ontologies
Ontologies can add tremendous value to web technologies.

As Jim Hendler has pointed out on numerous occasions “a
little semantics goes a long way” [11]. The knowledge cap-
tured in ontologies can be used, among other things, to an-
notate data, distinguish between homonyms and polysemy,
generalize or specialise concepts, drive intelligent user inter-
faces and even infer entirely new (implicit) information.

The ultimate vision for a semantic web is to create an in-
ternet that computers can understand and navigate. Making
this vision a reality will either require an extremely large on-
tology that describes every term of interest on the Internet,
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or, more realistically, numerous domain-specific ontologies,
which, when aligned with one another, form a web of se-
mantic inter-ontology relations. Either way, the result is a
very large knowledge corpus.

Examples of such enormous ontologies are already start-
ing to appear. For example, the biomedical domain has
numerous very large ontologies such as SNOMED-CT [34],
GALEN [25], FMA [30] and NCI-Thesaurus [7]. However,
these ontologies have grown too large to effectively used and
maintained, often requiring large teams of highly trained ex-
perts [35].

If a truly massive semantic web is going to be of use to
anyone, users and applications will have to find a way to
limit their scope. The knowledge web, as a whole, will be
too big and mostly irrelevant for any single task.

1.2 Solutions to the scaling problem
Google solves the problem of scaling web search by cre-

ating partially sorted barrels of keyword indexes. Searches
are distributed over a very large cluster of computers [5]. A
similarly sophisticated distributed system may be feasible
for use with the ontologies of the semantic web. However,
ontologies, such as those represented in the Web Ontology
Language (OWL) [19], are significantly more complex data
structures than mere web pages. OWL builds several levels
of complexity on top of the XML of conventional web data
[4] [12]. It is likely that large and complex ontologies will
require a novel solution.

This paper suggests such a solution: instead of attempt-
ing to capture the entire semantic web in a gigantic index,
each web application extracts and uses a custom ontology
segment specific to its particular needs. Segments are big
enough to be useful, but not so big that scaling becomes a
problem.

The ontology segmentation techniques shown in this pa-
per exploit the semantic connections between ontology terms
and thereby enable web-application developers to quickly
(or even automatically) create the custom ontologies they
require. This is a first step towards a working application
layer on top of a large-scale semantic web.

1.3 Other applications for segmentation
Custom ontology segments, as described above, show po-

tential for a wide variety of use cases. For example:

• Query efficiently could be substantially improved by
querying segments instead of querying the complete
ontology network.



• Segments could be used as examples of and discussion
points for specific modeling patterns.

• Segments could be captured at specific time points as
backup or provenance data.

• Similar segments from different ontologies in the same
domain could be used for comparison and evaluation
purposes.

• Segmentation could be used to specify, outline and an-
notate specific ontology sub-sections.

• Segments from general purpose ontologies could be
transformed on-the-fly during the extraction process
to produce optimal ontologies for a specific applica-
tions.

1.4 GALEN
The research presented in this paper uses the GALEN on-

tology of medical terms and surgical procedures (produced
during the 1990s by the University of Manchester in the
OpenGALEN project [28]) as a test platform for such an on-
tology segmentation algorithm. Since the complete GALEN
ontology was only available in its own proprietary format, it
was converted into an OWL representation for the purposes
of this research. Only small, incomplete versions of GALEN
in OWL have previously been available.

GALEN serves as an excellent test case because it is both
large and complex. It also utilizes much of the expressive
power of modern description logics, whereas other large on-
tologies more closely resemble simple controlled vocabular-
ies. If an effective segmentation algorithm can be demon-
strated for something as complex as GALEN, we can there-
fore expect it to also work well for the complex large ontolo-
gies of the future.

1.5 Scope
The algorithm represented in this paper is optimized to

work with knowledge bases similar to the GALEN ontol-
ogy. That is, a large ontology with over 1000 classes and
dense connectivity, with at least, on average, one restriction
asserted per concept.

Another pre-requisite for our segmentation methodology
is that the ontology be normalised [26]. Primitive classes in
a normalised ontology have no more than one primitive su-
perclass: multiple parents are modeled implicitly and left to
be explicitly inferred later. Normalisation greatly simplifies
ontology maintenance.

