
Position Paper: Ontology Construction from Online
Ontologies

Harith Alani
Intelligence, Agents, Multimedia

Electronics and Computer Science Dept.
University of Southampton

Southampton, UK

h.alani@ecs.soton.ac.uk

ABSTRACT
One of the main hurdles towards a wide endorsement of
ontologies is the high cost of constructing them. Reuse of
existing ontologies offers a much cheaper alternative than
building new ones from scratch, yet tools to support such
reuse are still in their infancy. However, more ontologies are
becoming available on the web, and online libraries for stor-
ing and indexing ontologies are increasing in number and
demand. Search engines have also started to appear, to fa-
cilitate search and retrieval of online ontologies. This paper
presents a fresh view on constructing ontologies automati-
cally, by identifying, ranking, and merging fragments of on-
line ontologies.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and Meth-
ods]: Representation languages, Semantic networks; H.3.3
[Information Search and Retrieval]: Search process, Se-
lection process

General Terms
Management, Design

Keywords
Automatic ontology construction, ontology reuse

1. INTRODUCTION
Based on current semantic web technology, ontologies are

complex to build and understand, which hinders their wide
adoption [9]. Constructing ontologies automatically has been
the focus of some research to help reduce the high cost of
building ontologies by hand. Several approaches have been
investigated for extracting ontologies from existing knowl-
edge bases (e.g. [24]), from legacy software systems (e.g.
[30]), and from text corpora (e.g. [13, 5]).

One of the problems with such approaches is that back-
ground knowledge is not usually explicitly expressed in the
knowledge sources [5]. This could seriously limit the on-
tologies produced with such approaches and may enforce
searching for external knowledge sources to fill such knowl-
edge gaps.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

An alternative approach, or perhaps a complimentary one
to the approaches above, is to search and reuse ontologies
that already exist on the web when constructing new ones.
It is often believed that one of the major factors for the ini-
tial rapid growth of the web was the ability and ease for users
to copy HTML code from existing web pages and reuse it to
create their own pages. Users were able to create web pages
with little effort, and without the need for deep understand-
ing of the underlying languages. Such ease of reuse needs to
be replicated with ontologies to speed up their spread and
use [21].

Facilitating reuse of other people’s ontologies should en-
courage more individuals and organisations to participate
in the semantic web. After all, ontologies are meant to pro-
vide an “easy to reuse library of class objects for modelling
problems and domains” [27]. Wide dissemination of ontol-
ogy technology would require methods and tools to facilitate
ontology reuse [7]. However, no such tools are currently
available, which renders ontology reuse a very hardship task
[4, 12].

Harnessing online ontologies might be the first step to-
wards achieving true reuse. There is an increasing num-
ber of online libraries for searching and downloading on-
tologies. Examples of such libraries include Ontolingua1,
Protégé2, and DAML3. Few search engines have recently
appeared that allow keyword-based search for online ontolo-
gies, such as Swoogle [6] and OntoSearch [31]. Swoogle cur-
rently contains over 10000 ontologies covering a wide range
of domains4. However, the use of such tools is limited to
giving back a list of potentially relevant ontologies, with no
further support for reuse.

Providing support for reuse during ontology development
from specific ontology libraries has been studied before (e.g.
[9, 12]). However, the focus was mainly to enable users to
reuse or import whole ontologies or ontology modules. They
provided no support for ranking available ontologies, or for
extracting and merging the ontology parts of interest, or for
evaluating the resulting ontology.

This paper outlines a proposal for a new approach for
automatic ontology construction. The approach is meant
to encourage and support reuse of existing ontologies, us-
ing latest semantic web research technology. We propose

1http://www-ksl-svc.stanford.edu:5915/
2http://protege.stanford.edu/pugins/owl/owl-library/
3http://www.daml.org/ontologies
4http://swoogle.umbc.edu/

to build a system that searches online ontologies for repre-
sentations of certain concepts, ranks the retrieved ontologies
according to some criteria, then extract the relevant parts of
the top ranked ontologies, and merge those parts to acquire
the richest domain representation as possible.

We believe that by relying on existing ontologies we can
avoid the problems stated in [5], and bootstrap the process
of ontology building by reusing existing ontology fragments.

2. SCENARIO
To help explaining how our suggested system might work,

consider the following scenario.
Imagine there is a knowledge engineer who is in need of an

ontology representing the academic domain. The ontology
is to be used for creating a knowledge-base to hold informa-
tion on staff, projects, conferences, publications, etc. There
are many ontologies online that covers various portions of
this domain. It would certainly be beneficial if the engineer
can quickly and efficiently reuse some of these third-party
ontologies, to at least bootstrap the ontology construction
task.