GALEN in OWL uses the SHIF subset (without nega-
tion or disjunction) of the full SHOIN (D) expressivity of
OWL-DL, so the segmentation is currently constrained to
that. The methodology presented here is not meant to offer
a complete solution with rigorous logical proofs. Instead,
we present empirical evidence as to the effectiveness of our
approach.

Most ontologies’ properties are structured as flat lists.
GALEN however employs a rich property hierarchy with
over 500 distinct properties. This is especially useful for
producing extracts constrained to specific user and/or appli-
cation requirements. Ontologies with simple property struc-
tures, such as, for example, the Gene Ontology [33], will not
be able to take advantage of this aspect of the segmentation
algorithm presented herein.

1.6 Aim: useful classification and small size
Description logic reasoners such as FaCT++ [37], RACER

[10], or Pellet [23] can be used to infer new information that
is implicit in an ontology [16]. This process is very impor-
tant, especially for an ontology like GALEN, which was built
with normalisation principles in mind. It is therefore critical
that GALEN in OWL can be classified.

However, none of the above mentioned description logic
reasoners based on the tableaux algorithm are currently able
to classify the complete GALEN ontology. GALEN is too
large and complex for these reasoning systems. A primary
aim of this research was therefore to produce classifiable
segments. The ideal segment is as small and focused as pos-
sible, while still containing enough information to enable the
reasoner to infer relevant new subsumption relationships.

2. LINKS IN DESCRIPTION LOGIC

2.1 Superclasses as links
OWL ontologies usually contain large hierarchies of con-

cepts. They also feature the ability to add restrictions to
such concepts. The most common types of restrictions re-
strict the individuals that a certain class describes. These
restrictions are quantified by, for example, the existential
(∃) or universal (∀) quantifiers. Quantified restrictions also
include a property and filler concept to specify how the mem-
bers of a class are restricted.

Restrictions, from one point-of-view, are anonymous clas-
ses and can be added as superclasses of another (named)
class. For example: the class MalePerson might have the
restriction in Figure 1 asserted as its superclass. This means
that all individuals that the MalePerson class defines must
have one or more relations using the hasGender property
to individuals in the class MaleGender. Figure 1 illustrates
this relationship.

Figure 1: Superclass restriction and the correspond-
ing links between individuals

However, seen from another point-of-view, restrictions re-
present cross-links between different classes as shown in Fig-
ure 2, so that an ontology can be seen as a large hierarchy
of classes linked by restrictions.

In reality, of course, the anonymous qualified restriction
superclasses actually restrict individuals’ relations to other
individuals, but it is useful to think of them simply as links.



This paper will, from here on, assume this model of onto-
logical topology.

Figure 2: Interpreting quantified restrictions as
links between classes

2.2 Reciprocal links
Besides normal forward links, as described above, back-

ward links, or usages, also known as reciprocal links, are also
important in understanding the structure of an ontology.

Finger v ∃ isPartOf . Hand
(all fingers are part of some hand)

Hand v ∃ hasPart . F inger
(all hands have some finger as part)

Figure 3: Example of a reciprocal link

Even though “isPartOf” and “hasPart”are inverses of each
other, the reciprocal statements in Figure 3 are not equiva-
lent; in fact neither implies the other.

GALEN is unusual in that it commonly represents anat-
omy using reciprocal pairs of restrictions. This representa-
tion is inherently cyclical and connects every piece of anat-
omy with every related piece in both directions. Tableaux
classifiers intrinsically scale exponentially when faced with
such constructs. None of the current tableaux-based rea-
soners listed in Section 1.6 can classify even a small extract
of the GALEN ontology containing both types of reciprocal
links present in the original. (Note: the original classifier
used in GALEN used different principles and did not suffer
from this particular limitation [13].)

The algorithm presented herein therefore takes the ap-
proach of taking all reciprocals into account, but producing
actual segments with only one-way links, using, for example,
only “isPartOf” relations. Some of the new relations may
be virtual: i.e. have only been found by first adding the
reciprocals.

Finger v ∃ hasPart . Hand
(all fingers have some hand as part)

Hand v ∃ hasPart . F inger
(all hands have some finger as part)

Figure 4: Example of a symmetric link

It is important to note that these reciprocal links differ
from symmetric links. That statement in Figure 4 is a sym-
metric link, which has a very different meaning to the ex-
ample of a reciprocal link given above. Symmetric links do
not adversely affect classification.

3. BASIC SEGMENTATION ALGORITHM
The basic segmentation algorithm starts with one or more

classes of the user’s choice and creates an extract based
around those and related concepts. These related classes
are identified by following the ontology link structure.

3.1 Upwards traversal of the hierarchy
Assuming, for example, that a segment of the Heart class

is to be produced. The obvious first class to include is the
Heart, the Heart’s superclass (InternalOrgan), then that
class’ superclass and so on, all the way up the hierarchy,
until the top (>) concept is reached. Since this hierarchy
is often quite deep (13 superclasses in this case) one might
consider collapsing the tree by merging several superclasses.
However, this destroys some of the semantic accuracy of the
ontology. It may be sensible when constructing an ontology
view or perspective, but is not useful for any extract that is
to be used in an application (such as a classifier), since each
superclass might contain critical information.

3.2 Downwards traversal of the hierarchy
The algorithm also goes down the class hierarchy from

the Heart, including its subclasses (in this case: Univen-
tricularHeart). This is especially relevant when segmenting
an ontology that has already been classified where newly
inferred subclasses of a particular class are likely to be of
interest.

The property hierarchy is however never traversed down-
wards. Properties are not of interest unless they are used in
the class hierarchy. So, if they are used, they, their super-
properties and no other properties, are included.

3.3 Sibling classes in the hierarchy
Sibling classes are not included in the extract. The Heart

class’ siblings include concepts like the Lung, Liver and Kid-
ney. It is reasonable to assume that these are not relevant
enough to be included by default. The user can always ex-
plicitly select them for inclusion, if they are of interest.

3.4 Upwards & Downwards and Upwards
from links

Having selected the classes up & down the hierarchy from
the target class, their restrictions, intersection, union and
equivalent classes now need to be considered: intersection
and union classes can be broken apart into other types of
classes and processed accordingly. Equivalent classes (de-
fined classes which have another class or restriction as both
their subclass and their superclass) can be included like any
other superclass or restriction, respectively. Restrictions
generally have both a type (property) and a filler (class),
both of which need to be included in the segment.

Additionally, the superproperties and superclasses of these
newly included properties and classes also need to be recur-
sively included, otherwise these concepts would just float in
OWL hyperspace. That is, without being attached to the
hierarchy, concepts are assumed to simply be subsumed by
the top concept (>), leading to a very messy, confusing and
often semantically incorrect view of the unclassified ontol-
ogy.

Figure 5 gives an illustration of this segmentation algo-
rithm. Starting at the target of the extract, the algorithm
traverses the hierarchy upwards all the way to the root class.
It also traverses it downwards all the way to the leaf classes.



Figure 5: Traversal Up & Down and Up from links

Additionally, any links across the hierarchy from any of the
previously traversed classes are followed. The hierarchy is
traversed upwards (but not downwards) from any of these
classes that the cross-links point to. Links pointing at other
classes from these newly traversed classes are also included.
This continues until there are no more links left to follow.

3.5 But not Downwards from Upwards links
Finally, one might also consider including the subclasses

of those classes included via links. However, doing so would
result in including the entire ontology. This is something
one definitely wants to avoid when creating an extract.

4. CONSTRAINING SEGMENT SIZE
The segmentation algorithm outlined above produces an

extract of all concepts related to the target concept. How-
ever, with densely interconnected ontologies, such as for ex-
ample GALEN, this new ontology is usually only up to one
fifth the size of the original. A means of further constraining
segments is needed.

4.1 Property filtering
If the aim is to produce a segment for use by a human, or

specialized application, then filtering on certain properties
is a useful approach.

For example, if a user is not interested in the diseases
modeled in GALEN, he or she can specify to exclude all
locative properties. These are properties that specifically
link diseases to the locations in the body where they might
occur: e.g. “IschaemicCoronaryHeartDisease hasLocation
Heart”.

The upper-level meta-properties which it may be logical
to include and/or exclude will be different for each ontol-
ogy to be segmented. These meta-properties are, in this
case, actual properties, since GALEN groups related prop-
erties together under super-properties. The following meta-
properties and their inverses were selected for course grain
property filtering:

• modifierAttribute: properties which can be used
to modify a given class such as “colour” or “status”.
These are sometimes also known as “value partitions”
[6]. They are almost always safe to include in an ex-
tract, since the class values they link to do not them-
selves link onwards to other classes and therefore will
not significantly increase a segment’s size.