One of the recommended first steps towards building an
ontology is to write down a list of terms to represent in
the ontology [23, 27, 17]. This helps scoping the domain,
reaching agreement, and building the class hierarchy. Lets
assume that one of the terms that our knowledge engineer
wrote was “Conference”. There could be many ontologies
out there that covers this concept to some extent, that our
engineer is not aware of. It might speed up his task if some
existing representations can be easily gathered and repre-
sented to him to accept, modify, or at least learn from.

At the time of writing, when searching for owl ontolo-
gies on the term “Conference” in Swoogle [6], a list of 34
ontologies was returned. Our system could analyse these
ontologies to acquire as much representational knowledge as
possible about the given term. In some cases, if there are
too many ontologies to analyse (such as in our example)
then the system could greatly benefit from an ontology
ranking service that can order the ontologies according to
some criteria. The system could be set to only analyse and
reuse, say, the top five ontologies from the ranked list, but
of course such threshold can be modified based on what has
been found.

Now the system could commence its analyses of the top
ranked ontologies, starting with rank number 1. Based on
the size and scope of that ontology, the system may decide
to take the ontology as a whole, or only take the section
that describes “Conference”. To achieve the latter, the sys-
tem will need to use an ontology segmentation service to
extract the required section from the ontology. In our case,
the first ontology on Swoogle’s results list is conference.owl5.
This ontology comprises of only one class “Conference” and
a number of datatype properties, such as title, paperDueOn,
startDate, etc. (figure 1).

Even though the above owl file does represent the con-
cept “Conference”, but it might not be sufficient, in terms of
coverage, detail, etc. However, many other ontologies were
found by the search engine when searching for this concept.
Our system could start analysing some of those ontologies to
enrich our first ontology with more knowledge. For example,

5http://ebiquity.umbc.edu/ontology/conference.owl

dateTime

Conference

title

paperDueOn

description

registrationDueOn

location

startDate

abstractDueOn

endDate
dateTime

dateTimedateTime

String

String

dateTime

keyword

String

StringString

uri

Figure 1: The whole ontology of conference.owl

the second ontology found by Swoogle was web04photo.owl6.
A section of this ontology is shown in figure 2. The class
“Conference” in this ontology has more detail than in con-
ference.owl. For example, we now have a superclass (Event),
some siblings (e.g. Workshop, Presentation, etc.), and new
properties (e.g. subEventOf, hasSubEvent, hasOrganizer,
etc.). However, note that this ontology does not have all
the properties found in conference.owl.

Event

dateTime

Person

Conference

hasOrganizer

hasParticipant

Location

hasEndTime
hasLocation hasStartTime

hasEndDate

hasStartDate

dateTime

dateTime

dateTime

Workshop
KeynoteTalk

PresentationSocialEvent

hasSubEventsubEventOf

Figure 2: www04photo.owl

Next, the system will need to compare the two on-
tologies (or segments of ontologies) to find any additional
representations that can be merged into the first ontology.
This may result in the creation of new classes and proper-
ties in the first ontology to cover these additional knowledge
representations.

By iterating the above comparison and merging processes
for some of the top ranked ontologies, an ontology might be
produced that is perhaps richer and more detailed than any
of the already existing ontologies. When the process ends,
the resulting ontology can be presented to the knowledge
engineer to study and modify or even correct as required.

3. ARCHITECTURE
The system we are planning to build combines many of

the hot topics in current semantic web research, such as on-
tology ranking [1, 6, 20], segmentation [25, 14, 22], mapping
and merging [11, 8], and automatic evaluation [28]. Figure
3 shows the envisaged architecture of this system. The pro-
cesses required by this system are briefly described below.

6http://www.mindswap.org/∼golbeck/web/www04photo.owl

Figure 3: System architecture.

3.1 System Processes
The process of reusing online ontologies to construct new

ontologies should include the following steps:

1. Search for Ontologies: First step is to find some
potentially relevant ontologies to reuse. This may be
done by searching for specific keywords (as in Swoogle[6])
or perhaps using a more complex query mechanism (eg
metadata search [12], structure-based queries, query
expansion techniques, etc). This process should pro-
duce a list of ontology URIs that are potentially rele-
vant to the user’s needs.