• constructiveAttribute: the super-property of all the
following properties.

– locativeAttribute: properties that link diseases
to anatomical locations that they are in some way
related to.

– structuralAttribute: properties linking anat-
omical body structures together by physical com-
position.

– partitiveAttribute: properties that link classes
based on processes, divisions and other partitive
relations

– functionalAttribute: properties that link clas-
ses by action or function.

Note: The various properties could be broken down much
more elaborately. However, the point is that organizing
properties under any sensible upper-level property structure
will enable some degree of useful property filtering. A more
detailed analysis of the GALEN property hierarchy may be
found in [29].

4.1.1 Removing trivially equivalent definitions
Properties are filtered by removing all restriction in which

they occur. However, upon removing such restrictions from
defined class, it frequently occurs that a definition becomes
indistinguishable and therefore equivalent to another similar
definition. The resultant long chains of equivalent classes,
while not wrong, are difficult to view in ontology editors
(such as Protégé OWL [14]). Trivially equivalent definitions
are therefore transformed into primitive classes by the seg-
mentation algorithm. These still occupy the correct place in
the hierarchy and are easy for editors to display.

SkinOfFrontalScalp ≡�
SkinOfScalp u

∃ hasSpecificProximity .FrontalBone

�

SkinOfFrontalScalp ≡ SkinOfScalp

SkinOfFrontalScalp v SkinOfScalp

Figure 6: Property filtering with trivial definition
removal

As shown in the progression in Figure 6, if the filtering
process removes the restriction on a class and this results in
a trivial equivalence, then the definition is converted into a
primitive class.

4.2 Depth limiting using boundary classes
Depth limiting is a useful approach for accurately adjust-

ing the size of a segment so that it can, for example, be
classified successfully by automated reasoners.

A chain of links is followed to create a list of classes to
include in an extract. In doing so, each classes’ restrictions’
filler classes should be included to produce a semantically
correct extract (see Sections 2.1 and 3.4). However, if, upon
reaching a certain recursion depth, calculated from the ex-
tract’s target concept, all the links on a class are removed,
this class becomes a boundary class.

For example, one might remove the axiom in Figure 7
stating that the Pericardium (the membrane that surrounds
the heart) is a component of the CardiovasuclarSystem (line
three of the Figure), since one may not be interested in
including the CardiovascularSystem and everything related
to it in a segment of the Heart. This creates a boundary



Heart v ∃ hasStructuralComponent . Pericardium
Pericardium v SerousMembrane
Pericardium v

∃ isStructuralComponentOf . CardiovascularSystem

Figure 7: Example of a boundary class

class that is still defined in the hierarchy (under SerousMem-
brane) and therefore still makes sense within the ontology,
but has an incomplete definition.

The named superclasses of a boundary class (line two
of Figure 7) must be included in the extract in order to
place classes in their proper position in the hierarchy. These
classes would otherwise all be subsumed under the top con-
cept (>). These superclasses are however also boundary
classes, unless they are linked to by way of shorter recursion
path along another concept, as shown in Figure 8.

The main hierarchy of “is-A” superclass relationships be-
tween classes should not be counted when calculating the
traversal depth, since they need to be included in any case
and do not substantially increase the complexity of the seg-
ment. Subclass relations can be ignored completely, since
they are not included in the extract in the first place (see
Section 3.5). Figure 8 illustrates the entire boundary ex-
traction procedure.

Figure 8: Boundary extract with depth limited to
‘two’

This methodology effectively limits the size of the ontol-
ogy, since the presence of a boundary class will cause a link
traversal algorithm to terminate. Otherwise, in the case of
a densely interlinked ontology such as GALEN, practically
the entire ontology could be “linked-in”.

Noy and Musen’s ontology extraction research [21], also
uses the boundary class term, but defines it as any class
which is in the range of any property that is used in each
restriction on each of the classes which are targeted by the
extract. The resulting list of boundary classes is to function
as a reminder to the user of other classes they might want
to include in the view they are constructing. This approach
relies on property ranges being specified in the ontology,
which is often not the case and on a graphical user inter-
face to “prompt” [20] the user. The approach presented
here takes a more automated approach, aiming to produce
a heuristic algorithm that creates a useful segment without
much user intervention.

5. EVALUATION
The utility of various segmentation strategies with regards

to applications can not be evaluated at this time, because
suitable applications that take advantage of segmented on-
tologies do not yet exist. However, the performance of this
methodology can be evaluated by various statistical mea-
sures.

(Tests were carried out on a 2.8 Ghz Pentium 4 with 2.5
GB of RAM running Racer 1.8.0 on Windows XP service
pack 2.)

5.1 Segmentation speed

Figure 9: Time to compute a segment

Figure 9 gives a breakdown of how long various aspects of
the segmentation process take. The first step is loading the
target ontology. The next involves an initial pass over the
ontology, scanning for and marking the classes to include
in the eventual segment extraction process. Extraction con-
structs a new, self-contained ontology segment, which is then
saved to disk.

As can be seen from the figure, the complete segmenta-
tion process takes an average of one minute to complete.
However, most time is spent loading the ontology. Once the
target ontology is in memory, the segmentation itself takes
only around six seconds to complete. It can be observe that
segments from large ontologies can be created with good
computational efficiency, though this is, of course, depen-
dent on the specific implementation of the extraction algo-
rithm.

Performance is currently not fast enough for real-time user
queries. However, the results show good potential for future
optimisations, especially if loading times can be reduced by
streaming segmentation techniques and/or caching. Fur-
thermore, segmentation is not meant to replace querying.
Instead, it enables efficient querying of otherwise intractable
ontologies.



5.2 Basic segmentation
The basic segmentation algorithm targeted around the

GALEN “Heart” concept produced the results shown in Ta-
ble 1. As can be seen from the table, the segment is roughly
a quarter the size of the original ontology, with the num-
ber of properties being reduced the least and the number
of primitive classes being reduced the most. A similar pat-
tern can be observed when segmenting using different target
classes.

original segment size difference

number of classes 23139 5794 25%
primitive classes 13168 2771 21%

defined classes 9971 3023 30%
number of properties 522 380 71%

filesize in KB 22022 5815 26%

Table 1: Basic segment of the Heart concept

This reduction in size is not enough to enable classifica-
tion given current memory and reasoner applications. All
current tableaux algorithm-based description logic reasoner
systems stack-overflow when attempting to classify the basic
extract of GALEN. The filtering and boundary extraction
algorithms do however create classifiable ontology segments
(see Section 5.3.2).

5.3 Property filtering segmentation results
A segment was produced by including only properties

from each of the main property categories identified in Sec-
tion 4.1. Segments using combinations of property cate-
gories were also produced. It was found that the combina-
tion of Partitive, Functional and Modifier properties pro-
duced the largest ontology that could still be classified suc-
cessfully. Statistics for this combination segment are there-
fore also included in the tables below.

filter
total defined number of size

classes classes properties in KB

Modifier 99 10 56 63
Functional 129 17 22 57
Structural 357 29 74 258
Partitive 518 175 62 362
Locative 524 131 112 295

Part+Func+Mod 909 285 164 664
Constructive 5567 2954 284 5096

Basic seg. 5794 3023 380 5815
Original 23139 9971 522 22022

Table 2: Filtering segmentation size results

Table 2 gives an overview of the size of various property
filtered segments. As can be seen from the results, segments
could be reduced in size by an average factor of 20 over
the original ontology and by a factor of five over the basic
extraction methodology.

5.3.1 Probe classes

ProbeHeart ≡ ∃ attribute .Heart

Figure 10: Probe class use to test classification per-
formance

The test query (probe class) in Figure 10 was introduced
into every segmented ontology to test its classification per-
formance. An approximate measure of the degree of knowl-
edge present in a segment may be obtained by counting the
number of new classes inferred as subclasses of the probe.
The probe effectively answers the query “everything related
to the Heart” by using the “attribute” property, which is the
top-level property in GALEN.

5.3.2 Classification tests
Table 3 shows several classification statistics.
Note: the “new inferences” column only lists new in-

ferences under the probe class. Many other new subclass
relationships are inferred in each segment, but these are not
necessarily relevant to the extract’s target concept and were
therefore not counted as part of this evaluation.

filter
defined new speed
classes inf. in sec

Structural 29 1 5
Modifier 10 1 1
Locative 131 30 7

Part+Func+Mod 285 85 22
Partitive 175 58 11

Functional 17 13 2
Constructive 2162 n/a n/a

filter
ms per new inf.

def. per def.