2. Ontology Ranking: As shown in section 2, a search
for ontologies may return too many hits. To enable the
system to start with the best ontology, the returned list
of ontologies must be ranked according to, for exam-
ple, how well they represent the concepts in the search
query [1], how the ontologies have been rated by users
[26], or how well they meet the requirements of certain
evaluation tests (e.g. OntoClean [10]). The outcome
of this process will be a ranked list of ontologies for
the system to analyse and reuse.

3. Ontology Segmentation: Depending on the size of
the ontology that is being analysed for reuse, and on
the desired scope for the final ontology, the system
may deploy some tools to extract only certain parts of
the ontology in hand. This could be necessary to limit
the size and domain of the resulting ontology to only
what the user is interested in. Users can be given some
control on the level of generosity of the segmentation
methods.

Several approaches for segmenting ontologies have been
investigated and covered in the literature. The type of
segmentation required by our proposed system could
be very simplistic, such as the spreading activation-
based extraction discussed in [19], which cuts an ontol-
ogy view to a fixed graph length around a selected con-
cept. More complex approaches that take the ontology
structure into account can also be deployed, such as
those discussed in [3, 22]. Other approaches on ontol-
ogy segmentation include the use of classical clustering
algorithms to break an ontology into a fixed number
of parts [25], the use of queries to create specific ontol-
ogy views [29, 14], and the segmentation of an ontology
based on analysing its applications’ queries [2].

4. Ontology Mapping and Merging: Once ontology
segments are obtained, the system will need to com-
pare and merge these segments to gather more domain
representation for the concepts in question. This needs
to be handled carefully to avoid overwhelming the user
with oversized representations.

Ontology mapping and merging are hot topics in AI
research, aiming to bridge the communication gap be-
tween applications that rely on different, but overlap-
ping, knowledge representations. A number of tools
have been developed to map and/or merge ontologies
semi-automatically, where the system compares the
given ontologies and reports back to the user some
mapping suggestions. Examples of such systems are
the PROMPT Suite [18] which is integrated into the
Protégé ontology editor [16] and Chimeara [15], which
was built on Ontolingua [9].

5. Ontology Evaluation: The system may need to eval-
uate the ontology that it constructed from fragments
taken from other ontologies, to make sure that the re-
sulting ontology meets some minimum quality checks.
The evaluation process may help the system to, for ex-
ample, resolve some inconsistencies, identify semantic
gaps which needs to be filled, etc. OntoClean is a well
known methodology for evaluating ontologies based on
meta-property tags [10]. The tagging process can be
too costly if performed manually, but some attempts
to automate it are already under way [28].

The user may want to repeat the steps above to search
for additional concepts, or to rerun the process using dif-
ferent thresholds (e.g. analyse more ontologies, use larger
segments) then merge the resulting ontology with the one
that the system produced so far.

4. CHALLENGES
The system described in this paper will definitely be a

challenge to build and run successfully. Most of the pro-
cesses this system builds on (section 3.1) are dependent on
semantic web technologies that are still rather immature and
far from perfect. However, technologies can only mature
once they are applied to practical and real world tests, which
is what this system is hoping to provide. Bringing all these
technologies together and integrating them to form a single
production line, is one of the indirect aims of this proposed
system.

Apart from the well known challenges of searching, rank-
ing, segmentation, merging, and evaluation of ontologies,

which are well covered in the literature, there are other fun-
damental issues that the proposed system may need to deal
with.

One of the crucial factors when building new ontologies
from existing ones is obviously the availability of ontologies
to reuse, in terms of numbers and domain variety. Many of
the ontologies constructed by semantic web researchers and
developers are never put on the web. This will hopefully
change once ontology search engines become more popular,
and the benefits of making ontologies available for others
become more apparent.

There is also the danger of ending up with a very large and
messy ontology as a result of using automated systems, like
the one we are suggesting, to construct the ontology. This
could happen if many large ontologies are used as a resource.
Users might find it hard to clean or modify the resulting on-
tology if its too large, rendering the whole process less useful.
However, this problem can be avoided to some extent using
system cut-off thresholds, which can be set based on the size
of the ontology to be constructed, where the system stops
augmenting the ontology once it reaches a certain size limit.
Another possible approach is to enable users to interact with
the system throughout the whole process. Users could mon-
itor the construction and augmentation of the ontology, and
either permanently stop the system if they are satisfied with
the result, or pause the system while they clean the ontol-
ogy before allowing the system to analyse and merge further
ontologies.

Because the system is reusing existing ontologies, the qual-
ity of those ontologies will certainly affect the quality of the
output ontology. Users might want to restrict the system
to only those ontologies that pass certain quality tests, or
are provided by specific organisations or authors. Applying
proper ontology ranking and evaluation processes might help
reducing this problem. However, it can not be guaranteed
that the segments extracted from the original ontologies will
retain the quality and consistency of their source.

5. CONCLUSIONS AND FUTURE WORK
This paper presented a new approach for automatic con-

struction of ontologies. The idea is based on reusing the
increasing number of online ontologies to build new ontolo-
gies, rather than the current costly habit of starting from
scratch. The proposed system intends to make use of a
number of technologies to complete its task, such as on-
tology searching, ranking, segmentation, mapping, merging,
and evaluation. To the best of our knowledge, this will be
the first time that these technologies are put together to
achieve a common goal.

Users of the proposed system will be expected to modify,
delete from, and add to the automatically built ontology as
they see fit. The purpose here is to avoid reinventing the
wheel by provide users with a tool to help them gather and
learn from existing domain knowledge representations, thus
bootstrapping their ontology construction task.

We aim to start building the system described in this pa-
per soon and experiment with it to evaluate how well such
an approach may work in real life scenarios.

6. ACKNOWLEDGMENTS
This work is supported under the Advanced Knowledge

Technologies (AKT) Interdisciplinary Research Collabora-

tion (IRC), which is sponsored by the UK Engineering and
Physical Sciences Research Council under grant number GR/
N15764/01. The AKT IRC comprises the Universities of Ab-
erdeen, Edinburgh, Sheffield, Southampton and the Open
University. The views and conclusions contained herein are
those of the authors and should not be interpreted as nec-
essarily representing official policies or endorsements, either
express or implied, of the EPSRC or any other member of
the AKT IRC.

7. REFERENCES
[1] H. Alani and C. Brewster. Ontology ranking based on

the analysis of concept sructures. In Proceedings of the
3rd International Conference on Knowledge Capture
(K-Cap), pages 51–58, Banff, Canada, 2005.

[2] H. Alani, S. Harris, and B. O’Neil. Winnowing
Ontologies based on Application Use. In Proceedings
of 3rd European Semantic Web Conference
(ESWC’06), Montenegro, 2006.

[3] M. Bhatt, C. Wouters, A. Flahive, W. Rahayu, and
D. Taniar. Semantic completeness in sub-ontology
extraction using distributed methods. In Proceedings
of the International Conference on Computational
Science and its Applications (ICCSA), pages 508–517,
Perugia, Italy, 2004. LNCS, Springer Verlag.

[4] E. P. Bontas, M. Mochol, and R. Tolksdorf. Case
studies on ontology reuse. In 5th International
Conference on Knowledge Management (I’Know’05),
Graz, Austria, 2005.

[5] C. Brewster, F. Ciravegna, and Y. Wilks. Background
and foreground knowledge in dynamic ontology
construction. In Semantic Web Workshop, SIGIR’03,
Toronto, Canada, 2003.

[6] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost,
Y. Peng, P. Reddivari, V. C. Doshi, and J. Sachs.
Swoogle: A semantic web search and metadata engine.
In Proceedings of the 13th ACM Conference on
Information and Knowledge Management, Nov. 2004.

[7] Y. Ding and D. Fensel. Ontology library systems: The
key to successful ontology re-use. In Int. Semantic
Web Working Symposium (SWWS), Stanford, CA,
USA, 2001.

[8] A. Doan and A. Halevy. Semantic integration research
in the database community: A bried survey. AI
Magazine, 26(1):83–94, 2005.

[9] A. Farquhar, R. Fikes, and J. Rice. The ontolingua
server: A tool for collaborative ontology construction.
In Proceedings of the 10th Knowledge Acquisition for
Knowledge-Based Systems Workshop, Banff, Canada,
9–14 Nov 1996.

[10] N. Guarino and C. Welty. Evaluating ontological
decisions with ontoclean. Communications of the
ACM, 45(2):61–65, 2002.

[11] Y. Kalfoglou and M. Marco Schorlemmer. Ontology
mapping: the state of the art. The Knowledge
Engineering Review, 18(1):1–31, 2003.

[12] A. Maedche, B. Motik, L. Stojanovic, R. Studer, and
R. Volz. An infrastructure for searching, reusing and
evolving distributed ontologies. In The Twelfth
International World Wide Web Conference
(WWW’03), pages 439–448, Budapest, Hungary, 2003.
ACM.