Structural 172 0.03
Modifier 100 0.1
Locative 52 0.23

Part+Func+Mod 77 0.30
Partitive 63 0.33

Functional 118 0.76
Constructive n/a n/a

Table 3: Basic segment of the Heart concept

5.3.3 Discussion

• The segment using all Constructive properties (combi-
nation of Structural, Locative, Functional and Partitive
properties) was too large to classify.

• The Functional and Partitive segments produced the
most new inferences relative to their size. This indi-
cates that a majority of the knowledge in GALEN is
covered by these two structures.

• As expected, the Modifier properties do not add very
much complexity to a segment and are therefore almost
always safe to include in any segment.

• Structural properties do not play a major role in the
ontology, since they do not add much information.

• Locative properties are of small, but not insignificant
consequence to the classification. This indicates that
complexity of the anatomical model in GALEN is far
greater than the complexity of disease model.



5.4 Boundary class segmentation results

5.4.1 Boundary size results
As one might expect, the boundary extraction algorithm

produces progressively smaller segments, in proportion with
the boundary cut-off. However, there seems to be no cor-
relation between the number of boundary classes created
at each cut-off level and the size of the resultant ontology.
Figure 11 illustrates the differences in boundary sizes.

This result indicates that the link structure of the GALEN
ontology is very interwoven and unpredictable. There seem
to be no tight group of boundary classes that limit a par-
ticular extract and therefore also no way to cleanly divide
an ontology into modules. That is, the complex ontological
relationships cannot be cleanly divided into fixed categories.
We should therefore expect traditional partitioning method-
ologies, such as those discussed in Section 6, to be of limited
use in this domain.

Figure 11: Boundary depth, boundary classes and
segment size

5.4.2 Boundary classification results

boundary defined new speed ms per new inf.
depth classes inf. in sec def. per def.

1 279 2 34 121 0.007

Table 4: Boundary extract classification tests

Table 4 shows the results of the boundary classification
testing. Only boundary depth “one” could be successfully
classified.

Boundary extraction by itself provides a very good means
of controlling the size of an extract, but does not seem to
provide much optimization for classification. A combination

of boundary extraction and filtering segmentation allows one
to control both the classifiability and size of a segment. This
combination represents the optimal segmentation strategy.

6. RELATED WORK

6.1 Overview
The idea of extracting a subset of a larger ontology is

referred to by many different names by different authors.
Research regarding views, segments, extracts, islands, mod-
ules, packages and partitions may be broken down into three
main categories:

1. Query-based methods

2. Network partitioning

3. Extraction by traversal

The research presented in this paper falls into category
three.

6.2 Query-based methods
Many researchers, taking inspiration from the databases

field, define ontological queries in an SQL-like syntax. These
queries can return sub-ontology segments as their answer-
sets.

6.2.1 SparQL
The SparQL query language [31] defines a simple query

mechanism for RDF. Multiple queries are required in or-
der to extract complex knowledge as, for example, a class
and its transitive closure (all classes related to it). SparQL
might be a good low-level tool for implementing ontology
segmentation, but is not a solution in and of itself.

6.2.2 KAON views
Volz and colleagues define an ontology view mechanism

based upon the RQL query language [38]. They highlight
RQL [1] as the only RDF query language that takes the se-
mantics of RDF Schema into account. Their view system
has the ability to place each concept in its corresponding
place in the complete RDF hierarchy. This practice, similar
to the algorithm presented in Section 3, gives a more com-
plete picture of the structure of a query answer than merely
returning the relevant concepts in isolation. They do not
however provide a means of materializing a view, i.e. views
are transient: they are discarded as soon as they have served
their purpose.

6.2.3 RVL
Magkanaraki and colleagues present a similar approach to

Volz’s, except their system also allows queries to reorganize
the RDFS hierarchy when creating a view [18]. This allows
views to be customized on-the-fly for specific applications’
requirements. They however also side-step the ontology up-
dating problem by only creating virtual views. Their views
are merely a collection of pointers to the actual concepts,
and are discarded after they have served their purpose.

6.2.4 Discussion
Query-based methods provide a view mechanism similar

to SQL. This makes them intuitively familiar to computer



scientists with a background in databases. The shortcom-
ings of these approaches are that they provide only very low-
level access to the semantics of the ontology being queried
and do not yet address the issue of updating the original on-
tology when an extract is changed. Query-based views are
good for getting very small, controlled, single-use extracts,
which are tightly focused around a few concepts of interest.