[13] A. Maedche and S. Staab. Ontology learning for the
semantic web. IEEE Intelligent Systems, pages 72–79,
March/April 2001.

[14] A. Magkanaraki, V. Tannen, V. Christophides, and
D. Plexousakis. Viewing the semantic web through rvl
lenses. In Proceedings of the Second International
Semantic Web Conference (ISWC), pages 98–112,
Sanibel Island, Florida, 2003.

[15] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder.
An environment for merging and testing large
ontologies. In Proceedings of the 17th International
Conference on Principles of Knowledge Representation
and Reasoning (KR-2000), Colorado, USA, 2000.

[16] M. A. Musen, R. W. Fergerson, W. E. Grosso, N. F.
Noy, M. Y. Grubezy, and J. H. Gennari.
Component-based support for building
knowledge-acquisition systems. In Proceedings of the
Intelligent Information Processing (IIP 2000)
Conference of the International Federation for
Processing (IFIP), World Computer Congress
(WCC’2000), pages 18–22, Beijing, China, 2000.

[17] N. Noy and D. L. McGuinness. Ontology development
101: A guide to creating your first ontology. Technical
Report KSL-01-05, Stanford Medical Informatics,
Stanford, 2001.

[18] N. F. Noy and M. A. Musen. The prompt suite:
Interactive tools for ontology merging and mapping.
International Journal of Human-Computer Studies,
59(6):983–1024, 2003.

[19] N. F. Noy and M. A. Musen. Specifying ontology
views by traversal. In 3rd International Semantic Web
Conference (ISWC’04), Hiroshima, Japan, 2004.

[20] C. Patel, K. Supekar, Y. Lee, and E. Park. Ontokhoj:
A semantic web portal for ontology searching,
ranking, and classification. In Proceedings of the 5th
ACM International Workshop on Web Information
and Data Management, pages 58–61, New Orleans,
Louisiana, USA, 2003.

[21] D. Quan and D. R. Karger. How to make a semantic
web browser. In 13th International World Wide Web
Conference (WWW04), New York, 2004.

[22] J. Seidenberg and A. Rector. Web Ontology
Segmentation: Analysis, Classification and Use. In
Proceedings 15th International World Wide Web
Conference, Edinburgh, Scotland, 2006.

[23] D. Skuce. Conventions for reaching agreement on
shared ontologies. In Proceedings of the 9th Banff
Knowledge Acquisition for Knowledge-Based Systems
Workshop, Banff Conference Centre, Banff, Alberta,
Canada, 1995.

[24] D. Sleeman, S. Potter, D. Robertson, and
M. Schorlemmer. Ontology extraction for distributed
environments. In B. Omelayenko and M. C. A. Klein,
editors, Knowledge Transformation for the Semantic
Web, pages 80–91. IOS Press, Amsterdam, 2003.

[25] H. Stuckenschmidt and M. Klein. Structure-based
partitioning of large concept hierarchies. In
Proceedings of the 3rd International Semantic Web
Conference (ISWC2004), Hiroshima, Japan, 2004.

[26] K. Supekar. A peer-review approach for ontology
evaluation. In Proceedings of the 8th International
Protege Conference, pages 7–122, Madrid, Spain, 2005.

[27] M. Uschold and M. Gruninger. Ontologies: principles,
methods and applications. The Knowledge
Engineering Review, 11(2):93–136, 1996.

[28] J. Volker, D. Vrandecic, and Y. Sure. Automatic
evaluation of ontologies (aeon). In Proceedings of the
4th International Semantic Web Conference (ISWC),
Galway, Ireland, 2005.

[29] R. Volz, D. Oberle, and R. Studer. Implementing
views for light-weight web ontologies. In Proceedings
of the IEEE Database Engineering and Application
Symposium (IDEAS), Hong Kong, China, 2003.

[30] H. Yang, Z. Cui, and P. O’Brian. Extracting
ontologies from legacy systems for understanding and
re-engineering. In Proceedings of the 23rd IEEE
International Conference on Computer Software and
Applications (COMPSAC), Phoenix, AZ, USA, 1999.
IEEE Press.

[31] Y. Zhang, W. Vasconcelos, and D. Sleeman.
Ontosearch: An ontology search engine. In Proceedings
of the 24th SGAI International Conference on
Innovative Techniques and Applications of Artificial
Intelligence, Cambridge, UK, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