By contrast, the methods presented herein create self-
standing, persistent, multi-use ontology segments. That is,
the segments have a life of their own: they can be trans-
formed, updated, shared, annotated, plugged into applica-
tions and otherwise manipulated in myriad of ways.

6.3 Network partitioning
The basic idea of partitioning comes from Herbert Simon.

He asserts that any system has the property of near-complete
decomposability [32]. That is, we can always find clusters
of objects that are more related to each other than to the
other objects around them. How complete a decomposition
is possible depends on the nature of the system in question.

Researchers in networking use algorithms to organize the
nodes on a network into inter-related islands [2]. Some on-
tology researchers propose applying a similar methodology
to segmenting ontologies.

An ontology can, from this point of view, be viewed as a
network of nodes connected by links. The class hierarchy can
be interpreted as a directed acyclic graph (DAG) and any
relations between classes can be represented as links between
the nodes (a simplified model of the paradigm presented in
Section 2.1).

6.3.1 Structure-based partitioning
Stuckenschmidt and Klein present a method of partition-

ing the classes hierarchy into modules [35]. They exploit the
structure of the hierarchy and constraints on properties’ do-
mains and ranges (for example: the “hasGender” property
might have a domain of “Animal” and a range of “Male
or Female”) to iteratively break the ontology up into dy-
namically sized modules. This method does not take OWL
restrictions, which can act as additional links between con-
cepts, into account. Instead it relies on the globally asserted
domain & range constraints. However, domains and ranges
are optional and may not therefore be asserted in a given
ontology.

Structure-based partitioning is primarily meant for break-
ing an ontology into broad packages or modules so that it
can be more easily maintained, published and/or validated.
However, this process destroys the original ontology, leaving
it decomposed into whatever modules the partitioning algo-
rithm deemed appropriate. Moreover, ontologies, particu-
larly those modeled in OWL, tend to be more semantically
rich than a simple network abstraction will capture.

6.3.2 Automated Partitioning using E-connections
Grau and colleagues [8] present a method for modularizing

OWL ontologies similar to Stuckenschmidt and Klein’s ap-
proach [35]. However, they address the issue of the original
ontology being destroyed by using ε-connections [15] to keep
the individual modules somewhat interconnected. The mod-
ularized ontology fragments produced by their algorithm are
formally proven to contain the minimal set of atomic axioms
necessary in order to maintain crucial entailments.

While Grau’s approach is formally sound, it does not seem

to scale up to complex, large ontologies. In particular, tests
using a 3000-class fragment of GALEN failed to produce a
useful segmentation. The methodology does not seem to
be able to modularize ontologies that make use of an upper-
ontology [9]. Since many large ontologies rely on such an up-
per ontologies to maintain a high-level organizational struc-
ture [24], Grau’s approach is only of limited real-world use.

6.3.3 SNARK and Vampire
MacCartney et al. use the same partitioning idea to solve

a different problem: they present a first-order logic theorem
prover (SNARK) [17], which decomposes the knowledge base
into self-contained mini-prover partitions, which then com-
municate with each other using message passing techniques.
The researchers thereby successfully improve the efficiency
of their reasoning algorithm when answering queries over
large knowledge bases.

Tsarkov and Horrocks [36] use a similar approach for op-
timizing the classification performance of the Vampire first-
order logic theorem prover [27] when classifying description
logic ontologies.

6.4 Extraction by traversal
Ontology extraction by traversal, similar to the network

partitioning approach, also sees the ontology as a networking
or graph. However, instead of decomposing the entire graph
into modules, this methodology starts at a particular node
(concept) and follows its links, thereby building up a list
of nodes (concepts) to extract. A key difference is that this
leaves the structure of the original ontology intact: it creates
an extract, not a decomposition.

6.4.1 PROMPT
Noy and Musen present an extension to the PROMPT

suite [20] of ontology maintenance tools, which are them-
selves plug-ins to the Protégé ontology editor [22]. Their
extraction methodology [21] focuses on traversal directives,
which define how the ontology links should be traversed.
Collections of directives completely and unambiguously de-
fine an ontology view and can themselves be stored as an on-
tology. They also introduce the concept of boundary classes
around the edges of an extract. However, their view of
boundary classes differs from the perspective given in this
paper (see Section 4.2).

Noy’s research establishes the mechanics of ontology view
extraction, but does not address how her system might be
used to construct relevant, useful and computationally trac-
table segments.

6.4.2 MOVE
Bhatt, Wouters and company have a different focus: They

present the Materialized Ontology View Extractor (MOVE)
system for distributed sub-ontology extraction [3]. It is a
generic system that can theoretically be adapted to work
with any ontology format. The system extracts a sub-ontol-
ogy based on a user’s labelling of which ontology terms to
include and which to exclude. It also has the ability to
optimise an extract based upon a set of user selectable op-
timisation schemes. These schemes can produce either the
smallest possible extract, a medium size one, or include as
much detail as possible. These extracts can be further re-
stricted by enforcing a set of additional constraints. Their
system can, for example, enforce the semantic completeness



and well-formedness of an extract [39].
However, the primary focus of Bhatt and Wouters’ ar-

chitecture is parallel processing. While, their extract sys-
tem performs very poorly when run on a single machine (17
minutes to produce an extract from a 5000-concept ontol-
ogy), it achieves optimum performance using around five
separate processors.

We argue that speed is not a critical factor in the ex-
traction process. Performance is too poor to facilitate an
instant, on-demand extraction web-service, but not poor
enough that it becomes a serious problem. For example,
extraction tests on the GALEN ontology by these authors
took in the order of two to five minutes to complete.

6.4.3 Discussion
Both MOVE and PROMPT produce a materialized view,

i.e. a self-standing ontology that has no direct connection
with its origin. Both also have the notion of the transitive
closure of a concept (Wouters et al. call this semantic com-
pleteness [39]). However, neither methodology addresses the
important issue of how to update the main ontology if the
view is modified, how to transform the ontology on-the-fly
while extracting, nor do they discuss the ability to classify an
extract using description-logic reasoning systems. Finally,
neither systems make use of meta-information about an on-
tology’s semantics in determining the best extract. The user
must make a great deal of manual selections and choices for
each new extract he or she wishes to produce.

By contrast, the segmentation algorithms presented herein
automates the extraction process as much as possible by
taking advantage of meta-information. Additionally, these
methods have the ability to transform the extracted ontol-
ogy segments (see Section 4.1.1) and are optimized for en-
abling classification.

The key difference between the approach present here and
the other approaches is that we do not aim to create views
of one type or another. Instead, we aim to produce inde-
pendently useful and usable ontologies.

7. FUTURE WORK
The GALEN ontology was chosen as a proof-of-concept

test-case for the segmentation techniques presented herein.
The next step is to generalise the algorithm to work well
with other well-known large ontologies and ultimately to
work well with any large ontology within the algorithm’s
scope (see Section 1.5).

Such a generic algorithm will then be integrated with on-
tology alignment methodologies, thereby making it possible
to produce extracts that cut across ontology borders. Such a
segmentation algorithm, offered as a web service, will make
it possible to create ontology segments from a web of ontolo-
gies: an otherwise unmanageable semantic web will become
tractable for computers and comprehendible for humans.

Additionally, other applications and evaluations of the
segmentation methodology (as outlined in Section 1.3) will
be explored in the future.

8. CONCLUSION
Ontologies with over ten-thousand classes suffer severely

from scaling problem. Segmentation by traversal is a way of
overcoming these difficulties. Developers can use ontology
segmentation techniques to quickly and easily create the rel-

evant, self-standing custom ontologies they require, instead
of having to rely on the initial authors’ decomposition. On-
tology segments can be specialized further by only includ-
ing links of specific types in the extract (property filtering),
limiting the depth of the link traversal algorithm (boundary
extraction), or a combination of both.

The methods presented take advantage of many ontology
maintenance principles: normalisation [26], upper-ontologies
[24] and rich property hierarchies [25] are all taken into ac-
count in order to produce more relevant segments. Other
approaches to segmentation do not take advantage of many
of the semantics captured within an OWL ontology and are
therefore only of limited use.

Evaluation has shown that segmenting ontologies can de-
crease their size considerably and significantly improve their
performance. The size of the GALEN ontology was reduced
by a factor of 20. Moreover, segments of this ontology,
which was previously impossible to classify, were classified
within seconds. Additionally, useful insights into the ontol-
ogy meta-structure were gained from the analysis of various
segments.

The complete GALEN in OWL along with a web applica-
tion that can generate custom GALEN segments is available
online1.
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